New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers

. 2021 Dec 17 ; 13 (24) : . [epub] 20211217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34944963

The prevention and early diagnostics of precancerous stages are key aspects of contemporary oncology. In cervical cancer, well-organized screening and vaccination programs, especially in developed countries, are responsible for the dramatic decline of invasive cancer incidence and mortality. Cytological screening has a long and successful history, and the ongoing implementation of HPV triage with increased sensitivity can further decrease mortality. On the other hand, endometrial and ovarian cancers are characterized by a poor accessibility to specimen collection, which represents a major complication for early diagnostics. Therefore, despite relatively promising data from evaluating the combined effects of genetic variants, population screening does not exist, and the implementation of new biomarkers is, thus, necessary. The introduction of various circulating biomarkers is of potential interest due to the considerable heterogeneity of cancer, as highlighted in this review, which focuses exclusively on the most common tumors of the genital tract, namely, cervical, endometrial, and ovarian cancers. However, it is clearly shown that these malignancies represent different entities that evolve in different ways, and it is therefore necessary to use different methods for their diagnosis and treatment.

Zobrazit více v PubMed

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Costas L., Frias-Gomez J., Guardiola M., Benavente Y., Pineda M., Pavón M.Á., Martínez J.M., Climent M., Barahona M., Canet J., et al. New perspectives on screening and early detection of endometrial cancer. Int. J. Cancer. 2019;145:3194–3206. doi: 10.1002/ijc.32514. PubMed DOI

Jacobs I.J., Menon U., Ryan A., Gentry-Maharaj A., Burnell M., Kalsi J.K., Amso N.N., Apostolidou S., Benjamin E., Cruickshank D., et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A randomised controlled trial. Lancet. 2016;387:945–956. doi: 10.1016/S0140-6736(15)01224-6. PubMed DOI PMC

Morice P., Leary A., Creutzberg C., Abu-Rustum N., Darai E. Endometrial cancer. Lancet. 2016;387:1094–1108. doi: 10.1016/S0140-6736(15)00130-0. PubMed DOI

Hyun K.-A., Gwak H., Lee J., Kwak B., Jung H.-I. Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines. 2018;9:340. doi: 10.3390/mi9070340. PubMed DOI PMC

Martins I., Ribeiro I.P., Jorge J., Gonçalves A.C., Sarmento-Ribeiro A.B., Melo J.B., Carreira I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes. 2021;12:349. doi: 10.3390/genes12030349. PubMed DOI PMC

Abbasi J. A Pap-Based Test to Detect Endometrial and Ovarian Cancers Early. JAMA J. Am. Med. Assoc. 2018;319:1853. doi: 10.1001/jama.2018.5413. PubMed DOI

Wang Y.X., Li L., Douville C., Cohen J.D., Yen T.-T., Kinde I., Sundfelt K., Kjær S.K., Hruban R.H., Shih I.-M., et al. Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian can-cers. Sci. Transl. Med. 2018;10:433. doi: 10.1126/scitranslmed.aap8793. PubMed DOI PMC

Nair N., Camacho-Vanegas O., Rykunov D., Dashkoff M., Camacho S.C., Schumacher C.A., Irish J.C., Harkins T.T., Freeman E., Garcia I., et al. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study. PLoS Med. 2016;13:e1002206. doi: 10.1371/journal.pmed.1002206. PubMed DOI PMC

Ghezelayagh T., Fredrickson J., Manhardt E., Radke M., Kohrn B., Gray H., Urban R., Pennington K., Liao J., Doll K., et al. Uterine lavage for the detection of ovarian cancer using an expanded gene panel. Gynecol. Oncol. 2021;162:S49. doi: 10.1016/S0090-8258(21)00736-8. DOI

Stockley J., Akhand R., Kennedy A., Nyberg C., Crosbie E.J., Edmondson R.J. Detection of MCM5 as a novel non-invasive aid for the diagnosis of endometrial and ovarian tumours. BMC Cancer. 2020;20:1–8. doi: 10.1186/s12885-020-07468-y. PubMed DOI PMC

Donkers H., Hirschfeld M., Weiß D., Erbes T., Jäger M., Pijnenborg J., Bekkers R., Galaal K. Detection of microRNA in urine to identify patients with endometrial cancer: A feasibility study. Int. J. Gynecol. Cancer. 2021;31:868–874. doi: 10.1136/ijgc-2021-002494. PubMed DOI

Qu W.L., Gao Q.S., Chen H.B., Tang Z.Q., Zhu X.Q., Jiang S.-W. HE4-test of urine and body fluids for diagnosis of gynecologic cancer. Expert Rev. Mol. Diagn. 2017;17:239–244. doi: 10.1080/14737159.2017.1282824. PubMed DOI

O’Flynn H., Ryan N.A.J., Narine N., Shelton D., Rana D., Crosbie E.J. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. Nat. Commun. 2021;12:952. doi: 10.1038/s41467-021-21257-6. PubMed DOI PMC

Cheng S.C., Chen K., Chiu C.Y., Lu K.Y., Lu H.Y., Chiang M.H., Tsai C.K., Lo C.J., Cheng M.L., Chang T.C., et al. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. Metabolomics. 2019;15:1–11. doi: 10.1007/s11306-019-1609-z. PubMed DOI

Van Raemdonck G.A.A., Tjalma W.A.A., Coen E.P., Depuydt C.E., Van Ostade X.W.M. Identification of Protein Biomarkers for Cervical Cancer Using Human Cervicovaginal Fluid. PLoS ONE. 2014;9:e106488. doi: 10.1371/journal.pone.0106488. PubMed DOI PMC

Calis P., Yüce K., Basaran D., Salman C. Assessment of Cervicovaginal Cancer Antigen 125 Levels: A Preliminary Study for Endometrial Cancer Screening. Gynecol. Obstet. Investig. 2016;81:518–522. doi: 10.1159/000444321. PubMed DOI

Qiu J.H., Xu J.X., Zhang K., Gu W., Nie L.M., Wang G.X., Luo Y. Refining Cancer Management Using Integrated Liquid Biopsy. Theranostics. 2020;10:2374–2384. doi: 10.7150/thno.40677. PubMed DOI PMC

Nahar F., Hossain M.A., Paul S.K., Ahmed M.U., Khatun S., Bhuiyan G.R., Nasreen S.A., Haque N., Ahmed S., Kobayashi N., et al. Molecular Diagnosis of Human Papilloma Virus by PCR. Mymensingh Med. J. 2019;28:175–181. PubMed

