Can Schlafen 11 Help to Stratify Ovarian Cancer Patients Treated with DNA-Damaging Agents?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU21-03-00306
Česká Rozvojová Agentura
FNBr, 65269705
MHCR- Development of Research Organization
PubMed
35625957
PubMed Central
PMC9139752
DOI
10.3390/cancers14102353
PII: cancers14102353
Knihovny.cz E-zdroje
- Klíčová slova
- DNA-damaging agents, PARPi, SLFN11, chemoresistance, high-grade serous carcinoma, ovarian cancer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Platinum-based chemotherapy has been the cornerstone of systemic treatment in ovarian cancer. Since no validated molecular predictive markers have been identified yet, the response to platinum-based chemotherapy has been evaluated clinically, based on platinum-free interval. The new promising marker Schlafen 11 seems to correlate with sensitivity or resistance to DNA-damaging agents, including platinum compounds or PARP inhibitors in various types of cancer. We provide background information about the function of Schlafen 11, its evaluation in tumor tissue, and its prevalence in ovarian cancer. We discuss the current evidence of the correlation of Schlafen 11 expression in ovarian cancer with treatment outcomes and the potential use of Schlafen 11 as the key predictive and prognostic marker that could help to better stratify ovarian cancer patients treated with platinum-based chemotherapy or PARP inhibitors. We also provide perspectives on future directions in the research on this promising marker.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Cannistra S.A. Cancer of the Ovary. N. Engl. J. Med. 2004;351:2519–2529. doi: 10.1056/NEJMra041842. PubMed DOI
Colombo N., Sessa C., du Bois A., Ledermann J., McCluggage W.G., McNeish I., Morice P., Pignata S., Ray-Coquard I., Vergote I., et al. ESMO–ESGO Consensus Conference Recommendations on Ovarian Cancer: Pathology and Molecular Biology, Early and Advanced Stages, Borderline Tumours and Recurrent Disease†. Ann. Oncol. 2019;30:672–705. doi: 10.1093/annonc/mdz062. PubMed DOI
Wilson M.K., Pujade-Lauraine E., Aoki D., Mirza M.R., Lorusso D., Oza A.M., du Bois A., Vergote I., Reuss A., Bacon M., et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: Recurrent Disease. Ann. Oncol. 2017;28:727–732. doi: 10.1093/annonc/mdw663. PubMed DOI PMC
Pujade-Lauraine E., Hilpert F., Weber B., Reuss A., Poveda A., Kristensen G., Sorio R., Vergote I., Witteveen P., Bamias A., et al. Bevacizumab Combined With Chemotherapy for Platinum-Resistant Recurrent Ovarian Cancer: The AURELIA Open-Label Randomized Phase III Trial. J. Clin. Oncol. 2014;32:1302–1308. doi: 10.1200/JCO.2013.51.4489. PubMed DOI
Burger R.A., Brady M.F., Bookman M.A., Fleming G.F., Monk B.J., Huang H., Mannel R.S., Homesley H.D., Fowler J., Greer B.E., et al. Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer. N. Engl. J. Med. 2011;365:2473–2483. doi: 10.1056/NEJMoa1104390. PubMed DOI
Oza A.M., Cook A.D., Pfisterer J., Embleton A., Ledermann J.A., Pujade-Lauraine E., Kristensen G., Carey M.S., Beale P., Cervantes A., et al. Standard Chemotherapy with or without Bevacizumab for Women with Newly Diagnosed Ovarian Cancer (ICON7): Overall Survival Results of a Phase 3 Randomised Trial. Lancet Oncol. 2015;16:928–936. doi: 10.1016/S1470-2045(15)00086-8. PubMed DOI PMC
