Diagnoses Based on C-Reactive Protein Point-of-Care Tests

. 2022 May 17 ; 12 (5) : . [epub] 20220517

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35624645

C-reactive protein (CRP) is an important part of the immune system's reaction to various pathological impulses such as bacterial infections, systemic inflammation, and internal organ failures. An increased CRP level serves to diagnose the mentioned pathological states. Both standard laboratory methods and simple point-of-care devices such as lateral flow tests and immunoturbidimetric assays serve for the instrumental diagnoses based on CRP. The current method for CRP has many flaws and limitations in its use. Biosensor and bioassay analytical devices are presently researched by many teams to provide more sensitive and better-suited tools for point-of-care tests of CRP in biological samples when compared to the standard methods. This review article is focused on mapping the diagnostical relevance of CRP, the applicability of the current analytical methods, and the recent innovations in the measurement of CRP level.

Zobrazit více v PubMed

Qian W.H., Song T., Ye M., Huang X.Y., Li Y.J., Hao B.J. Functionalized nanographene oxide/PEG/rhodamine B/gold nanocomposite for electrochemical determination of glucose. J. Mater. Sci. Technol. 2022;122:141–147. doi: 10.1016/j.jmst.2022.02.013. DOI

Wu B.F., Xu H.T., Shi Y.F., Yao Z.J., Yu J.Y., Zhou H., Li Y.P., Chen Q.L., Long Y.B. Microelectrode glucose biosensor based on nanoporous platinum/graphene oxide nanostructure for rapid glucose detection of tomato and cucumber fruits. Food Qual. Saf. 2022;6:11. doi: 10.1093/fqsafe/fyab030. DOI

Yang B., Wang K.Y., Zhou J.H., Shao X.Y., Gu X.F., Xue Y.S., Tian S. Ratiometric SERS detection of H2O2 and glucose using a pyrroloquinoline skeleton containing molecule as H2O2-responsive probe. Appl. Surf. Sci. 2022;590:10. doi: 10.1016/j.apsusc.2022.153020. DOI

Kuznetsova L.S., Arlyapov V.A., Kamanina O.A., Lantsova E.A., Tarasov S.E., Reshetilov A.N. Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. Polymers. 2022;14:1543. doi: 10.3390/polym14081543. PubMed DOI PMC

Lew T.T.S., Aung K.M.M., Ow S.Y., Amrun S.N., Sutarlie L., Ng L.F.P., Su X.D. Epitope-Functionalized Gold Nanoparticles for Rapid and Selective Detection of SARS-CoV-2 IgG Antibodies. ACS Nano. 2021;15:12286–12297. doi: 10.1021/acsnano.1c04091. PubMed DOI

Polvere I., Voccola S., D’Andrea S., Zerillo L., Varricchio R., Madera J.R., Stilo R., Vito P., Zotti T. Evaluation of FAST COVID-19 SARS-CoV-2 Antigen Rapid Test Kit for Detection of SARS-CoV-2 in Respiratory Samples from Mildly Symptomatic or Asymptomatic Patients. Diagnostics. 2022;12:650. doi: 10.3390/diagnostics12030650. PubMed DOI PMC

Lustig Y., Keler S., Kolodny R., Ben-Tal N., Atias-Varon D., Shlush E., Gerlic M., Munitz A., Doolman R., Asraf K., et al. Potential Antigenic Cross-reactivity Between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Dengue Viruses. Clin. Infect. Dis. 2021;73:E2444–E2449. doi: 10.1093/cid/ciaa1207. PubMed DOI PMC

Anderson C.E., Huynh T., Gasperino D.J., Alonzo L.F., Cantera J.L., Harston S.P., Hsieh H.V., Marzan R., McGuire S.K., Williford J.R., et al. Automated liquid handling robot for rapid lateral flow assay development. Anal. Bioanal. Chem. 2022;414:2607–2618. doi: 10.1007/s00216-022-03897-9. PubMed DOI PMC

Rahbar M., Zou S.Y., Baharfar M., Liu G.Z. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test. Biosensors. 2021;11:474. doi: 10.3390/bios11120474. PubMed DOI PMC

Wang X., Xue C.H., Yang D., Jia S.T., Ding Y.R., Lei L., Gao K.Y., Jia T.T. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. RSC Adv. 2021;11:26493–26501. doi: 10.1039/D1RA04369B. PubMed DOI PMC

Chang R.C.H., Wang C.Y., Li H.H., Chiu C.D. Drunk Driving Detection Using Two-Stage Deep Neural Network. IEEE Access. 2021;9:116564–116571. doi: 10.1109/ACCESS.2021.3106170. DOI

Hackett M.A., Gorczynski L.Y., Martin T.L. The effect of non-alcoholic food and beverage consumption on preliminary breath alcohol testing by the Drager Alcotest 6810 and Alco-Sensor FST. Can. Soc. Forensic Sci. J. 2017;50:131–145. doi: 10.1080/00085030.2017.1328160. DOI

Zhang K., Xie K., Zhang C.X., Liang Y.J., Chen Z.K., Wang H.F. C-reactive protein testing to reduce antibiotic prescribing for acute respiratory infections in adults: A systematic review and meta-analysis. J. Thorac. Dis. 2022;14:123. doi: 10.21037/jtd-21-705. PubMed DOI PMC

Kharel S., Ojha R., Preethish-Kumar V., Bhagat R. C-reactive protein levels in patients with amyotrophic lateral sclerosis: A systematic review. Brain Behav. 2022;12:8. doi: 10.1002/brb3.2532. PubMed DOI PMC

