Physical-Mechanical Properties of Peat Moss (Sphagnum) Insulation Panels with Bio-Based Adhesives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35591633
PubMed Central
PMC9100907
DOI
10.3390/ma15093299
PII: ma15093299
Knihovny.cz E-zdroje
- Klíčová slova
- animal glue, bio-based adhesives, bio-based materials, insulator, peat moss, tannin,
- Publikační typ
- časopisecké články MeSH
Rising energy and raw material prices, dwindling resources, increased recycling, and the need for sustainable management have led to growth in the smart materials sector. In recent years, the importance and diversity of bio-based adhesives for industrial applications has grown steadily. This article focuses on the production and characterization of insulation panels consisting of peat moss and two bio-based adhesives. The panels were pressed with tannin and animal-based resins and compared to panels bonded with urea formaldehyde. The physical-mechanical properties, namely, thermal conductivity (TC), water vapor diffusion resistance, modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), compression resistance (CR), water absorption (WA) and thickness swelling (TS) were measured and analyzed. The results show that the insulation effectiveness and mechanical stability of moss panels bound with tannin and animal glue are comparable to standard adhesives used in the composite industry.
Zobrazit více v PubMed
May N., Guenther E., Haller P. Environmental Indicators for the Evaluation of Wood Products in Consideration of Site-Dependent Aspects: A Review and Integrated Approach. Sustainability. 2017;9:1897. doi: 10.3390/su9101897. DOI
Eisenmenger N., Warr B., Magerl A. Trends in Austrian Resource Efficiency: An Exergy and Useful Work Analysis in Comparison to Material Use, CO2 Emissions, and Land Use. J. Ind. Ecol. 2017;21:1250–1261. doi: 10.1111/jiec.12474. PubMed DOI PMC
Mohanty A.K., Misra M., Drzal L.T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. Environ. 2002;10:19–26. doi: 10.1023/A:1021013921916. DOI
Oertel D. Industrielle Stoffliche Nutzung Nachwachsender Rohstoffe. Sachstandsbericht zum Monitoring »Nachwachsende Rohstoffe«. 2007. [(accessed on 16 August 2021)]. Available online: https://www.infothek-biomasse.ch/images/2007_TAB_Bioraffinerien.pdf.
Dey P., Ray S. An Overview of the Recent Trends in Manufacturing of Green Composites – Considerations and Challenges. Mater. Today Proc. 2018;5:19783–19789. doi: 10.1016/j.matpr.2018.06.341. DOI
Schulz H. Holz als Rohstoffreserve der Zukunft. Forstw. Cbl. 1978;97:57–66. doi: 10.1007/BF02741093. DOI
Koplin J. Nachhaltigkeit im Beschaffungsmanagement. Deutscher Universitäts-Verlag; Wiesbaden, Germany: 2006. Ein Konzept zur Integration von Umwelt- und Sozialstandards.
Gaudig G., Krebs M., Prager A., Wichmann S., Barney M., Caporn S.J., Emmel M., Fritz C., Graf M., Grobe A., et al. Sphagnum farming from species selection to the production of growing media: A review. Mires and Peat. 2018;20:1–30.
Kain G., Morandini M., Stamminger A., Granig T., Tudor E.M., Schnabel T., Petutschnigg A. Production and Physical-Mechanical Characterization of Peat Moss (Sphagnum) Insulation Panels. Materials (Basel) 2021;14:6601. doi: 10.3390/ma14216601. PubMed DOI PMC
Greifswald Moor Centrum Warum Moore so Wichtig Sind. [(accessed on 16 August 2021)]. Available online: https://www.greifswaldmoor.de/moore.html.
Krebs M., Gaudig G., Wichmann S., Joosten H. Torfmooskultivierung: Moorschutz durch Moornutzung. Telma. 2015;5:59–70.
