Automated Search For The Low-Lying Energy Isomers of Rhamnolipids and Related Organometallic Complexes
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
National Laboratory for Scientific Computing
LNCC/MCTI, Brazil
FAPERJ
CAPES
CNPq
PubMed
35588462
DOI
10.1002/cphc.202200111
Knihovny.cz E-zdroje
- Klíčová slova
- density functional calculations, global minimum search, hydrogen bonds, organometallic complexes, rhamnolipids,
- MeSH
- glykolipidy chemie MeSH
- povrchově aktivní látky * chemie MeSH
- Pseudomonas aeruginosa * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykolipidy MeSH
- povrchově aktivní látky * MeSH
- rhamnolipid MeSH Prohlížeč
Rhamnolipids (RMLs) are a widely studied biosurfactant due to their high biodegradability and environmentally friendly production. However, the knowledge of the structure-property relationship of RMLs is imperative for the design of highly efficient applications. Aiming to a better understanding of it at a molecular level, we performed an automated search for low energy structures of the most abundant RMLs, namely, Rha-C10 , Rha-C10 -C10 , Rha-Rha-C10 and Rha-Rha-C10 -C10 and their respective C2 -congeners. Besides that, selected neutral metal complexes were also considered. We found that several low-energy congeners have internal hydrogen bonds. Moreover, geometries in "closed" conformation were always more stable than "open" ones. Finally, the energy diferences between open and closed conformations of K+ , Ni2+ , Cu2+ and Zn2+ complexes were found to be 23.5 kcal mol-1 , 62.8 kcal mol-1 , 24.3 kcal mol-1 and 41.6 kcal mol-1 , respectively, indicating a huge structural reorganization after the complex formation.
Institute of Biophysics Czech Academy of Science Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
P. K. Mohan, G. Nakhla, E. K. Yanful, Water Res. 2006, 40, 533-540.
J. Wen, S. P. Stacey, M. J. McLaughlin, J. K. Kirby, Soil Biol. Biochem. 2009, 41, 2214-2221.
I. B. Slizovskiy, J. W. Kelsey, P. B. Hatzinger, Environ. Toxicol. Chem. 2010, 30, 112-123.
A. Shah, S. Shahzad, A. Munir, M. N. Nadagouda, G. S. Khan, D. F. Shams, D. D. Dionysiou, U. A. Rana, Chem. Rev. 2016, 116, 6042-6074.
S. Johann, T. Seiler, T. Tiso, K. Bluhm, L. M. Blank, H. Hollert, Sci. Total Environ. 2016, 548-549, 155-163.
G. Li, G. Lan, Y. Liu, C. Chen, L. Lei, J. Du, Y. Lu, Q. Li, G. Du, J. Zhang, RSC Adv. 2017, 7, 31018-31026.
K. K. S. Randhawa, P. K. S. M. Rahman, Front. Microbiol. 2014, 5, 1-8.
L. Dobler, L. F. Vilela, R. V. Almeida, B. C. Neves, New Biotechnol. 2016, 33, 123-135.
R. Marchant, I. M. Banat, Trends Biotechnol. 2012, 30, 558-565.
E. Munusamy, C. M. Luft, J. E. Pemberton, S. D. Schwartz, J. Phys. Chem. B 2017, 121, 5781-5793.
A. M. Abdel-Mawgoud, F. Lépine, E. Déziel, Appl. Microbiol. Biotechnol. 2010, 86, 1323-1336.
L. Wu, L. Lai, Q. Lu, P. Mei, Y. Wang, L. Cheng, Y. Liu, Colloids Surf. B 2019, 181, 593-601.
D. J. McClements, L. Bai, C. Chung, Annu. Rev. Food Sci. Technol. 2017, 8, 205-236.
M. Nitschke, S. S. e Silva, Crit. Rev. Food Sci. Nutr. 2017, 58, 631-638.
T. Piljac, O. Piljac, US7262171B1, 1998.
T. T. L. Nguyen, A. Edelen, B. Neighbors, D. A. Sabatini, J. Colloid Interface Sci. 2010, 348, 498-504.
V. L. Silva, R. B. Lovaglio, C. J. V. Z. J. Contiero, Front. Microbiol. 2015, 6, 1-5.
T. Stipcevic, T. Piljac, J. Piljac, T. Dujmic, G. Piljac, P. B. Inc, WO/2001/010447, 1999.
G. Piljac, V. Piljac, US5455232A, 1992.
G. Pi, L. Mao, M. Bao, Y. Li, H. Gong, J. Zhang, ACS Sustainable Chem. Eng. 2015, 3, 2686-2693.
E. J. Gudiña, A. I. Rodrigues, E. A. M. R. Domingues, J. A. Teixeira, L. R. Rodrigues, Bioresour. Technol. 2015, 177, 87-93.
K. S. M. Rahman, T. J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant, I. M. Banat, Bioresour. Technol. 2003, 90, 159-168.