Fernandez-Sampedro M., Sanles-Gonzalez I., Garcia-Ibarbia C., Fananas-Rodriquez N., Fakkas-Fernandez M., Farinas M.C. The poor accuracy of D-dimer for the diagnosis of prosthetic joint infection but its potential usefulness in early postoperative infections following revision arthroplasty for aseptic loosening. BMC Infect. Dis. 2022;22:10. doi: 10.1186/s12879-022-07060-8. PubMed DOI PMC

Moutachakkir M., Lamrani Hanchi A., Baraou A., Boukhira A., Chellak S. Immunoanalytical characteristics of C-reactive protein and high sensitivity C-reactive protein. Ann. Biol. Clin. 2017;75:225–229. doi: 10.1684/abc.2017.1232. PubMed DOI

Pathak A., Agrawal A. Evolution of C-Reactive Protein. Front. Immunol. 2019;10:943. doi: 10.3389/fimmu.2019.00943. PubMed DOI PMC

Shrive A.K., Cheetham G.M., Holden D., Myles D.A., Turnell W.G., Volanakis J.E., Pepys M.B., Bloomer A.C., Greenhough T.J. Three dimensional structure of human C-reactive protein. Nat. Struct. Biol. 1996;3:346–354. doi: 10.1038/nsb0496-346. PubMed DOI

Wang H.W., Sui S.F. Dissociation and subunit rearrangement of membrane-bound human C-reactive proteins. Biochem. Biophys. Res. Commun. 2001;288:75–79. doi: 10.1006/bbrc.2001.5733. PubMed DOI

Nazarov P.G., Polevshchikov A.V., Berestovaya L.K., Petrov I.V., Ponomarenko V.V. Characterization of antigenic and cytotropic properties of C-reactive protein subunits. Bull. Exp. Biol. Med. 1993;116:1512–1514. doi: 10.1007/BF00785486. PubMed DOI

Eisenhardt S.U., Thiele J.R., Bannasch H., Stark G.B., Peter K. C-reactive protein How conformational changes influence inflammatory properties. Cell Cycle. 2009;8:3885–3892. doi: 10.4161/cc.8.23.10068. PubMed DOI

Zen Q., Zhong W.J., Mortensen R.F. Binding site on human C-reactive protein (CRP) recognized by the leukocyte CRP-receptor. J. Cell. Biochem. 1997;64:140–151. doi: 10.1002/(SICI)1097-4644(199701)64:1<140::AID-JCB16>3.0.CO;2-P. PubMed DOI

Guillon C., Bigouagou U.M., Folio C., Jeannin P., Delneste Y., Gouet P. A staggered decameric assembly of human C-reactive protein stabilized by zinc ions revealed by X-ray crystallography. Protein Pept. Lett. 2014;22:248–255. doi: 10.2174/0929866522666141231111226. PubMed DOI

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Bienert S., Waterhouse A., de Beer T.A., Tauriello G., Studer G., Bordoli L., Schwede T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017;45:D313–D319. doi: 10.1093/nar/gkw1132. PubMed DOI PMC

Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30:S162–S173. doi: 10.1002/elps.200900140. PubMed DOI

Sproston N.R., Ashworth J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754. PubMed DOI PMC

Sucajtys-Szulc E., Debska-Slizien A., Rutkowski B., Milczarek R., Pelikant-Malecka I., Sledzinski T., Swierczynski J., Szolkiewicz M. Hepatocyte nuclear factors as possible C-reactive protein transcriptional inducer in the liver and white adipose tissue of rats with experimental chronic renal failure. Mol. Cell. Biochem. 2018;446:11–23. doi: 10.1007/s11010-018-3268-1. PubMed DOI PMC

Alikiaii B., Heidari Z., Bagherniya M., Askari G., Sathyapalan T., Sahebkar A. The Effect of Statins on C-Reactive Protein in Stroke Patients: A Systematic Review of Clinical Trials. Mediat. Inflamm. 2021;2021:10. doi: 10.1155/2021/7104934. PubMed DOI PMC

Kayser S., Brunner P., Althaus K., Dorst J., Sheriff A. Selective Apheresis of C-Reactive Protein for Treatment of Indications with Elevated CRP Concentrations. J. Clin. Med. 2020;9:2947. doi: 10.3390/jcm9092947. PubMed DOI PMC

Enocsson H., Karlsson J., Li H.Y., Wu Y., Kushner I., Wetterö J., Sjöwall C. The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J. Clin. Med. 2021;10:5837. doi: 10.3390/jcm10245837. PubMed DOI PMC

Melnikov I.S., Kozlov S.G., Saburova O.S., Avtaeva Y.N., Prokofieva L.V., Gabbasov Z.A. Current Position on the Role of Monomeric C-reactive Protein in Vascular Pathology and Atherothrombosis. Curr. Pharm. Des. 2020;26:37–43. doi: 10.2174/1381612825666191216144055. PubMed DOI

Wu Y., Ji S.R., Wang H.W., Sui S.F. Study of the spontaneous dissociation of rabbit C-reactive protein. Biochemistry. 2002;67:1377–1382. doi: 10.1023/a:1021862027061. PubMed DOI

Heuertz R.M., Schneider G.P., Poternpa L.A., Webster R.O. Native and modified C-reactive protein bind different receptors on human neutrophils. Int. J. Biochem. Cell Biol. 2005;37:320–335. doi: 10.1016/j.biocel.2004.07.002. PubMed DOI