Aghajanian C., Blank S.V., Goff B.A., Judson P.L., Teneriello M.G., Husain A., Sovak M.A., Yi J., Nycum L.R. OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy With or Without Bevacizumab in Patients With Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. J. Clin. Oncol. 2012;30:2039–2045. doi: 10.1200/JCO.2012.42.0505. PubMed DOI PMC
Colombo I., Kurnit K.C., Westin S.N., Oza A.M. Moving from Mutation to Actionability. Am. Soc. Clin. Oncol. Educ. Book. 2018;38:495–503. doi: 10.1200/EDBK_199665. PubMed DOI
Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Kryukov G.V., Sonkin D., et al. The Cancer Cell Line Encyclopedia Enables Predictive Modelling of Anticancer Drug Sensitivity. Nature. 2012;483:603–607. doi: 10.1038/nature11003. PubMed DOI PMC
Stewart C.A., Tong P., Cardnell R.J., Sen T., Li L., Gay C.M., Masrorpour F., Fan Y., Bara R.O., Feng Y., et al. Dynamic Variations in Epithelial-to-Mesenchymal Transition (EMT), ATM, and SLFN11 Govern Response to PARP Inhibitors and Cisplatin in Small Cell Lung Cancer. Oncotarget. 2017;8:28575–28587. doi: 10.18632/oncotarget.15338. PubMed DOI PMC
Ballestrero A., Bedognetti D., Ferraioli D., Franceschelli P., Labidi-Galy S.I., Leo E., Murai J., Pommier Y., Tsantoulis P., Vellone V.G., et al. Report on the First SLFN11 Monothematic Workshop: From Function to Role as a Biomarker in Cancer. J. Transl. Med. 2017;15:199. doi: 10.1186/s12967-017-1296-3. PubMed DOI PMC
Colombo P.-E., Fabbro M., Theillet C., Bibeau F., Rouanet P., Ray-Coquard I. Sensitivity and Resistance to Treatment in the Primary Management of Epithelial Ovarian Cancer. Crit. Rev. Oncol. Hematol. 2014;89:207–216. doi: 10.1016/j.critrevonc.2013.08.017. PubMed DOI
McMullen M., Madariaga A., Lheureux S. New Approaches for Targeting Platinum-Resistant Ovarian Cancer. Semin. Cancer Biol. 2021;77:167–181. doi: 10.1016/j.semcancer.2020.08.013. PubMed DOI
The Australian Ovarian Cancer Study Group. Patch A.-M., Christie E.L., Etemadmoghadam D., Garsed D.W., George J., Fereday S., Nones K., Cowin P., Alsop K., et al. Whole–Genome Characterization of Chemoresistant Ovarian Cancer. Nature. 2015;521:489–494. doi: 10.1038/nature14410. PubMed DOI
Lloyd K.L., Cree I.A., Savage R.S. Prediction of Resistance to Chemotherapy in Ovarian Cancer: A Systematic Review. BMC Cancer. 2015;15:117. doi: 10.1186/s12885-015-1101-8. PubMed DOI PMC
Weberpals J.I., Pugh T.J., Marco-Casanova P., Goss G.D., Andrews Wright N., Rath P., Torchia J., Fortuna A., Jones G.N., Roudier M.P., et al. Tumor Genomic, Transcriptomic, and Immune Profiling Characterizes Differential Response to First-line Platinum Chemotherapy in High Grade Serous Ovarian Cancer. Cancer Med. 2021;10:3045–3058. doi: 10.1002/cam4.3831. PubMed DOI PMC
Tian L., Song S., Liu X., Wang Y., Xu X., Hu Y., Xu J. Schlafen-11 Sensitizes Colorectal Carcinoma Cells to Irinotecan. Anticancer Drugs. 2014;25:1175–1181. doi: 10.1097/CAD.0000000000000151. PubMed DOI
Kang M.H., Wang J., Makena M.R., Lee J.-S., Paz N., Hall C.P., Song M.M., Calderon R.I., Cruz R.E., Hindle A., et al. Activity of MM-398, Nanoliposomal Irinotecan (Nal-IRI), in Ewing’s Family Tumor Xenografts Is Associated with High Exposure of Tumor to Drug and High SLFN11 Expression. Clin. Cancer Res. 2015;21:1139–1150. doi: 10.1158/1078-0432.CCR-14-1882. PubMed DOI