Cho H.-W., Ouh Y.-T., Hong J.H., Min K.-J., So K.A., Kim T.J., Paik E.S., Lee J.W., Moon J.H., Lee J.K. Comparison of urine, self-collected vaginal swab, and cervical swab samples for detecting human papillomavirus (HPV) with Roche Cobas HPV, Anyplex II HPV, and RealTime HR-S HPV assay. J. Virol. Methods. 2019;269:77–82. doi: 10.1016/j.jviromet.2019.04.012. PubMed DOI

Coorevits L., Traen A., Bingé L., Van Dorpe J., Praet M., Boelens J., Padalko E. Are vaginal swabs comparable to cervical smears for human papillomavirus DNA testing? J. Gynecol. Oncol. 2018;29:e8. doi: 10.3802/jgo.2018.29.e8. PubMed DOI PMC

Alix-Panabières C., Pantel K. Circulating Tumor Cells: Liquid Biopsy of Cancer. Clin. Chem. 2013;59:110–118. doi: 10.1373/clinchem.2012.194258. PubMed DOI

Nguyen D.X., Bos P.D., Massague J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer. 2009;9:274–284. doi: 10.1038/nrc2622. PubMed DOI

Vasseur A., Kiavue N., Bidard F.-C., Pierga J.-Y., Cabel L. Clinical utility of circulating tumor cells: An update. Mol. Oncol. 2021;15:1647–1666. doi: 10.1002/1878-0261.12869. PubMed DOI PMC

Yu M., Stott S., Toner M., Maheswaran S., Haber D.A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011;192:373–382. doi: 10.1083/jcb.201010021. PubMed DOI PMC

Lowe A.C. Circulating Tumor Cells: Applications in Cytopathology. Surg. Pathol. Clin. 2018;11:679–686. doi: 10.1016/j.path.2018.04.008. PubMed DOI

Kitz J., Lowes L.E., Goodale D., Allan A.L. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics. 2018;8:30. doi: 10.3390/diagnostics8020030. PubMed DOI PMC

Pantel K., Alix-Panabières C. Cell lines from circulating tumor cells. Oncoscience. 2015;2:815–816. doi: 10.18632/oncoscience.195. PubMed DOI PMC

Cayrefourcq L., Mazard T., Joosse S., Solassol J., Ramos J., Assenat E., Schumacher U., Costes V., Maudelonde T., Pantel K., et al. Establishment and Characterization of a Cell Line from Human Circulating Colon Cancer Cells. Cancer Res. 2015;75:892–901. doi: 10.1158/0008-5472.can-14-2613. PubMed DOI

Hu C.-L., Zhang Y.-J., Zhang X.-F., Fei X., Zhang H., Li C.-G., Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. OncoTargets Ther. 2021;14:2673–2688. doi: 10.2147/OTT.S298427. PubMed DOI PMC

Esposito A., Bardelli A., Criscitiello C., Colombo N., Gelao L., Fumagalli L., Minchella I., Locatelli M., Goldhirsch A., Curigliano G. Monitoring tumor-derived cell-free DNA in patients with solid tumors: Clinical perspectives and research opportunities. Cancer Treat. Rev. 2014;40:648–655. doi: 10.1016/j.ctrv.2013.10.003. PubMed DOI

Peng Y., Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016;1:15004. doi: 10.1038/sigtrans.2015.4. PubMed DOI PMC

Salehi M., Sharifi M. Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities. J. Cell. Physiol. 2018;233:6370–6380. doi: 10.1002/jcp.26481. PubMed DOI

Jiang N., Pan J., Fang S., Zhou C., Han Y., Chen J., Meng X., Jin X., Gong Z. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer. Clin. Chim. Acta. 2019;495:331–337. doi: 10.1016/j.cca.2019.04.082. PubMed DOI

Norouzi-Barough L., Shahi A.A.K., Mohebzadeh F., Masoumi L., Haddadi M.R., Shirian S. Early diagnosis of breast and ovarian cancers by body fluids circulating tumor-derived exosomes. Cancer Cell Int. 2020;20:187. doi: 10.1186/s12935-020-01276-x. PubMed DOI PMC

Sumrin A., Moazzam S., Khan A.A., Ramzan I., Batool Z., Kaleem S., Ali M., Bashir H., Bilal M. Exosomes as Biomarker of Cancer. Braz. Arch. Biol. Technol. 2018;61:e18160730. doi: 10.1590/1678-4324-2018160730. DOI

Wang Z., Chen J.-Q., Liu J.-L., Tian L. Exosomes in tumor microenvironment: Novel transporters and biomarkers. J. Transl. Med. 2016;14:1–9. doi: 10.1186/s12967-016-1056-9. PubMed DOI PMC

Tang M.K., Wong A.S. Exosomes: Emerging biomarkers and targets for ovarian cancer. Cancer Lett. 2015;367:26–33. doi: 10.1016/j.canlet.2015.07.014. PubMed DOI

Halvaei S., Daryani S., Eslami-S Z., Samadi T., Jafarbeik-Iravani N., Bakhshayesh T.O., Majidzadeh-A K., Esmaeili R. Exosomes in Cancer Liquid Biopsy: A Focus on Breast Cancer. Mol. Ther. Nucleic Acids. 2018;10:131–141. doi: 10.1016/j.omtn.2017.11.014. PubMed DOI PMC

Pospíchalová V., Svoboda J., Dave Z., Kotrbová A., Kaiser K., Klemova D., Ilkovics L., Hampl A., Crha I., Jandakova E., et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles. 2015;4:25530. doi: 10.3402/jev.v4.25530. PubMed DOI PMC

Singh U., Anjum Q.S., Negi N., Singh N., Goel M., Srivastava K. Comparative study between liquid-based cytology & conventional Pap smear for cytological follow up of treated patients of cancer cervix. Indian J. Med. Res. 2018;147:263–267. doi: 10.4103/ijmr.IJMR_854_16. PubMed DOI PMC

Ronco G., Cuzick J., Pierotti P., Cariaggi M.P., Palma P.D., Naldoni C., Ghiringhello B., Rossi P.G., Minucci D., Parisio F., et al. Accuracy of liquid based versus conventional cytology: Overall results of new technologies for cervical cancer screening: Randomised controlled trial. BMJ. 2007;335:28. doi: 10.1136/bmj.39196.740995.BE. PubMed DOI PMC

Wright T.C., Jr., Stoler M.H., Behrens C.M., Apple R., Derion T., Wright T.L. The ATHENA human papillomavirus study: Design, methods, and baseline results. Am. J. Obstet. Gynecol. 2012;206:46.e1–46.e11. doi: 10.1016/j.ajog.2011.07.024. PubMed DOI