Michowitz Y., Arbel Y., Wexler D., Sheps D., Rogowski O., Shapira I., Berliner S., Keren G., George J., Roth A. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int. J. Cardiol. 2008;125:347–351. doi: 10.1016/j.ijcard.2007.02.037. PubMed DOI

Monneret D., Mestari F., Djiavoudine S., Bachelot G., Cloison M., Imbert-Bismut F., Bernard M., Hausfater P., Lacorte J.M., Bonnefont-Rousselot D. Wide-range CRP versus high-sensitivity CRP on Roche analyzers: Focus on low-grade inflammation ranges and high-sensitivity cardiac troponin T levels. Scand. J. Clin. Lab. Investig. 2018;78:346–351. doi: 10.1080/00365513.2018.1471618. PubMed DOI

Kondo F., Takegami Y., Ishizuka S., Hasegawa Y., Imagama S. The association of the progression of knee osteoarthritis with high-sensitivity CRP in community-dwelling people-the Yakumo study. Clin. Rheumatol. 2021;40:2643–2649. doi: 10.1007/s10067-020-05541-2. PubMed DOI

Tsuriya D., Morita H., Morioka T., Takahashi N., Ito T., Oki Y., Nakamura H. Significant Correlation Between Visceral Adiposity and High-sensitivity C-reactive Protein (hs-CRP) in Japanese Subjects. Intern. Med. 2011;50:2767–2773. doi: 10.2169/internalmedicine.50.5908. PubMed DOI

Komulainen P., Lakka T.A., Kivipelto M., Hassinen M., Penttila I.M., Helkala E.L., Gylling H., Nissinen A., Rauramaa R. Serum high sensitivity C-reactive protein and cognitive function in elderly women. Age Ageing. 2007;36:443–448. doi: 10.1093/ageing/afm051. PubMed DOI

Bisaria S., Terrigno V., Hunter K., Roy S. Association of Elevated Levels of Inflammatory Marker High-Sensitivity C-Reactive Protein and Hypertension. J. Prim. Care Community Health. 2020;11:8. doi: 10.1177/2150132720984426. PubMed DOI PMC

Kumar R., Porwal Y.C., Dev N., Kumar P., Chakravarthy S., Kumawat A. Association of high-sensitivity C-reactive protein (hs-CRP) with non-alcoholic fatty liver disease (NAFLD) in Asian Indians: A cross-sectional study. J. Fam. Med. Prim. Care. 2020;9:390–394. doi: 10.4103/jfmpc.jfmpc_887_19. PubMed DOI PMC

Orlandi M., Muñoz Aguilera E., Marletta D., Petrie A., Suvan J., D’Aiuto F. Impact of the treatment of periodontitis on systemic health and quality of life: A systematic review. J. Clin. Periodontol. 2021 doi: 10.1111/jcpe.13554. PubMed DOI

Choubaya C., Chahine N., Aoun G., Anil S., Zalloua P., Salameh Z. Expression of Inflammatory Mediators in Periodontitis Over Established Diabetes: An Experimental Study in Rats. Med. Arch. 2021;75:436–443. doi: 10.5455/medarh.2021.75.436-443. PubMed DOI PMC

Sondenaa K., Buan B., Soreide J.A., Nysted A., Andersen E., Nesvik I., Osland A. Rapid C-reactive protein (CRP) measurements in the diagnosis of acute appendicitis. Scand. J. Clin. Lab. Investig. 1992;52:585–589. doi: 10.1080/00365519209115500. PubMed DOI

Gibson A.E., Buchholz A.C., Martin Ginis K.A. C-Reactive protein in adults with chronic spinal cord injury: Increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord. 2008;46:616–621. doi: 10.1038/sc.2008.32. PubMed DOI

Gorabi A.M., Abbasifard M., Imani D., Aslani S., Razi B., Alizadeh S., Bagheri-Hosseinabadi Z., Sathyapalan T., Sahebkar A. Effect of curcumin on C-reactive protein as a biomarker of systemic inflammation: An updated meta-analysis of randomized controlled trials. Phytother. Res. 2022;36:85–97. doi: 10.1002/ptr.7284. PubMed DOI

Arbutina D.D., Milic L., Cuk V.V., Juloski J.T., Radulovic R., Starcevic A., Karamarkovic A.R. Significance of Biomarkers in Early Diagnosis of Abdominal Sepsis. Chirurgia. 2022;117:30–36. doi: 10.21614/chirurgia.2660. PubMed DOI

Wang J., Hu Y., Kuang Z., Chen Y., Xing L., Wei W., Xue M., Mu S., Tong C., Yang Y., et al. GPR174 mRNA Acts as a Novel Prognostic Biomarker for Patients With Sepsis via Regulating the Inflammatory Response. Front. Immunol. 2021;12:789141. doi: 10.3389/fimmu.2021.789141. PubMed DOI PMC

Ahmed M.A., Askar G.A., Farghaly H.S., Ahmed A.O., Kamal D.T., Ahmed S.S., Mohamad I.L. Accuracy of Cerebrospinal Fluid C-Reactive Protein and Multiplex Polymerase Chain Reaction and Serum Procalcitonin in Diagnosis of Bacterial and Viral Meningitis in Children. Acta Neurol. Taiwan. 2022;31:61–71. PubMed