Shee K., Wells J.D., Jiang A., Miller T.W. Integrated Pan-Cancer Gene Expression and Drug Sensitivity Analysis Reveals SLFN11 MRNA as a Solid Tumor Biomarker Predictive of Sensitivity to DNA-Damaging Chemotherapy. PLoS ONE. 2019;14:e0224267. doi: 10.1371/journal.pone.0224267. PubMed DOI PMC
Coussy F., El-Botty R., Château-Joubert S., Dahmani A., Montaudon E., Leboucher S., Morisset L., Painsec P., Sourd L., Huguet L., et al. BRCAness, SLFN11, and RB1 Loss Predict Response to Topoisomerase I Inhibitors in Triple-Negative Breast Cancers. Sci. Transl. Med. 2020;12:eaax2625. doi: 10.1126/scitranslmed.aax2625. PubMed DOI PMC
Rathkey D., Khanal M., Murai J., Zhang J., Sengupta M., Jiang Q., Morrow B., Evans C.N., Chari R., Fetsch P., et al. Sensitivity of Mesothelioma Cells to PARP Inhibitors Is Not Dependent on BAP1 but Is Enhanced by Temozolomide in Cells with High-Schlafen 11 and Low-O6-Methylguanine-DNA Methyltransferase Expression. J. Thorac. Oncol. 2020;15:843–859. doi: 10.1016/j.jtho.2020.01.012. PubMed DOI PMC
Takashima T., Taniyama D., Sakamoto N., Yasumoto M., Asai R., Hattori T., Honma R., Thang P.Q., Ukai S., Maruyama R., et al. Schlafen 11 Predicts Response to Platinum-Based Chemotherapy in Gastric Cancers. Br. J. Cancer. 2021;125:65–77. doi: 10.1038/s41416-021-01364-3. PubMed DOI PMC
Zoppoli G., Regairaz M., Leo E., Reinhold W.C., Varma S., Ballestrero A., Doroshow J.H., Pommier Y. Putative DNA/RNA Helicase Schlafen-11 (SLFN11) Sensitizes Cancer Cells to DNA-Damaging Agents. Proc. Natl. Acad. Sci. USA. 2012;109:15030–15035. doi: 10.1073/pnas.1205943109. PubMed DOI PMC
Nogales V., Reinhold W.C., Varma S., Martinez-Cardus A., Moutinho C., Moran S., Heyn H., Sebio A., Barnadas A., Pommier Y., et al. Epigenetic Inactivation of the Putative DNA/RNA Helicase SLFN11 in Human Cancer Confers Resistance to Platinum Drugs. Oncotarget. 2016;7:3084–3097. doi: 10.18632/oncotarget.6413. PubMed DOI PMC
Deng Y., Cai Y., Huang Y., Yang Z., Bai Y., Liu Y., Deng X., Wang J. High SLFN11 Expression Predicts Better Survival for Patients with KRAS Exon 2 Wild Type Colorectal Cancer after Treated with Adjuvant Oxaliplatin-Based Treatment. BMC Cancer. 2015;15:833. doi: 10.1186/s12885-015-1840-6. PubMed DOI PMC
Lok B.H., Gardner E.E., Schneeberger V.E., Ni A., Desmeules P., Rekhtman N., de Stanchina E., Teicher B.A., Riaz N., Powell S.N., et al. PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clin. Cancer Res. 2017;23:523–535. doi: 10.1158/1078-0432.CCR-16-1040. PubMed DOI PMC
Pietanza M.C., Waqar S.N., Krug L.M., Dowlati A., Hann C.L., Chiappori A., Owonikoko T.K., Woo K.M., Cardnell R.J., Fujimoto J., et al. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination with Either Veliparib or Placebo in Patients with Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. J. Clin. Oncol. 2018;36:2386–2394. doi: 10.1200/JCO.2018.77.7672. PubMed DOI PMC
Takashima T., Sakamoto N., Murai J., Taniyama D., Honma R., Ukai S., Maruyama R., Kuraoka K., Rajapakse V.N., Pommier Y., et al. Immunohistochemical Analysis of SLFN11 Expression Uncovers Potential Non-Responders to DNA-Damaging Agents Overlooked by Tissue RNA-Seq. Virchows Arch. 2021;478:569–579. doi: 10.1007/s00428-020-02840-6. PubMed DOI PMC
Zhang B., Ramkumar K., Cardnell R.J., Gay C.M., Stewart C.A., Wang W.-L., Fujimoto J., Wistuba I.I., Byers L.A. A Wake-up Call for Cancer DNA Damage: The Role of Schlafen 11 (SLFN11) across Multiple Cancers. Br. J. Cancer. 2021;125:1333–1340. doi: 10.1038/s41416-021-01476-w. PubMed DOI PMC