Luttmer R., Dijkstra M.G., Snijders P.J.F., Berkhof J., Van Kemenade F.J., Rozendaal L., Helmerhorst T.J.M., Verheijen R.H.M., Ter Harmsel W.A., Van Baal W.M., et al. p16/Ki-67 dual-stained cytology for detecting cervical (pre)cancer in a HPV-positive gynecologic outpatient population. Mod. Pathol. 2016;29:870–878. doi: 10.1038/modpathol.2016.80. PubMed DOI

Li Y.J., Liu J., Gong L., Sun X.W., Long W.B. Combining HPV DNA load with p16/Ki-67 staining to detect cervical precancerous lesions and predict the progression of CIN1-2 lesions. Virol. J. 2019;16:117–119. doi: 10.1186/s12985-019-1225-6. PubMed DOI PMC

Shi Q., Xu L., Yang R., Meng Y.P., Qiu L.H. Ki-67 and P16 proteins in cervical cancer and precancerous lesions of young women and the diagnostic value for cervical cancer and precancerous lesions. Oncol. Lett. 2019;18:1351–1355. doi: 10.3892/ol.2019.10430. PubMed DOI PMC

Ziemke P. p16/Ki-67 Immunocytochemistry in Gynecological Cytology: Limitations in Practice. Acta Cytol. 2017;61:230–236. doi: 10.1159/000475979. PubMed DOI

Meites E., Szilagyi P.G., Chesson H.W., Unger E.R., Romero J.R., Markowitz L.E. Human Papillomavirus Vaccination for Adults: Updated Recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. Rep. 2019;68:698–702. doi: 10.15585/mmwr.mm6832a3. PubMed DOI PMC

Schiller J.T., Castellsagué X., Garland S.M. A Review of Clinical Trials of Human Papillomavirus Prophylactic Vaccines. Vaccine. 2012;30:F123–F138. doi: 10.1016/j.vaccine.2012.04.108. PubMed DOI PMC

Kreimer A.R., González P., Katki H.A., Porras C., Schiffman M., Rodriguez A.C., Solomon D., Jiménez S., Schiller J.T., Lowy D.R., et al. Efficacy of a bivalent HPV 16/18 vaccine against anal HPV 16/18 infection among young women: A nested analysis within the Costa Rica Vaccine Trial. Lancet Oncol. 2011;12:862–870. doi: 10.1016/S1470-2045(11)70213-3. PubMed DOI PMC

Chaturvedi A.K., Graubard B.I., Broutian T., Pickard R.K.L., Tong Z.-Y., Xiao W., Kahle L., Gillison M.L. Effect of Prophylactic Human Papillomavirus (HPV) Vaccination on Oral HPV Infections Among Young Adults in the United States. J. Clin. Oncol. 2018;36:262–267. doi: 10.1200/JCO.2017.75.0141. PubMed DOI PMC

Chatterjee A. The next generation of HPV vaccines: Nonavalent vaccine V503 on the horizon. Expert Rev. Vaccines. 2014;13:1279–1290. doi: 10.1586/14760584.2014.963561. PubMed DOI

Prendiville W., Sankaranarayanan R. Colposcopy and Treatment of Cervical Precancer. IARC Technical Publications; Lyon, France: 2017. PubMed

World Health Organization . WHO Guidelines for Screening and Treatment of Precancerous Lesions for Cervical Cancer Prevention. World Health Organization; Geneva, Switzerland: 2013. PubMed

Munkhdelger J., Kim G., Wang H.-Y., Lee D., Kim S., Choi Y., Choi E., Park S., Jin H., Park K.H., et al. Performance of HPV E6/E7 mRNA RT-qPCR for screening and diagnosis of cervical cancer with ThinPrep® Pap test samples. Exp. Mol. Pathol. 2014;97:279–284. doi: 10.1016/j.yexmp.2014.08.004. PubMed DOI

Pisarska J., Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J. Clin. Med. 2020;9:3668. doi: 10.3390/jcm9113668. PubMed DOI PMC

Bhat A.A., Younes S.N., Raza S.S., Zarif L., Nisar S., Ahmed I., Mir R., Kumar S., Sharawat S.K., Hashem S., et al. Correction to: Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol. Cancer. 2020;19:1. doi: 10.1186/s12943-020-01303-5. PubMed DOI PMC

Liu K.S., Gao L., Ma X.S., Huang J.-J., Chen J., Zeng L., Ashby C.R., Jr., Zou C., Chen Z.-S. Long non-coding RNAs regulate drug resistance in cancer. Mol. Cancer. 2020;19:54. doi: 10.1186/s12943-020-01162-0. PubMed DOI PMC

Barwal T.S., Sharma U., Vasquez K.M., Prakash H., Jain A. A panel of circulating long non-coding RNAs as liquid biopsy biomarkers for breast and cervical cancers. Biochimie. 2020;176:62–70. doi: 10.1016/j.biochi.2020.06.012. PubMed DOI

Zhu H., Zhu H., Tian M., Wang D., He J., Xu T. DNA Methylation and Hydroxymethylation in Cervical Cancer: Diagnosis, Prognosis and Treatment. Front. Genet. 2020;11:347. doi: 10.3389/fgene.2020.00347. PubMed DOI PMC

Martisova A., Holcakova J., Izadi N., Sebuyoya R., Hrstka R., Bartosik M. DNA Methylation in Solid Tumors: Functions and Methods of Detection. Int. J. Mol. Sci. 2021;22:4247. doi: 10.3390/ijms22084247. PubMed DOI PMC

Wentzensen N., Sherman M.E., Schiffman M., Wang S.S. Utility of methylation markers in cervical cancer early detection: Appraisal of the state-of-the-science. Gynecol. Oncol. 2009;112:293–299. doi: 10.1016/j.ygyno.2008.10.012. PubMed DOI PMC

Yang H.-J. Aberrant DNA methylation in cervical carcinogenesis. Chin. J. Cancer. 2013;32:42–48. doi: 10.5732/cjc.012.10033. PubMed DOI PMC

Chung M.-T., Sytwu H.-K., Yan M.-D., Shih Y.-L., Chang C.-C., Yu M.-H., Chu T.-Y., Lai H.-C., Lin Y.-W. Promoter methylation of SFRPs gene family in cervical cancer. Gynecol. Oncol. 2009;112:301–306. doi: 10.1016/j.ygyno.2008.10.004. PubMed DOI

Carestiato F.N., Amaro-Filho S.M., Moreira M.A.M., Cavalcanti S.M.B. Methylation of p16 ink4a promoter is independent of human papillomavirus DNA physical state: A comparison between cervical pre-neoplastic and neoplastic samples. Memórias Inst. Oswaldo Cruz. 2018;114:e180456. doi: 10.1590/0074-02760180456. PubMed DOI PMC