Tao M., Zheng D., Liang X., He Q., Zhang W. Diagnostic value of procalcitonin for bacterial infections in patients undergoing hemodialysis: A systematic review and meta-analysis. Ren. Fail. 2022;44:81–93. doi: 10.1080/0886022X.2021.2021236. PubMed DOI PMC

Kusumaningrum R., Anam M.S., Dadiyanto D.W., Sidhartani M., Mexitalia M. High sensitivity C-reactive protein level in various manifestations of tuberculosis in children. Paediatr. Indones. 2021;61:253–260. doi: 10.14238/pi61.5.2021.253-60. DOI

Tong-Minh K., van der Does Y., Engelen S., de Jong E., Ramakers C., Gommers D., van Gorp E., Endeman H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022;22:165. doi: 10.1186/s12879-022-07144-5. PubMed DOI PMC

Karimi A., Shobeiri P., Kulasinghe A., Rezaei N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021;12:741061. doi: 10.3389/fimmu.2021.741061. PubMed DOI PMC

Li Y., Wu Y., Gao Y., Niu X., Li J., Tang M., Fu C., Qi R., Song B., Chen H., et al. Machine-learning based prediction of prognostic risk factors in patients with invasive candidiasis infection and bacterial bloodstream infection: A singled centered retrospective study. BMC Infect. Dis. 2022;22:150. doi: 10.1186/s12879-022-07125-8. PubMed DOI PMC

Guo J., Wu Y., Lai W., Lu W., Mu X. The diagnostic value of (1,3)-β-D-glucan alone or combined with traditional inflammatory markers in neonatal invasive candidiasis. BMC Infect. Dis. 2019;19:716. doi: 10.1186/s12879-019-4364-x. PubMed DOI PMC

Garcia-Marchinena P., Billordo-Peres N., Tobia-Gonzalez I., Jurado A., Damia O., Gueglio G. High-sensitivity C-reactive protein as a predictor of locally advanced renal cell carcinoma. Arch. Esp. Urol. 2012;65:601–607. PubMed

Lanki M., Seppanen H., Mustonen H., Salmiheimo A., Stenman U.H., Salmi M., Jalkanen S., Haglund C. Pancreatic cancer survival prediction via inflammatory serum markers. Cancer Immunol. Immunother. 2022;6:1–6. doi: 10.1007/s00262-021-03137-6. PubMed DOI PMC

Suzuki S., Katagiri R., Yamaji T., Sawada N., Imatoh T., Ihira H., Inoue M., Tsugane S., Iwasaki M., Japan Public Hlth Ctr-based P. Association between C-reactive protein and risk of overall and 18 site-specific cancers in a Japanese case-cohort. Br. J. Cancer. 2022;9:1481–1489. doi: 10.1038/s41416-022-01715-8. PubMed DOI PMC

Sydenham R.V., Hansen M.P., Justesen U.S., Pedersen L.B., Aabenhus R.M., Wehberg S., Jarbøl D.E. Factors associated with C-reactive protein testing when prescribing antibiotics in general practice: A register-based study. BMC Prim Care. 2022;23:17. doi: 10.1186/s12875-021-01614-6. PubMed DOI PMC

Prins H.J., Duijkers R., van der Valk P., Schoorl M., Daniels J.M.A., van der Werf T.S., Boersma W.G. CRP-guided antibiotic treatment in acute exacerbations of COPD in hospital admissions. Eur. Resp. J. 2019;53:10. doi: 10.1183/13993003.02014-2018. PubMed DOI

Hoffmann K., Leifheit A.K., Reichardt B., Maier M. The antibiotic prescription and redemption gap and opportunistic CRP point-of-care testing. A cross-sectional study in primary health care from Eastern Austria. Wien. Klin. Wochen. 2013;125:105–110. doi: 10.1007/s00508-013-0323-5. PubMed DOI

Jakobsen K.A., Melbye H., Kelly M.J., Ceynowa C., Molstad S., Hood K., Butler C.C. Influence of CRP testing and clinical findings on antibiotic prescribing in adults presenting with acute cough in primary care. Scand. J. Prim. Health Care. 2010;28:229–236. doi: 10.3109/02813432.2010.506995. PubMed DOI PMC

Lindstrom J., Nordeman L., Hagstrom B. What a difference a CRP makes. A prospective observational study on how point-of-care C-reactive protein testing influences antibiotic prescription for respiratory tract infections in Swedish primary health care. Scand. J. Prim. Health Care. 2015;33:275–282. doi: 10.3109/02813432.2015.1114348. PubMed DOI PMC

Hart P.C., Rajab I.M., Alebraheem M., Potempa L.A. C-Reactive Protein and Cancer-Diagnostic and Therapeutic Insights. Front. Immunol. 2020;11:595835. doi: 10.3389/fimmu.2020.595835. PubMed DOI PMC

Potempa L.A., Rajab I.M., Olson M.E., Hart P.C. C-Reactive Protein and Cancer: Interpreting the Differential Bioactivities of Its Pentameric and Monomeric, Modified Isoforms. Front. Immunol. 2021;12:744129. doi: 10.3389/fimmu.2021.744129. PubMed DOI PMC

Siennicka A. Association between microvesicles bearing monomeric C-reactive protein and platelet reactivity. Relationship with low response to antiplatelet drugs? J. Physiol. Pharmacol. 2021;72 doi: 10.26402/jpp.2021.1.01. PubMed DOI