Stepanenko V.M., Repina I.A., Fedosov V.E., Zilitinkevich S.S., Lykossov V.N. An Overview of Parameterezations of Heat Transfer over Moss-Covered Surfaces in the Earth System Models. Izv. Atmos. Ocean. Phys. 2020;56:101–111. doi: 10.1134/S0001433820020139. DOI
Krisai R. Zur Torfmoosverbreitung im Ostalpenraum. Bryologische Forschung in Österreich. Verh. Zool.-Bot. Ges. Österr. 1999;30:25–38.
Abdou A.A. Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures. J. Build. Phys. 2005;29:171–184. doi: 10.1177/1744259105056291. DOI
Vasold M. Nenn-Wörter, Handschrift 1768, Hofkammer- und Finanzarchiv. Bancale Sig. Rot; Vienna, Austria: 1959.
Kain G., Idam F., Tonini S., Wimmer A. Torfmoos (Sphagnum)—historisches Erfahrungswissen und neue Einsatzmöglichkeiten für ein Naturprodukt. Bauphysik. 2019;41:199–204. doi: 10.1002/bapi.201900013. DOI
Ebert H.-P. High-performance insulation materials. In: Torgal F., Mistretta M., Kaklauskas A., Granqvist C., Cabeza L., editors. Nearly Zero Energy Building Refurbishment. Springer; London, UK: 2013. pp. 457–481.
Thermal Insulation Products for Building Applications—Determination of Bending Behaviour. Austrian Standards; Vienna, Austria: 2013.
Papadopoulos A.M. State of the art in thermal insulation materials and aims for future developments. Energy Build. 2005;37:77–86. doi: 10.1016/j.enbuild.2004.05.006. DOI
Thermal Insulating Products for Building Applications—Determination of Short-Term Water Absorption by Partial Immersion. Austrian Standards; Vienna, Austria: 2019.
Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance. Austrian Standards; Vienna, Austria: 2001.
Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. Austrian Standards; Vienna, Austria: 2005.
Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties—Cup Method. Austrian Standards; Vienna, Austria: 2017.
Zöfel P. Statistik Verstehen: Ein Begleitbuch zur Computergestützten Anwendung. Addison-Wesley; Munich, Germany: 2001.
Xu J., Sugawara R., Widyorini R., Han G., Kawai S. Manufacture and properties of low-density binderless particleboard from kenaf core. J. Wood Sci. 2004;50:62–67. doi: 10.1007/s10086-003-0522-1. DOI
Savic A., Antonijevic D., Jelic I., Zakic D. Thermomechanical behavior of bio-fiber composite thermal insulation panels. Energy Build. 2020;229:110511. doi: 10.1016/j.enbuild.2020.110511. DOI
Kain G., Güttler V., Lienbacher B., Barbu M.C., Petutschnigg A., Richter K., Tondi G. Effects of different flavonoid extracts in optimizing tannin-glued bark insulation boards. Wood Fiber Sci. 2015;47:258–269.
Pfundstein M., Gellert R., Spitzner M.H., Rudolphi A. Dämmstoffe: Grundlagen, Materialien, Anwendungen. Department for International Architecture Documentation Corporation; Munich, Germany: 2007.
Mansouri H.R., Navarrete P., Pizzi A., Tapin-Lingua S., Benjelloun-Mlayah B., Pasch H., Rigolet S. Synthetic-resin-free wood panel adhesives from mixed low molecular mass lignin and tannin. Eur. J. Wood Prod. 2011;69:221–229. doi: 10.1007/s00107-010-0423-0. DOI
Ducoulombier L., Lafhaj Z. Comparative study of hygrothermal properties of five thermal insulation materials. Case Stud. Therm. Eng. 2017;10:628–640. doi: 10.1016/j.csite.2017.11.005. DOI
Buratti C., Belloni E., Merli F. Water vapour permeability of innovative building materials from different waste. Mater. Lett. 2020;265:127459. doi: 10.1016/j.matlet.2020.127459. DOI