Lim E.H., Ng S.L., Li J., Chang A.R., Ng J., Ilancheran A., Low J., Quek S.C., Tay E.H. Cervical dysplasia: Assessing methylation status (Methylight) of CCNA1, DAPK1, HS3ST2, PAX1 and TFPI2 to improve diagnostic accuracy. Gynecol. Oncol. 2010;119:225–231. doi: 10.1016/j.ygyno.2010.07.028. PubMed DOI

Del Pino M., Sierra A., Marimon L., Delgado C.M., Rodriguez-Trujillo A., Barnadas E., Saco A., Torné A., Ordi J. CADM1, MAL, and miR124 Promoter Methylation as Biomarkers of Transforming Cervical Intrapithelial Lesions. Int. J. Mol. Sci. 2019;20:2262. doi: 10.3390/ijms20092262. PubMed DOI PMC

Dankai W., Khunamornpong S., Siriaunkgul S., Soongkhaw A., Janpanao A., Utaipat U., Kitkumthorn N., Mutirangura A., Srisomboon J., Lekawanvijit S. Role of genomic DNA methylation in detection of cytologic and histologic abnormalities in high risk HPV-infected women. PLoS ONE. 2019;14:e0210289. doi: 10.1371/journal.pone.0210289. PubMed DOI PMC

Yang N., Nijhuis E.R., Volders H.H., Eijsink J.J., Lendvai Á., Zhang B., Hollema H., Schuuring E., Wisman G.B.A., van der Zee A.G. Gene promoter methylation patterns throughout the process of cervical carcinogenesis. Cell. Oncol. 2010;32:131–143. doi: 10.1155/2010/306087. PubMed DOI PMC

Huang J., Gao H., Tan H.-Z. SOX1 Promoter Hypermethylation as a Potential Biomarker for High-Grade Squamous Intraepithelial Neoplasia Lesion and Cervical Carcinoma: A Meta-Analysis with Trial Sequential Analysis. Front. Genet. 2020;11:633. doi: 10.3389/fgene.2020.00633. PubMed DOI PMC

Bowden S.J., Kalliala I., Veroniki A.A., Arbyn M., Mitra A., Lathouras K., Mirabello L., Chadeau-Hyam M., Paraskevaidis E., Flanagan J.M., et al. The use of human papillomavirus DNA methylation in cervical intraepithelial neoplasia: A systematic review and meta-analysis. EBioMedicine. 2019;50:246–259. doi: 10.1016/j.ebiom.2019.10.053. PubMed DOI PMC

Hublarova P., Hrstka R., Rotterova P., Rotter L., Coupkova M., Badal V., Nenutil R., Vojtesek B. Prediction of Human Papillomavirus 16 E6 Gene Expression and Cervical Intraepithelial Neoplasia Progression by Methylation Status. Int. J. Gynecol. Cancer. 2009;19:321–325. doi: 10.1111/IGC.0b013e31819d8a5c. PubMed DOI

Heitmann E.R., Lankachandra K.M., Wall J., Harris G.D., McKinney H.J., Jalali G.R., Verma Y., Kershnar E., Kilpatrick M.W., Tsipouras P., et al. 3q26 Amplification Is an Effective Negative Triage Test for LSIL: A Historical Prospective Study. PLoS ONE. 2012;7:e39101. doi: 10.1371/journal.pone.0039101. PubMed DOI PMC

Stoler M.H., Schiffman M. Interobserver Reproducibility of Cervical Cytologic and Histologic InterpretationsRealistic Estimates From the ASCUS-LSIL Triage Study. JAMA. 2001;285:1500–1505. doi: 10.1001/jama.285.11.1500. PubMed DOI

Solomon D., Schiffman M., Tarone R., Grp A. Comparison of Three Management Strategies for Patients with Atypical Squamous Cells of Undetermined Significance: Baseline Results from a Randomized Trial. J. Natl. Cancer Inst. 2001;93:293–299. doi: 10.1093/jnci/93.4.293. PubMed DOI

Kinney W.K., Manos M., Hurley L.B., Ransley J.E. Where’s the high-grade cervical neoplasia? The importance of minimally abnormal Papanicolaou diagnoses. Obstet. Gynecol. 1998;91:973–976. doi: 10.1016/S0029-7844(98)00080-5. PubMed DOI

Cox J.T., Schiffman M., Solomon D., Grp A. Prospective follow-up suggests similar risk of subsequent cervical intraepithelial neoplasia grade 2 or 3 among women with cervical intraepithelial neoplasia grade 1 or negative colposcopy and directed biopsy. Am. J. Obstet. Gynecol. 2003;188:1406–1412. doi: 10.1067/mob.2003.461. PubMed DOI

Kitchener H.C., Almonte M., Thomson C., Wheeler P., Sargent A., Stoykova B., Gilham C., Baysson H., Roberts C., Dowie R., et al. HPV testing in combination with liquid-based cytology in primary cervical screening (ARTISTIC): A randomised controlled trial. Lancet Oncol. 2009;10:672–682. doi: 10.1016/S1470-2045(09)70156-1. PubMed DOI

Pao C.C., Hor J.J., Yang F.P., Lin C.Y., Tseng C.J. Detection of human papillomavirus mRNA and cervical cancer cells in peripheral blood of cervical cancer patients with metastasis. J. Clin. Oncol. 1997;15:1008–1012. doi: 10.1200/JCO.1997.15.3.1008. PubMed DOI

Pornthanakasem W., Shotelersuk K., Termrungruanglert W., Voravud N., Niruthisard S., Mutirangura A. Human papillomavirus DNA in plasma of patients with cervical cancer. BMC Cancer. 2001;1:2. doi: 10.1186/1471-2407-1-2. PubMed DOI PMC

Widschwendter A., Blassnig A., Wiedemair A., Müller-Holzner E., Müller H.M., Marth C. Human papillomavirus DNA in sera of cervical cancer patients as tumor marker. Cancer Lett. 2003;202:231–239. doi: 10.1016/j.canlet.2003.09.006. PubMed DOI

Sathish N., Abraham P., Peedicayil A., Sridharan G., John S., Shaji R., Chandy G. HPV DNA in plasma of patients with cervical carcinoma. J. Clin. Virol. 2004;31:204–209. doi: 10.1016/j.jcv.2004.03.013. PubMed DOI