Slevin M., Heidari N., Azamfirei L. Monomeric C-Reactive Protein: Current Perspectives for Utilization and Inclusion as a Prognostic Indicator and Therapeutic Target. Front. Immunol. 2022;13:866379. doi: 10.3389/fimmu.2022.866379. PubMed DOI PMC

Moriarity D.P., Horn S.R., Kautz M.M., Haslbeck J.M.B., Alloy L.B. How handling extreme C-reactive protein (CRP) values and regularization influences CRP and depression criteria associations in network analyses. Brain Behav. Immun. 2021;91:393–403. doi: 10.1016/j.bbi.2020.10.020. PubMed DOI PMC

Socha M.W., Malinowski B., Puk O., Wartęga M., Bernard P., Nowaczyk M., Wolski B., Wiciński M. C-reactive protein as a diagnostic and prognostic factor of endometrial cancer. Crit. Rev. Oncol. Hematol. 2021;164:103419. doi: 10.1016/j.critrevonc.2021.103419. PubMed DOI

Ridker P.M. C-reactive protein, inflammation, and cardiovascular disease: Clinical update. Tex. Heart. Inst. J. 2005;32:384–386. PubMed PMC

Wu T.L., Tsao K.C., Chang C.P.Y., Li C.N., Sun C.F., Wu J.T. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin. Chim. Acta. 2002;322:163–168. doi: 10.1016/S0009-8981(02)00172-9. PubMed DOI

Shields M.J., Siegel J.N., Clark C.R., Hines K.K., Potempa L.A., Gewurz H., Anderson B. An appraisal of polystyrene-based (ELISA) and nitrocellulose-based (ELIFA) enzyme-immunoassay systems using monoclonal antibodies reactive toward antigenically distinct forms of human C-reactive protein. J. Immunol. Methods. 1991;141:253–261. doi: 10.1016/0022-1759(91)90152-6. PubMed DOI

Wei W.R., Tang Y.Y., He H.M., Gopinath S.C.B., Wang L.L. Determination of cardiac disease biomarker by plasmonic sandwich ELISA. Biotechnol. Appl. Biochem. 2022;6 doi: 10.1002/bab.2092. PubMed DOI

Vashist S.K., Czilwik G., van Oordt T., von Stetten F., Zengerle R., Schneider E.M., Luong J.H.T. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min. Anal. Biochem. 2014;456:32–37. doi: 10.1016/j.ab.2014.04.004. PubMed DOI

Liu Y., Zhan F., Zhang X., Lin S. Toll-like receptor-9 is involved in the development of B cell stimulating factor-induced systemic lupus erythematosus. Exp. Ther. Med. 2018;15:585–591. doi: 10.3892/etm.2017.5411. PubMed DOI PMC

Elamir A.M., Senara S., Abdelghaffar N.K., Gaber S.N., El Sayed H.S. Diagnostic role of lncRNA GAS5 and its genetic polymorphisms rs2067079, rs6790 and rs17359906 in rheumatoid arthritis. Biomed. Rep. 2021;15:93. doi: 10.3892/br.2021.1469. PubMed DOI PMC

Ren T., Xiong J., Liu G., Wang S., Tan Z., Fu B., Zhang R., Liao X., Wang Q., Guo Z. Imbalance of Th22/Treg cells causes microinflammation in uremic patients undergoing hemodialysis. Biosci. Rep. 2019;39:BSR20191585. doi: 10.1042/BSR20191585. PubMed DOI PMC

Xing Y., Gao Q., Zhang Y.M., Ma L., Loh K.Y., Peng M.L., Chen C., Cui Y.L. The improved sensitive detection of C-reactive protein based on the chemiluminescence immunoassay by employing monodispersed PAA-Au/Fe3O4 nanoparticles and zwitterionic glycerophosphoryl choline. J. Mat. Chem. B. 2017;5:3919–3926. doi: 10.1039/C7TB00637C. PubMed DOI

Trifanescu R., Fica S., Dimuleselt D., Barbit C., Sirbu A., Rotaru M., Florea S., Purice M., Coculescu M. Thyroid hormones and proinflammatory cytokines’ profile in amiodarone-induced thyrotoxicosis. Acta Endocrinol. 2007;3:417–435. doi: 10.4183/aeb.2007.417. DOI

Fan A.P., Cao Z.J., Li H.A., Kai M., Lu J.Z. Chemiluminescence Platforms in Immunoassay and DNA Analyses. Anal. Sci. 2009;25:587–597. doi: 10.2116/analsci.25.587. PubMed DOI

Denham E., Mohn B., Tucker L., Lun A., Cleave P., Boswell D.R. Evaluation of immunoturbidimetric specific protein methods using the Architect ci8200: Comparison with immunonephelometry. Ann. Clin. Biochem. 2007;44:529–536. doi: 10.1258/000456307782268237. PubMed DOI

Mali B., Armbruster D., Serediak E., Ottenbreit T. Comparison of immunoturbidimetric and immunonephelometric assays for specific proteins. Clin. Biochem. 2009;42:1568–1571. doi: 10.1016/j.clinbiochem.2009.06.016. PubMed DOI

Eckersall P.D., Conner J.G., Harvie J. An immunoturbidimetric assay for canine reactive protein. Vet. Res. Commun. 1991;15:17–24. doi: 10.1007/bf00497786. PubMed DOI

Jinbo T., Hayashi S., Iguchi K., Shimizu M., Matsumoto T., Naiki M., Yamamoto S. Development of monkey C-reactive protein (CRP) assay methods. Vet. Immunol. Immunopathol. 1998;61:195–202. doi: 10.1016/S0165-2427(97)00148-7. PubMed DOI