M. G. Rikalović, M. M. Vrvić, I. M. KaradŽIĆ, J. Serb. Chem. Soc. 2015, 80, 279-304.
D. E. Hogan, J. E. Curry, J. E. Pemberton, R. M. Maier, J. Hazard. Mater. 2017, 340, 171-178.
A. Bodagh, H. Khoshdast, H. Sharafi, H. S. Zahiri, K. A. Noghabi, Ind. Eng. Chem. Res. 2013, 52, 3910-3917.
V. Shojaei, H. Koshdast, Physicochem. Probl. Miner. Process. 2018, 54, 1014-1025.
W. H. Noordman, M. L. Brusseau, D. B. Janssen, Environ. Sci. Technol. 2000, 34, 832-838.
J. L. Torrens, D. C. Herman, R. M. Miller-Maier, Environ. Sci. Technol. 1998, 32, 776.
G. Prabhukumar, M. Matsumoto, A. Mulchandani, W. Chen, Environ. Sci. Technol. 2004, 38, 3148-3152.
T. Li, Y. Song, X. Yuan, J. Li, J. Ji, X. Fu, Q. Zhang, S. Guo, J. Agric. Food Chem. 2018, 66, 5683-5690.
F. Tou, Yi Yang, J. Feng, Z. Niu, H. Pan, Y. Qin, X. Guo, X. Meng, M. Liu, M. F. Hochella, Environ. Sci. Technol. 2017, 51, 4831-4840.
M. S. Islam, M. K. Ahmed, M. Habibullah-Al-Mamun, J. Agric. Food Chem. 2014, 10828-10835.
L. Rodriguez-Freire, S. Avasarala, S. Ali, A. D. Agnew, J. H. Hoover, K. Artyushkova, D. E. Latta, E. J. Peterson, J. Lewis, L. J. Crossey, A. J. Brearley, J. M. Cerrato, Environ. Sci. Technol. 2016, 50, 11539-11548.
G. Liu, H. Zhong, X. Yang, Y. Liu, B. Shao, Z. Liu, Biotechnol. Bioeng. 2018, 115, 796-814.
F. J. Ochoa-Loza, J. F. Artiola, R. M. Maier, J. Environ. Qual. 2001, 30, 479.
R. J. Eismin, E. Munusamy, L. L. Kegel, D. E. Hogan, R. M. Maier, S. D. Schwartz, J. E. Pemberton, Langmuir 2017, 33, 7412-7424.
E. Munusamy, C. M. Luft, J. E. Pemberton, S. D. Schwartz, J. Phys. Chem. B 2018, 122, 6403-6416.
C. M. Luft, E. Munusamy, J. E. Pemberton, S. D. Schwartz, J. Phys. Chem. B 2018, 122, 3944-3952.
C. M. Luft, E. Munusamy, J. E. Pemberton, S. D. Schwartz, J. Phys. Chem. B 2020, 124, 814-827.
M. T. Lee, J. Phys. Chem. B 2021, 125, 9895-9909.
S. R. Euston, I. M. Banat, K. Salek, J. Colloid Interface Sci. 2021, 585, 148-157.
X. Yang, F. Tan, H. Zhong, G. Liu, Z. Ahmad, Q. Liang, Colloids Surf. B 2020, 192, 111049.
S. A. Kornii, V. I. Pokhmurskyi, V. I. Kopylets, I. M. Zin, N. R. Chervinska, Mat. Sci. 2017, 52, 609-619.
S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput. 2017, 13, 1989-2009.
C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652-1671.
C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, 1-49.
S. Grimme, J. Chem. Theory Comput. 2019, 15, 2847-2862.
P. Pracht, F. Bohle, S. Grimme, Phys. Chem. Chem. Phys. 2020, 22, 7169-7192.
D. Bashford, D. A. Case, Annu. Rev. Phys. Chem. 2000, 51, 129-152.
S. Ehlert, M. Stahn, S. Spicher, S. Grimme, J. Chem. Theory Comput. 2021, 17, 4250-4261.
J. Shao, S. W. Tanner, N. Thompson, T. E. Cheatham, J. Chem. Theory Comput. 2007, 3, 2312-2334.
S. Grimme, F. Bohle, A. Hansen, P. Pracht, S. Spicher, M. Stahn, J. Phys. Chem. A 2021, 125, 4039-4054.
S. Grimme, A. Hansen, S. Ehlert, J. M. Mewes, J. Chem. Phys. 2021, 154, 1-18.
V. Barone, M. Cossi, J. Phys. Chem. A 1998, 1995-2001.
M. Garcia-Rates, F. Neese, J. Comput. Chem. 2020, 41, 922-939.
F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684-3690.
I. M. Banat, R. S. Makkar, S. S. Cameotra, Appl. Microbiol. Biotechnol. 2000, 53, 495-508.
C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029-5036.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
M. A. S. Francisco, F. Fantuzzi, T. M. Cardozo, P. M. Esteves, B. Engels, R. R. Oliveira, Chem. Eur. J. 2021, 27, 12126-12136.