Jeannot E., Becette V., Campitelli M., Calméjane M., Lappartient E., Ruff E., Saada S., Holmes A., Bellet D., Sastre-Garau X. Circulating human papillomavirus DNA detected using droplet digital PCR in the serum of patients diagnosed with early stage human papillomavirus-associated invasive carcinoma. J. Pathol. Clin. Res. 2016;2:201–209. doi: 10.1002/cjp2.47. PubMed DOI PMC

Gu Y., Wan C., Qiu J., Cui Y., Jiang T., Zhuang Z. Circulating HPV cDNA in the blood as a reliable biomarker for cervical cancer: A meta-analysis. PLoS ONE. 2020;15:e0224001. doi: 10.1371/journal.pone.0224001. PubMed DOI PMC

Cocuzza C.E., Martinelli M., Sina F., Piana A., Sotgiu G., Dell’Anna T., Musumeci R. Human papillomavirus DNA detection in plasma and cervical samples of women with a recent history of low grade or precancerous cervical dysplasia. PLoS ONE. 2017;12:e0188592. doi: 10.1371/journal.pone.0188592. PubMed DOI PMC

Lee S.-Y., Chae D.-K., Lee S.-H., Lim Y., An J., Chae C.H., Kim B.C., Bhak J., Bolser D., Cho D.-H. Efficient mutation screening for cervical cancers from circulating tumor DNA in blood. BMC Cancer. 2020;20:694. doi: 10.1186/s12885-020-07161-0. PubMed DOI PMC

Charo L.M., Eskander R.N., Okamura R., Patel S.P., Nikanjam M., Lanman R.B., Piccioni D.E., Kato S., McHale M.T., Kurzrock R. Clinical implications of plasma circulating tumor DNA in gynecologic cancer patients. Mol. Oncol. 2021;15:67–79. doi: 10.1002/1878-0261.12791. PubMed DOI PMC

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Lortet-Tieulent J., Ferlay J., Bray F., Jemal A. International Patterns and Trends in Endometrial Cancer Incidence, 1978–2013. J. Natl. Cancer Inst. 2018;110:354–361. doi: 10.1093/jnci/djx214. PubMed DOI

Schlosshauer P.W., Ellenson L.H., Soslow R.A. β-Catenin and E-Cadherin Expression Patterns in High-Grade Endometrial Carcinoma Are Associated with Histological Subtype. Mod. Pathol. 2002;15:1032–1037. doi: 10.1097/01.MP.0000028573.34289.04. PubMed DOI

Murali R., Davidson B., Fadare O., Carlson J., Crum C.P., Gilks C.B., Irving J.A., Malpica A., Matias-Guiu X., McCluggage W.G., et al. High-grade Endometrial Carcinomas. Int. J. Gynecol. Pathol. 2019;38:S40–S63. doi: 10.1097/PGP.0000000000000491. PubMed DOI PMC

Cancer Genome Atlas Research Network. Kandoth C., Schultz N., Cherniack A.D., Akbani R., Liu Y., Shen H., Robertson A.G., Pashtan I., Shen R., et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73. doi: 10.1038/nature12113. PubMed DOI PMC

Concin N., Matias-Guiu X., Vergote I., Cibula D., Mirza M.R., Marnitz S., Ledermann J., Bosse T., Chargari C., Fagotti A., et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer. 2021;31:12–39. doi: 10.1136/ijgc-2020-002230. PubMed DOI

Murali R., Soslow R., Weigelt B. Classification of endometrial carcinoma: More than two types. Lancet Oncol. 2014;15:e268–e278. doi: 10.1016/S1470-2045(13)70591-6. PubMed DOI

Kaitu’U-Lino T.J., Ye L., Gargett C.E. Reepithelialization of the Uterine Surface Arises from Endometrial Glands: Evidence from a Functional Mouse Model of Breakdown and Repair. Endocrinology. 2010;151:3386–3395. doi: 10.1210/en.2009-1334. PubMed DOI

Lac V., Nazeran T.M., Tessier-Cloutier B., Aguirre-Hernandez R., Albert A., Lum A., Khattra J., Praetorius T., Mason M., Chiu D., et al. Oncogenic mutations in histologically normal endometrium: The new normal? J. Pathol. 2019;249:173–181. doi: 10.1002/path.5314. PubMed DOI

Moore L., Leongamornlert D., Coorens T.H.H., Sanders M.A., Ellis P., Dentro S.C., Dawson K.J., Butler T., Rahbari R., Mitchell T.J., et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–646. doi: 10.1038/s41586-020-2214-z. PubMed DOI

Kyo S., Sato S., Nakayama K. Cancer-associated mutations in normal human endometrium: Surprise or expected? Cancer Sci. 2020;111:3458–3467. doi: 10.1111/cas.14571. PubMed DOI PMC

Temko D., Van Gool I.C., Rayner E., Glaire M., Makino S., Brown M., Chegwidden L., Palles C., Depreeuw J., Beggs A., et al. Somatic POLE exonuclease domain mutations are early events in sporadic endometrial and colorectal carcinogenesis, determining driver mutational landscape, clonal neoantigen burden and immune response. J. Pathol. 2018;245:283–296. doi: 10.1002/path.5081. PubMed DOI PMC

Aguilar M., Zhang H., Zhang M.S., Cantarell B., Sahoo S.S., Li H.D., Cuevas I.C., Lea J., Miller D.S., Chen H., et al. Serial genomic analysis of endometrium supports the existence of histologically indistinct endometrial cancer precursors. J. Pathol. 2021;254:20–30. doi: 10.1002/path.5628. PubMed DOI PMC

Martignetti J.A., Pandya D., Nagarsheth N., Chen Y., Camacho O., Tomita S., Brodman M., Ascher-Walsh C., Kolev V., Cohen S., et al. Detection of endometrial precancer by a targeted gynecologic cancer liquid biopsy. Mol. Case Stud. 2018;4:a003269. doi: 10.1101/mcs.a003269. PubMed DOI PMC

Huvila J., Pors J., Thompson E.F., Gilks C.B. Endometrial carcinoma: Molecular subtypes, precursors and the role of pathology in early diagnosis. J. Pathol. 2021;253:355–365. doi: 10.1002/path.5608. PubMed DOI

Lacey J.V., Jr., Ioffe O.B., Ronnett B.M., Rush B.B., Richesson D.A., Chatterjee N., Langholz B., Glass A.G., Sherman M.E. Endometrial carcinoma risk among women diagnosed with endometrial hyperplasia: The 34-year experience in a large health plan. Br. J. Cancer. 2007;98:45–53. doi: 10.1038/sj.bjc.6604102. PubMed DOI PMC