Pedersen L.M., Nordin H., Svensson B., Bliddal H. Microalbuminuria in patients with rheumatoid-arthritis. Ann. Rheum. Dis. 1995;54:189–192. doi: 10.1136/ard.54.3.189. PubMed DOI PMC

Covin M.A., Gomez R.R., Suchodolski J.S., Steiner J.M., Lidbury J.A. Analytical validation of a point-of-care test and an automated immunoturbidimetric assay for the measurement of canine C-reactive protein in serum. Can. J. Vet. Res. 2021;85:285–292. PubMed PMC

Dupuy A.M., Badiou S., Descomps B., Cristol J.P. Immunoturbidimetric determination of C-reactive protein (CRP) and high-sensitivity CRP on heparin plasma. Comparison with serum determination. Clin. Chem. Lab. Med. 2003;41:948–949. doi: 10.1515/CCLM.2003.144. PubMed DOI

Berlanda M., Valente C., Bonsembiante F., Badon T., Bedin S., Contiero B., Guglielmini C., Poser H. Evaluation of an automated immunoturbidimetric assay for detecting canine C-reactive protein. J. Vet. Diagn. Investig. 2020;32:948–952. doi: 10.1177/1040638720960065. PubMed DOI PMC

Hillström A., Hagman R., Tvedten H., Kjelgaard-Hansen M. Validation of a commercially available automated canine-specific immunoturbidimetric method for measuring canine C-reactive protein. Vet. Clin. Pathol. 2014;43:235–243. doi: 10.1111/vcp.12150. PubMed DOI PMC

Klenner S., Bauer N., Moritz A. Evaluation of three automated human immunoturbidimetric assays for the detection of C-reactive protein in dogs. J. Vet. Diagn. Investig. 2010;22:544–552. doi: 10.1177/104063871002200408. PubMed DOI

Kiemle J., Hindenberg S., Bauer N., Roecken M. Comparison of a point-of-care serum amyloid A analyzer frequently used in equine practice with 2 turbidimetric immunoassays used in human and veterinary medicine. J. Vet. Diagn. Investig. 2022;34:42–53. doi: 10.1177/10406387211056029. PubMed DOI PMC

Veltman E.M., Lamers F., Comijs H.C., Stek M.L., van der Mast R.C., Rhebergen D. Inflammatory markers and cortisol parameters across depressive subtypes in an older cohort. J. Affect. Disord. 2018;234:54–58. doi: 10.1016/j.jad.2018.02.080. PubMed DOI

Thuillier F., Demarquilly C., Szymanowicz A., Gaillard C., Boniface M., Braidy C., Daunizeau A., Gascht D., Gruson A., Lagabrielle J.F., et al. Nephelometry or turbidimetry for the determination of albumin, ApoA, CRP, haptoglobin, IgM and transthyretin: Which choice? Ann. Biol. Clin. 2008;66:63–78. doi: 10.1684/abc.2008.0192. PubMed DOI

Blirup-Jensen S. Protein standardization III: Method optimization basic principles for quantitative determination of human serum proteins on automated instruments based on turbidimetry or nephelometry. Clin. Chem. Lab. Med. 2001;39:1098–1109. doi: 10.1515/CCLM.2001.175. PubMed DOI

Messiaen A.S., De Sloovere M.M.W., Claus P.E., Vercammen M., Van Hoovels L., Heylen O., Debrabandere J., Vanpoucke H., De Smet D. Performance Evaluation of Serum Free Light Chain Analysis Nephelometry vs. Turbidimetry, Monoclonal vs Polyclonal Reagents. Am. J. Clin. Pathol. 2017;147:611–622. doi: 10.1093/ajcp/aqx037. PubMed DOI

Yang M., Zhmendak D., Mioulet V., King D.P., Burman A., Nfon C.K. Combining a Universal Capture Ligand and Pan-Serotype Monoclonal Antibody to Develop a Pan-Serotype Lateral Flow Strip Test for Foot-and-Mouth Disease Virus Detection. Viruses. 2022;14:785. doi: 10.3390/v14040785. PubMed DOI PMC

Tuells J., Parra-Grande M., Santos-Calle F.J., Montagud A.C., Egoavil C.M., Garcia-Rivera C., Caballero P., Gabaldon-Bravo E.M., Rodriguez-Diaz J.C., Hurtado-Sanchez J.A. Detection of Neutralizing Antibodies against SARS-CoV-2 Post-Vaccination in Health Care Workers of a Large Tertiary Hospital in Spain by Using a Rapid Test LFIC and sVNT-ELISA. Vaccines. 2022;10:510. doi: 10.3390/vaccines10040510. PubMed DOI PMC

Tulloch J.S.P., Micocci M., Buckle P., Lawrenson K., Kierkegaard P., McLister A., Gordon A.L., Garcia-Finana M., Peddie S., Ashton M., et al. Enhanced lateral flow testing strategies in care homes are associated with poor adherence and were insufficient to prevent COVID-19 outbreaks: Results from a mixed methods implementation study. Age Ageing. 2021;50:1868–1875. doi: 10.1093/ageing/afab162. PubMed DOI PMC

Zhang X.Y., Ding M.Y., Mao Y.X., Huang X.Q., Xie X.H., Song L.J., Qiao M.W., Zhang J.W., Wang T.L., Zhu H.H., et al. A comparative study of "turn-off’ mode and "turn-on" mode lateral flow immunoassay for T-2 toxin detection. Sens. Actuator B-Chem. 2022;359:10. doi: 10.1016/j.snb.2022.131545. DOI