Aladjem M.I., Redon C.E. Order from Clutter: Selective Interactions at Mammalian Replication Origins. Nat. Rev. Genet. 2017;18:101–116. doi: 10.1038/nrg.2016.141. PubMed DOI PMC
Murai J., Tang S.-W., Leo E., Baechler S.A., Redon C.E., Zhang H., Al Abo M., Rajapakse V.N., Nakamura E., Jenkins L.M.M., et al. SLFN11 Blocks Stressed Replication Forks Independently of ATR. Mol. Cell. 2018;69:371–384. doi: 10.1016/j.molcel.2018.01.012. PubMed DOI PMC
Mu Y., Lou J., Srivastava M., Zhao B., Feng X.-H., Liu T., Chen J., Huang J. SLFN11 Inhibits Checkpoint Maintenance and Homologous Recombination Repair. EMBO Rep. 2016;17:94–109. doi: 10.15252/embr.201540964. PubMed DOI PMC
Jo U., Murai Y., Chakka S., Chen L., Cheng K., Murai J., Saha L.K., Miller Jenkins L.M., Pommier Y. SLFN11 Promotes CDT1 Degradation by CUL4 in Response to Replicative DNA Damage, While Its Absence Leads to Synthetic Lethality with ATR/CHK1 Inhibitors. Proc. Natl. Acad. Sci. USA. 2021;118:e2015654118. doi: 10.1073/pnas.2015654118. PubMed DOI PMC
Jo U., Murai Y., Takebe N., Thomas A., Pommier Y. Precision Oncology with Drugs Targeting the Replication Stress, ATR, and Schlafen 11. Cancers. 2021;13:4601. doi: 10.3390/cancers13184601. PubMed DOI PMC
Murai J., Thomas A., Miettinen M., Pommier Y. Schlafen 11 (SLFN11), a Restriction Factor for Replicative Stress Induced by DNA-Targeting Anti-Cancer Therapies. Pharmacol. Ther. 2019;201:94–102. doi: 10.1016/j.pharmthera.2019.05.009. PubMed DOI PMC
Forment J.V., O’Connor M.J. Targeting the Replication Stress Response in Cancer. Pharmacol. Ther. 2018;188:155–167. doi: 10.1016/j.pharmthera.2018.03.005. PubMed DOI
Rajapakse V.N., Luna A., Yamade M., Loman L., Varma S., Sunshine M., Iorio F., Sousa F.G., Elloumi F., Aladjem M.I., et al. CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. iScience. 2018;10:247–264. doi: 10.1016/j.isci.2018.11.029. PubMed DOI PMC
Moribe F., Nishikori M., Takashima T., Taniyama D., Onishi N., Arima H., Sasanuma H., Akagawa R., Elloumi F., Takeda S., et al. Epigenetic Suppression of SLFN11 in Germinal Center B-Cells during B-Cell Development. PLoS ONE. 2021;16:e0237554. doi: 10.1371/journal.pone.0237554. PubMed DOI PMC
Reinhold W.C., Thomas A., Pommier Y. DNA-Targeted Precision Medicine; Have We Been Caught Sleeping? Trends Cancer. 2017;3:2–6. doi: 10.1016/j.trecan.2016.11.002. PubMed DOI PMC
Reinhold W.C., Varma S., Sunshine M., Rajapakse V., Luna A., Kohn K.W., Stevenson H., Wang Y., Heyn H., Nogales V., et al. The NCI-60 Methylome and Its Integration into CellMiner. Cancer Res. 2017;77:601–612. doi: 10.1158/0008-5472.CAN-16-0655. PubMed DOI PMC
Tang S.-W., Thomas A., Murai J., Trepel J.B., Bates S.E., Rajapakse V.N., Pommier Y. Overcoming Resistance to DNA-Targeted Agents by Epigenetic Activation of Schlafen 11 (SLFN11) Expression with Class I Histone Deacetylase Inhibitors. Clin. Cancer Res. 2018;24:1944–1953. doi: 10.1158/1078-0432.CCR-17-0443. PubMed DOI PMC
Gardner E.E., Lok B.H., Schneeberger V.E., Desmeules P., Miles L.A., Arnold P.K., Ni A., Khodos I., de Stanchina E., Nguyen T., et al. Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer Cell. 2017;31:286–299. doi: 10.1016/j.ccell.2017.01.006. PubMed DOI PMC