Trimble C.L., Kauderer J., Zaino R.J., Silverberg S.G., Lim P.C., Burke J.J., 2nd, Alberts D.S., Curtin J.P. Concurrent endometrial carcinoma in women with a biopsy diagnosis of atypical endometrial hyperplasia: A Gynecologic Oncology Group study. Cancer. 2006;106:812–819. doi: 10.1002/cncr.21650. PubMed DOI

Riethdorf L., Begemann C., Riethdorf S., Milde-Langosch K., Loning T. Comparison of benign and malignant endometrial lesions for their p53 state, using immunohistochemistry and temperature-gradient gel electrophoresis. Virchows Arch. 1996;428:47–51. doi: 10.1007/BF00192926. PubMed DOI

Yasuda M., Katoh T., Hori S., Suzuki K., Ohno K., Maruyama M., Matsui N., Miyazaki S., Ogane N., Kameda Y. Endometrial intraepithelial carcinoma in association with polyp: Review of eight cases. Diagn. Pathol. 2013;8:25. doi: 10.1186/1746-1596-8-25. PubMed DOI PMC

Maksem J.A., Meiers I., Robboy S.J. A primer of endometrial cytology with histological correlation. Diagn. Cytopathol. 2007;35:817–844. doi: 10.1002/dc.20745. PubMed DOI

Bergman L., Beelen M.L., Gallee M.P., Hollema H., Benraadt J., van Leeuwen F.E., Comprehensive Cancer Centres’ ALERT Group Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Lancet. 2000;356:881–887. doi: 10.1016/S0140-6736(00)02677-5. PubMed DOI

Hrstka R., Podhorec J., Nenutil R., Sommerova L., Obacz J., Durech M., Faktor J., Bouchal P., Skoupilova H., Vojtesek B. Tamoxifen-Dependent Induction of AGR2 Is Associated with Increased Aggressiveness of Endometrial Cancer Cells. Cancer Investig. 2017;35:313–324. doi: 10.1080/07357907.2017.1309546. PubMed DOI

Ryan N.A.J., Glaire M.A., Blake D., Cabrera-Dandy M., Evans D.G., Crosbie E.J. The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genet. Med. 2019;21:2167–2180. doi: 10.1038/s41436-019-0536-8. PubMed DOI PMC

Gammon A., Jasperson K., Champine M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management. Appl. Clin. Genet. 2016;9:83–92. doi: 10.2147/TACG.S41947. PubMed DOI PMC

Hampel H., Frankel W., Panescu J., Lockman J., Sotamaa K., Fix D., Comeras I., La Jeunesse J., Nakagawa H., Westman J.A., et al. Screening for Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer) among Endometrial Cancer Patients. Cancer Res. 2006;66:7810–7817. doi: 10.1158/0008-5472.CAN-06-1114. PubMed DOI

Bafligil C., Thompson D.J., Lophatananon A., Smith M.J., Ryan N.A.J., Naqvi A., Evans D.G., Crosbie E.J. Association between genetic polymorphisms and endometrial cancer risk: A systematic review. J. Med. Genet. 2020;57:591–600. doi: 10.1136/jmedgenet-2019-106529. PubMed DOI PMC

O’Mara T.A., Crosbie E.J. Polygenic risk score opportunities for early detection and prevention strategies in endometrial cancer. Br. J. Cancer. 2020;123:1045–1046. doi: 10.1038/s41416-020-0959-7. PubMed DOI PMC

Frias-Gomez J., Benavente Y., Ponce J., Brunet J., Ibáñez R., Peremiquel-Trillas P., Baixeras N., Zanca A., Piulats J.M., Aytés Á., et al. Sensitivity of cervico-vaginal cytology in endometrial carcinoma: A systematic review and meta-analysis. Cancer Cytopathol. 2020;128:792–802. doi: 10.1002/cncy.22266. PubMed DOI

Frias-Gomez J., Tovar E., Vidal A., Murgui L., Ibáñez R., Peremiquel-Trillas P., Paytubi S., Baixeras N., Zanca A., Ponce J., et al. Sensitivity of cervical cytology in endometrial cancer detection in a tertiary hospital in Spain. Cancer Med. 2021;10:6762–6766. doi: 10.1002/cam4.4217. PubMed DOI PMC

Jones E.R., Carter S., O’Flynn H., Njoku K., Barr C.E., Narine N., Shelton D., Rana D., Crosbie E.J. Developing Tests for Endometrial Cancer Detection (DETECT): Protocol for a diagnostic accuracy study of urine and vaginal samples for the detection of endometrial cancer by cytology in women with postmenopausal bleeding. BMJ Open. 2021;11:e050755. doi: 10.1136/bmjopen-2021-050755. PubMed DOI PMC

Njoku K., Chiasserini D., Whetton A.D., Crosbie E.J. Proteomic Biomarkers for the Detection of Endometrial Cancer. Cancers. 2019;11:1572. doi: 10.3390/cancers11101572. PubMed DOI PMC

Mu A.K.-W., Lim B.-K., Hashim O.H., Shuib A.S. Detection of Differential Levels of Proteins in the Urine of Patients with Endometrial Cancer: Analysis Using Two-Dimensional Gel Electrophoresis and O-Glycan Binding Lectin. Int. J. Mol. Sci. 2012;13:9489–9501. doi: 10.3390/ijms13089489. PubMed DOI PMC

Kurnit K.C., Westin S.N., Coleman R.L. Microsatellite instability in endometrial cancer: New purpose for an old test. Cancer. 2019;125:2154–2163. doi: 10.1002/cncr.32058. PubMed DOI PMC

Bolivar A.M., Luthra R., Mehrotra M., Chen W., Barkoh B.A., Hu P., Zhang W., Broaddus R.R. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: Identification of plasma-based, tumor-associated mutations in early stage patients. Mod. Pathol. 2019;32:405–414. doi: 10.1038/s41379-018-0158-8. PubMed DOI PMC

Casas-Arozamena C., Díaz E., Moiola C.P., Alonso-Alconada L., Ferreiros A., Abalo A., Gil C.L., Oltra S.S., De Santiago J., Cabrera S., et al. Genomic Profiling of Uterine Aspirates and cfDNA as an Integrative Liquid Biopsy Strategy in Endometrial Cancer. J. Clin. Med. 2020;9:585. doi: 10.3390/jcm9020585. PubMed DOI PMC

Tsukamoto O., Miura K., Mishima H., Abe S., Kaneuchi M., Higashijima A., Miura S., Kinoshita A., Yoshiura K.-I., Masuzaki H. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol. Oncol. 2014;132:715–721. doi: 10.1016/j.ygyno.2014.01.029. PubMed DOI

Srivastava A., Moxley K., Ruskin R., Dhanasekaran D.N., Zhao Y.D., Ramesh R. A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients. AAPS J. 2018;20:82. doi: 10.1208/s12248-018-0220-y. PubMed DOI