Lai S.C., Huang Y.Y., Wey J.J., Tsai M.H., Chen Y.L., Shu P.Y., Chang S.F., Hung Y.J., Hou J.N., Lin C.C. Development of Novel Dengue NS1 Multiplex Lateral Flow Immunoassay to Differentiate Serotypes in Serum of Acute Phase Patients and Infected Mosquitoes. Front. Immunol. 2022;13:15. doi: 10.3389/fimmu.2022.852452. PubMed DOI PMC

Gebrecherkos T., Kiros Y.K., Challa F., Abdella S., Gebreegzabher A., Leta D., Desta A., Hailu A., Tasew G., Abdulkader M., et al. Longitudinal profile of antibody response to SARS-CoV-2 in patients with COVID-19 in a setting from Sub-Saharan Africa: A prospective longitudinal study. PLoS ONE. 2022;17:18. doi: 10.1371/journal.pone.0263627. PubMed DOI PMC

Liu Y., Kang M., Wu S.Y., Wu L.J., He L., Xiao Y.L., Zhang W.L., Liao Q.F., Deng J., Chen Z.X., et al. Evaluation of a Cryptococcus capsular polysaccharide detection FungiXpert LFA (lateral flow assay) for the rapid diagnosis of Cryptococcosis. Med. Mycol. 2022;60:8. doi: 10.1093/mmy/myac020. PubMed DOI

Mathers J., Poyner C., Thompson D., Rudge G., Pritchett R.V. Exploration of the uptake of asymptomatic COVID-19 lateral flow testing in Birmingham, UK: Survey and qualitative research. BMJ Open. 2022;12:10. doi: 10.1136/bmjopen-2021-056606. PubMed DOI PMC

Davies B., Araghi M., Moshe M., Gao H., Bennet K., Jenkins J., Atchison C., Darzi A., Ashby D., Riley S., et al. Acceptability, Usability, and Performance of Lateral Flow Immunoassay Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies: REACT-2 Study of Self-Testing in Nonhealthcare Key Workers. Open Forum Infect. Dis. 2021;8:7. doi: 10.1093/ofid/ofab496. PubMed DOI PMC

Panferov V.G., Byzova N.A., Zherdev A.V., Dzantiev B.B. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Microchim. Acta. 2021;188:11. doi: 10.1007/s00604-021-04968-x. PubMed DOI

Kong D.Y., Heo N.S., Kang J.W., Lee J.B., Kim H.J., Kim M.I. Nanoceria-based lateral flow immunoassay for hydrogen peroxide-free colorimetric biosensing for C-reactive protein. Anal. Bioanal. Chem. 2022;414:3257–3265. doi: 10.1007/s00216-022-03877-z. PubMed DOI

Galanis P.P., Katis I.N., He P.J.W., Iles A.H., Kumar A.J.U., Eason R.W., Sones C.L. Laser-patterned paper-based flow-through filters and lateral flow immunoassays to enable the detection of C-reactive protein. Talanta. 2022;238:10. doi: 10.1016/j.talanta.2021.123056. PubMed DOI

Pang R.Z., Zhu Q.Y., Wei J., Wang Y.Q., Xu F.Q., Meng X.Y., Wang Z.X. Development of a gold-nanorod-based lateral flow immunoassay for a fast and dual-modal detection of C-reactive protein in clinical plasma samples. RSC Adv. 2021;11:28388–28394. doi: 10.1039/D1RA04404D. PubMed DOI PMC

Sişman A.R., Küme T., Taş G., Akan P., Tuncel P. Comparison and evaluation of two C-reactive protein assays based on particle-enhanced immunoturbidimetry. J. Clin. Lab. Anal. 2007;21:71–76. doi: 10.1002/jcla.20141. PubMed DOI PMC

Zhang L., Li H.Y., Li W., Shen Z.Y., Wang Y.D., Ji S.R., Wu Y. An ELISA Assay for Quantifying Monomeric C-Reactive Protein in Plasma. Front. Immunol. 2018;9:511. doi: 10.3389/fimmu.2018.00511. PubMed DOI PMC

Salvo P., Dini V., Kirchhain A., Janowska A., Oranges T., Chiricozzi A., Lomonaco T., Di Francesco F., Romanelli M. Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. Sensors. 2017;17:2952. doi: 10.3390/s17122952. PubMed DOI PMC

Noh S., Kim J., Kim G., Park C., Jang H., Lee M., Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. Sensors. 2021;21:3024. doi: 10.3390/s21093024. PubMed DOI PMC

Imas J.J., Zamarreno C.R., Zubiate P., Sanchez-Martin L., Campion J., Matias I.R. Optical Biosensors for the Detection of Rheumatoid Arthritis (RA) Biomarkers: A Comprehensive Review. Sensors. 2020;20:6289. doi: 10.3390/s20216289. PubMed DOI PMC

Sohrabi H., Kordasht H.K., Pashazadeh-Panahi P., Nezhad-Mokhtari P., Hashemzaei M., Majidi M.R., Mosafer J., Oroojalian F., Mokhtarzadeh A., de la Guardia M. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem J. 2020;158:14. doi: 10.1016/j.microc.2020.105287. DOI