Lheureux S., Oaknin A., Garg S., Bruce J.P., Madariaga A., Dhani N.C., Bowering V., White J., Accardi S., Tan Q., et al. EVOLVE: A Multicenter Open-Label Single-Arm Clinical and Translational Phase II Trial of Cediranib Plus Olaparib for Ovarian Cancer after PARP Inhibition Progression. Clin. Cancer Res. 2020;26:4206–4215. doi: 10.1158/1078-0432.CCR-19-4121. PubMed DOI
Murai J., Feng Y., Yu G.K., Ru Y., Tang S.-W., Shen Y., Pommier Y. Resistance to PARP Inhibitors by SLFN11 Inactivation Can Be Overcome by ATR Inhibition. Oncotarget. 2016;7:76534–76550. doi: 10.18632/oncotarget.12266. PubMed DOI PMC
Winkler C., Armenia J., Jones G.N., Tobalina L., Sale M.J., Petreus T., Baird T., Serra V., Wang A.T., Lau A., et al. SLFN11 Informs on Standard of Care and Novel Treatments in a Wide Range of Cancer Models. Br. J. Cancer. 2021;124:951–962. doi: 10.1038/s41416-020-01199-4. PubMed DOI PMC
Zhou C., Liu C., Liu W., Chen W., Yin Y., Li C.-W., Hsu J.L., Sun J., Zhou Q., Li H., et al. SLFN11 Inhibits Hepatocellular Carcinoma Tumorigenesis and Metastasis by Targeting RPS4X via MTOR Pathway. Theranostics. 2020;10:4627–4643. doi: 10.7150/thno.42869. PubMed DOI PMC
Kagami T., Yamade M., Suzuki T., Uotani T., Tani S., Hamaya Y., Iwaizumi M., Osawa S., Sugimoto K., Miyajima H., et al. The First Evidence for SLFN11 Expression as an Independent Prognostic Factor for Patients with Esophageal Cancer after Chemoradiotherapy. BMC Cancer. 2020;20:1123. doi: 10.1186/s12885-020-07574-x. PubMed DOI PMC
Winkler C., King M., Berthe J., Ferraioli D., Garuti A., Grillo F., Rodriguez-Canales J., Ferrando L., Chopin N., Ray-Coquard I., et al. SLFN11 Captures Cancer-Immunity Interactions Associated with Platinum Sensitivity in High-Grade Serous Ovarian Cancer. JCI Insight. 2021;6:e146098. doi: 10.1172/jci.insight.146098. PubMed DOI PMC
Gartrell J., Mellado-Largarde M., Clay M.R., Bahrami A., Sahr N.A., Sykes A., Blankenship K., Hoffmann L., Xie J., Cho H.P., et al. SLFN11 Is Widely Expressed in Pediatric Sarcoma and Induces Variable Sensitization to Replicative Stress Caused By DNA-Damaging Agents. Mol. Cancer Ther. 2021;20:2151–2165. doi: 10.1158/1535-7163.MCT-21-0089. PubMed DOI PMC
Taniyama D., Sakamoto N., Takashima T., Takeda M., Pham Q.T., Ukai S., Maruyama R., Harada K., Babasaki T., Sekino Y., et al. Prognostic Impact of Schlafen 11 in Bladder Cancer Patients Treated with Platinum-based Chemotherapy. Cancer Sci. 2022;113:784–795. doi: 10.1111/cas.15207. PubMed DOI PMC
Willis S.E., Winkler C., Roudier M.P., Baird T., Marco-Casanova P., Jones E.V., Rowe P., Rodriguez-Canales J., Angell H.K., Ng F.S.L., et al. Retrospective Analysis of Schlafen11 (SLFN11) to Predict the Outcomes to Therapies Affecting the DNA Damage Response. Br. J. Cancer. 2021;125:1666–1676. doi: 10.1038/s41416-021-01560-1. PubMed DOI PMC
Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I., Rustin G., Scott C., Meier W., Shapira-Frommer R., Safra T., et al. Olaparib Maintenance Therapy in Platinum-Sensitive Relapsed Ovarian Cancer. N. Engl. J. Med. 2012;366:1382–1392. doi: 10.1056/NEJMoa1105535. PubMed DOI
Byers L.A., Stewart A., Gay C., Heymach J., Fernandez L., Lu D., Rich R., Chu L., Wang Y., Dittamore R. Abstract 2215: SLFN11 and EZH2 Protein Expression and Localization in Circulating Tumor Cells to Predict Response or Resistance to DNA Damaging Therapies in Small Cell Lung Cancer. Cancer Res. 2019;79:2215.