Roman-Canal B., Moiola C.P., Gatius S., Bonnin S., Ruiz-Miró M., González E., González-Tallada X., Llordella I., Hernández I., Porcel J.M., et al. EV-Associated miRNAs from Peritoneal Lavage are a Source of Biomarkers in Endometrial Cancer. Cancers. 2019;11:839. doi: 10.3390/cancers11060839. PubMed DOI PMC

Fan X., Zou X., Liu C., Cheng W., Zhang S., Geng X., Zhu W. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci. Rep. 2021;41:BSR20210111. doi: 10.1042/BSR20210111. PubMed DOI PMC

Zhou L., Wang W., Wang F., Yang S., Hu J., Lu B., Pan Z., Ma Y., Zheng M., Zhou L., et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer. 2021;20:57. doi: 10.1186/s12943-021-01352-4. PubMed DOI PMC

Njoku K., Sutton C.J., Whetton A.D., Crosbie E.J. Metabolomic Biomarkers for Detection, Prognosis and Identifying Recurrence in Endometrial Cancer. Metabolites. 2020;10:314. doi: 10.3390/metabo10080314. PubMed DOI PMC

Bahado-Singh R.O., Lugade A., Field J., Al-Wahab Z., Han B., Mandal R., Bjorndahl T.C., Turkoglu O., Graham S.F., Wishart D., et al. Metabolomic prediction of endometrial cancer. Metabolomics. 2017;14:6. doi: 10.1007/s11306-017-1290-z. PubMed DOI

Raffone A., Troisi J., Boccia D., Travaglino A., Capuano G., Insabato L., Mollo A., Guida M., Zullo F. Metabolomics in endometrial cancer diagnosis: A systematic review. Acta Obstet. Gynecol. Scand. 2020;99:1135–1146. doi: 10.1111/aogs.13847. PubMed DOI

Trousil S., Lee P., Pinato D.J., Ellis J.K., Dina R., Aboagye E.O., Keun H.C., Sharma R. Alterations of Choline Phospholipid Metabolism in Endometrial Cancer Are Caused by Choline Kinase Alpha Overexpression and a Hyperactivated Deacylation Pathway. Cancer Res. 2014;74:6867–6877. doi: 10.1158/0008-5472.CAN-13-2409. PubMed DOI

Njoku K., Campbell A.E., Geary B., MacKintosh M.L., Derbyshire A.E., Kitson S.J., Sivalingam V.N., Pierce A., Whetton A.D., Crosbie E.J. Metabolomic Biomarkers for the Detection of Obesity-Driven Endometrial Cancer. Cancers. 2021;13:718. doi: 10.3390/cancers13040718. PubMed DOI PMC

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA A Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387. PubMed DOI

Bast R.C., Jr., Lu Z., Han C.Y., Lu K.H., Anderson K.S., Drescher C.W., Skates S.J. Biomarkers and Strategies for Early Detection of Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2020;29:2504–2512. doi: 10.1158/1055-9965.EPI-20-1057. PubMed DOI PMC

Buys S.S., Partridge E., Greene M.H., Prorok P.C., Reding D., Riley T.L., Hartge P., Fagerstrom R.M., Ragard L.R., Chia D., et al. Ovarian cancer screening in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial: Findings from the initial screen of a randomized trial. Am. J. Obstet. Gynecol. 2005;193:1630–1639. doi: 10.1016/j.ajog.2005.05.005. PubMed DOI

Kobayashi H., Yamada Y., Sado T., Sakata M., Yoshida S., Kawaguchi R., Kanayama S., Shigetomi H., Haruta S., Tsuji Y., et al. A randomized study of screening for ovarian cancer: A multicenter study in Japan. Int. J. Gynecol. Cancer. 2008;18:414–420. doi: 10.1111/j.1525-1438.2007.01035.x. PubMed DOI

Torre L.A., Trabert B., DeSantis C.E., Miller K.D., Samimi G., Runowicz C.D., Gaudet M.M., Jemal A., Siegel R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018;68:284–296. doi: 10.3322/caac.21456. PubMed DOI PMC

Jervis S., Song H., Lee A., Dicks E., Harrington P., Baynes C., Manchanda R., Easton D.F., Jacobs I., Pharoah P.P.D., et al. A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J. Med. Genet. 2015;52:465–475. doi: 10.1136/jmedgenet-2015-103077. PubMed DOI PMC

Yang X., Leslie G., Gentry-Maharaj A., Ryan A., Intermaggio M., Lee A., Kalsi J.K., Tyrer J., Gaba F., Manchanda R., et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J. Med. Genet. 2018;55:546–554. doi: 10.1136/jmedgenet-2018-105313. PubMed DOI PMC

Phelan C.M., Kuchenbaecker K.B., Tyrer J.P., Kar S.P., Lawrenson K., Winham S.J., Dennis J., Pirie A., Riggan M.J., Chornokur G., et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet. 2017;49:680–691. doi: 10.1038/ng.3826. PubMed DOI PMC

Kuchenbaecker K.B., Ramus S.J., Tyrer J., Lee A., Shen H.C., Beesley J., Lawrenson K., McGuffog L., Healey S., Lee J.M., et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat. Genet. 2015;47:164–171. doi: 10.1038/ng.3185. PubMed DOI PMC

Zhang Y.D., Hurson A.N., Zhang H., Choudhury P.P., Easton D.F., Milne R.L., Simard J., Hall P., Michailidou K., Dennis J., et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 2020;11:3353. doi: 10.1038/s41467-020-16483-3. PubMed DOI PMC

Mehra K.K., Chang M.C., Folkins A.K., Raho C.J., Lima J.F., Yuan L., Mehrad M., Tworoger S.S., Crum C.P., Saleemuddin A. The impact of tissue block sampling on the detection of p53 signatures in fallopian tubes from women with BRCA 1 or 2 mutations (BRCA+) and controls. Mod. Pathol. 2011;24:152–156. doi: 10.1038/modpathol.2010.171. PubMed DOI

Dorigo O., Berek J.S. Personalizing CA125 Levels for Ovarian Cancer Screening. Cancer Prev. Res. 2011;4:1356–1359. doi: 10.1158/1940-6207.CAPR-11-0378. PubMed DOI

Drescher C.W., Hawley S., Thorpe J.D., Marticke S., McIntosh M., Gambhir S.S., Urban N. Impact of Screening Test Performance and Cost on Mortality Reduction and Cost-effectiveness of Multimodal Ovarian Cancer Screening. Cancer Prev. Res. 2012;5:1015–1024. doi: 10.1158/1940-6207.CAPR-11-0468. PubMed DOI PMC