Balayan S., Chauhan N., Chandra R., Jain U. Electrochemical Based C-Reactive Protein (CRP) Sensing Through Molecularly Imprinted Polymer (MIP) Pore Structure Coupled with Bi-Metallic Tuned Screen-Printed Electrode. Biointerface Res. Appl. Chem. 2022;12:7697–7714. doi: 10.33263/briac126.76977714. DOI

Tabrizi M.A., Acedo P. Highly Sensitive RNA-Based Electrochemical Aptasensor for the Determination of C-Reactive Protein Using Carbon Nanofiber-Chitosan Modified Screen-Printed Electrode. Nanomaterials. 2022;12:415. doi: 10.3390/nano12030415. PubMed DOI PMC

Lakshmanakumar M., Nesakumar N., Sethuraman S., Rajan K.S., Krishnan U.M., Rayappan J.B.B. Fabrication of GQD-Electrodeposited Screen-Printed Carbon Electrodes for the Detection of the CRP Biomarker. ACS Omega. 2021;6:32528–32536. doi: 10.1021/acsomega.1c04043. PubMed DOI PMC

Pohanka M. Piezoelectric Immunosensor for the Determination of C-Reactive Protein. Int. J. Electrochem. Sci. 2019;14:8470–8478. doi: 10.20964/2019.09.02. DOI

Kang M., Jeong H., Park S.W., Hong J., Lee H., Chae Y., Yang S., Ahn J.H. Wireless graphene-based thermal patch for obtaining temperature distribution and performing thermography. Sci. Adv. 2022;8:8. doi: 10.1126/sciadv.abm6693. PubMed DOI PMC

Anbalagan B., Anantha S.K., Kalpana R. Novel Approach to Prognosis Parkinson’s Disease with Wireless Technology Using Resting Tremors. Wirel. Pers. Commun. 2022;15:1–15. doi: 10.1007/s11277-022-09694-y. DOI

Yeh C.T., Barshilia D., Hsieh C.J., Li H.Y., Hsieh W.H., Chang G.E. Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-of-Care Applications. Biosensors. 2021;11:523. doi: 10.3390/bios11120523. PubMed DOI PMC

Esposito F., Sansone L., Srivastava A., Baldini F., Campopiano S., Chiavaioli F., Giordano M., Giannetti A., Iadicicco A. Optical Sensors 2021. Volume 11772. International Society for Optics and Photonics; Bellingham, WA, USA: 2021. Real time and label-free detection of C-reactive protein in serum by long period grating in double cladding fiber; p. 117720Q. DOI

Al-Enezi E., Vakurov A., Eades A., Ding M.Y., Jose G., Saha S., Millner P. Affimer-Based Europium Chelates Allow Sensitive Optical Biosensing in a Range of Human Disease Biomarkers. Sensors. 2021;21:831. doi: 10.3390/s21030831. PubMed DOI PMC

Petrou P., Koukouvinos G., Drygiannakis D., Goustouridis D., Raptis I., Misiakos K., Kakabakos S.E. Conference on Microfluidics, BioMEMS, and Medical Microsystems XII. Volume 8976. International Society for Optics and Photonics; Bellingham, WA, USA: 2014. Real-time multi-analyte label-free detection of proteins by white light-reflectance spectroscopy; p. 8976. DOI

Koukouvinos G., Goustouridis D., Misiakos K., Kakabakos S., Raptis I., Petrou P. Rapid C-reactive protein determination in whole blood with a White Light Reflectance Spectroscopy label-free immunosensor for Point-of-Care applications. Sens. Actuator B-Chem. 2018;260:282–288. doi: 10.1016/j.snb.2018.01.008. DOI

Tsounidi D., Koukouvinos G., Christianidis V., Legaki E., Giogli V., Panagiotopoulou K., Taka S., Ekaterinidi Z., Kakabakos S., Raptis I., et al. Development of a Point-of-Care System Based on White Light Reflectance Spectroscopy: Application in CRP Determination. Biosensors. 2021;11:268. doi: 10.3390/bios11080268. PubMed DOI PMC

Li S.F., Floriano P.N., Christodoulides N., Fozdar D.Y., Shao D.B., Ali M.F., Dharshan P., Mohanty S., Neikirk D., McDevitt J.T., et al. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection. Biosens. Bioelectron. 2005;21:574–580. doi: 10.1016/j.bios.2004.12.010. PubMed DOI

Kim C.H., Ahn J.H., Kim J.Y., Choi J.M., Lim K.C., Park T.J., Heo N.S., Lee H.G., Kim J.W., Choi Y.K. CRP detection from serum for chip-based point-of-care testing system. Biosens. Bioelectron. 2013;41:322–327. doi: 10.1016/j.bios.2012.08.047. PubMed DOI

Hong J., Yoon D., Kim T.S. The Mach-Zehnder Interferometer Based on Silicon Oxides for Label Free Detection of C-reactive Protein (CRP) BioChip J. 2009;3:1–11.

Choi H.W., Sakata Y., Kurihara Y., Ooya T., Takeuchi T. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Anal. Chim. Acta. 2012;728:64–68. doi: 10.1016/j.aca.2012.03.030. PubMed DOI

Psarouli A., Botsialas A., Salapatas A., Stefanitsis G., Nikita D., Jobst G., Chaniotakis N., Goustouridis D., Makarona E., Petrou P.S., et al. Fast label-free detection of C-reactive protein using broad-band Mach-Zehnder interferometers integrated on silicon chips. Talanta. 2017;165:458–465. doi: 10.1016/j.talanta.2017.01.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...