Zhang B., Stewart C.A., Gay C.M., Wang Q., Cardnell R., Fujimoto J., Fernandez L., Jendrisak A., Gilbertson C., Schonhoft J., et al. Abstract 384: Detection of DNA Replication Blocker SLFN11 in Tumor Tissue and Circulating Tumor Cells to Predict Platinum Response in Small Cell Lung Cancer. Cancer Res. 2021;81:384. doi: 10.1158/1538-7445.AM2021-384. PubMed DOI
Van Berckelaer C., Brouwers A.J., Peeters D.J.E., Tjalma W., Trinh X.B., van Dam P.A. Current and Future Role of Circulating Tumor Cells in Patients with Epithelial Ovarian Cancer. Eur. J. Surg. Oncol. EJSO. 2016;42:1772–1779. doi: 10.1016/j.ejso.2016.05.010. PubMed DOI
Holcakova J., Bartosik M., Anton M., Minar L., Hausnerova J., Bednarikova M., Weinberger V., Hrstka R. New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers. Cancers. 2021;13:6339. doi: 10.3390/cancers13246339. PubMed DOI PMC
Federico S.M., Pappo A.S., Sahr N., Sykes A., Campagne O., Stewart C.F., Clay M.R., Bahrami A., McCarville M.B., Kaste S.C., et al. A Phase I Trial of Talazoparib and Irinotecan with and without Temozolomide in Children and Young Adults with Recurrent or Refractory Solid Malignancies. Eur. J. Cancer. 2020;137:204–213. doi: 10.1016/j.ejca.2020.06.014. PubMed DOI
Byers L.A., Bentsion D., Gans S., Penkov K., Son C., Sibille A., Owonikoko T.K., Groen H.J.M., Gay C.M., Fujimoto J., et al. Veliparib in Combination with Carboplatin and Etoposide in Patients with Treatment-Naïve Extensive-Stage Small Cell Lung Cancer: A Phase 2 Randomized Study. Clin. Cancer Res. 2021;27:3884–3895. doi: 10.1158/1078-0432.CCR-20-4259. PubMed DOI
He T., Zhang M., Zheng R., Zheng S., Linghu E., Herman J.G., Guo M. Methylation of SLFN11 Is a Marker of Poor Prognosis and Cisplatin Resistance in Colorectal Cancer. Epigenomics. 2017;9:849–862. doi: 10.2217/epi-2017-0019. PubMed DOI
Hwang W.-T., Adams S.F., Tahirovic E., Hagemann I.S., Coukos G. Prognostic Significance of Tumor-Infiltrating T Cells in Ovarian Cancer: A Meta-Analysis. Gynecol. Oncol. 2012;124:192–198. doi: 10.1016/j.ygyno.2011.09.039. PubMed DOI PMC
Li J., Wang J., Chen R., Bai Y., Lu X. The Prognostic Value of Tumor-Infiltrating T Lymphocytes in Ovarian Cancer. Oncotarget. 2017;8:15621–15631. doi: 10.18632/oncotarget.14919. PubMed DOI PMC