Blyuss O., Gentry-Maharaj A., Fourkala E.-O., Ryan A., Zaikin A., Menon U., Jacobs I., Timms J.F. Serial Patterns of Ovarian Cancer Biomarkers in a Prediagnosis Longitudinal Dataset. BioMed Res. Int. 2015;2015:681416. doi: 10.1155/2015/681416. PubMed DOI PMC

Russell M.R., Graham C., D’Amato A., Gentry-Maharaj A., Ryan A., Kalsi J.K., Whetton A.D., Menon U., Jacobs I., Graham R.L.J. Diagnosis of epithelial ovarian cancer using a combined protein biomarker panel. Br. J. Cancer. 2019;121:483–489. doi: 10.1038/s41416-019-0544-0. PubMed DOI PMC

Moore R.G., Jabre-Raughley M., Brown A.K., Robison K.M., Miller M.C., Allard W.J., Kurman R.J., Bast R.C., Skates S.J. Comparison of a novel multiple marker assay vs the Risk of Malignancy Index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am. J. Obstet. Gynecol. 2010;203:228.e1–228.e6. doi: 10.1016/j.ajog.2010.03.043. PubMed DOI PMC

Kumari S. Serum Biomarker Based Algorithms in Diagnosis of Ovarian Cancer: A Review. Indian J. Clin. Biochem. 2018;33:382–386. doi: 10.1007/s12291-018-0786-2. PubMed DOI PMC

Lee Y.-K., Park N.-H. Prognostic value and clinicopathological significance of p53 and PTEN in epithelial ovarian cancers. Gynecol. Oncol. 2009;112:475–480. doi: 10.1016/j.ygyno.2008.11.031. PubMed DOI

Yang W.-L., Gentry-Maharaj A., Simmons A.R., Ryan A., Fourkala E.O., Lu Z., Baggerly K.A., Zhao Y., Lu K.H., Bowtell D.D., et al. Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer. Clin. Cancer Res. 2017;23:5912–5922. doi: 10.1158/1078-0432.CCR-17-0284. PubMed DOI PMC

Anderson K.S., Cramer D.W., Sibani S., Wallstrom G., Wong J., Park J., Qiu J., Vitonis A., LaBaer J. Autoantibody Signature for the Serologic Detection of Ovarian Cancer. J. Proteome Res. 2015;14:578–586. doi: 10.1021/pr500908n. PubMed DOI PMC

Hurley L.C., Levin N.K., Chatterjee M., Coles J., Muszkat S., Howarth Z., Dyson G., Tainsky M.A. Evaluation of paraneoplastic antigens reveals TRIM21 autoantibodies as biomarker for early detection of ovarian cancer in combination with autoantibodies to NY-ESO-1 and TP53. Cancer Biomark. 2020;27:407–421. doi: 10.3233/CBM-190988. PubMed DOI PMC

Guo J., Yang W.-L., Pak D., Celestino J., Lu K.H., Ning J., Lokshin A.E., Cheng Z., Lu Z., Bast R.C., Jr. Osteopontin, Macrophage Migration Inhibitory Factor and Anti-Interleukin-8 Autoantibodies Complement CA125 for Detection of Early Stage Ovarian Cancer. Cancers. 2019;11:596. doi: 10.3390/cancers11050596. PubMed DOI PMC

Yang W., Lu Z., Guo J., Fellman B.M., Ning J., Lu K.H., Menon U., Kobayashi M., Hanash S.M., Celestino J., et al. Human epididymis protein 4 antigen-autoantibody complexes complement cancer antigen 125 for detecting early-stage ovarian cancer. Cancer. 2020;126:725–736. doi: 10.1002/cncr.32582. PubMed DOI PMC

Ma Y., Wang X., Qiu C.P., Qin J.J., Wang K.Y., Sun G.Y., Jiang D., Li J.T., Wang L., Shi J.X., et al. Using protein microarray to identify and evaluate autoantibodies to tumor-associated antigens in ovarian cancer. Cancer Sci. 2021;112:537–549. doi: 10.1111/cas.14732. PubMed DOI PMC

Van Berckelaer C., Brouwers A.J., Peeters D.J., Tjalma W., Trinh X.B., van Dam P.A. Current and future role of circulating tumor cells in patients with epithelial ovarian cancer. Eur. J. Surg. Oncol. 2016;42:1772–1779. doi: 10.1016/j.ejso.2016.05.010. PubMed DOI

Deng G., Herrler M., Burgess D., Manna E., Krag D., Burke J.F. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008;10:R69. doi: 10.1186/bcr2131. PubMed DOI PMC

Liu J.F., Kindelberger D., Doyle C., Lowe A., Barry W.T., Matulonis U.A. Predictive value of circulating tumor cells (CTCs) in newly-diagnosed and recurrent ovarian cancer patients. Gynecol. Oncol. 2013;131:352–356. doi: 10.1016/j.ygyno.2013.08.006. PubMed DOI

Cheng X., Zhang L., Chen Y., Qing C. Circulating cell-free DNA and circulating tumor cells, the “liquid biopsies” in ovarian cancer. J. Ovarian Res. 2017;10:1–10. doi: 10.1186/s13048-017-0369-5. PubMed DOI PMC

Guo Y.-X., Neoh K.H., Chang X.-H., Sun Y., Cheng H.-Y., Ye X., Ma R.-Q., Han R.P.S., Cui H. Diagnostic value of HE4+ circulating tumor cells in patients with suspicious ovarian cancer. Oncotarget. 2018;9:7522–7533. doi: 10.18632/oncotarget.23943. PubMed DOI PMC

Asante D.-B., Calapre L., Ziman M., Meniawy T.M., Gray E.S. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett. 2020;468:59–71. doi: 10.1016/j.canlet.2019.10.014. PubMed DOI

Giannopoulou L., Kasimir-Bauer S., Lianidou E.S. Liquid biopsy in ovarian cancer: Recent advances on circulating tumor cells and circulating tumor DNA. Clin. Chem. Lab. Med. 2018;56:186–197. doi: 10.1515/cclm-2017-0019. PubMed DOI

Thusgaard C.F., Korsholm M., Koldby K.M., Kruse T.A., Thomassen M., Jochumsen K.M. Epithelial ovarian cancer and the use of circulating tumor DNA: A systematic review. Gynecol. Oncol. 2021;161:884–895. doi: 10.1016/j.ygyno.2021.04.020. PubMed DOI

Widschwendter M., Zikan M., Wahl B., Lempiäinen H., Paprotka T., Evans I., Jones A., Ghazali S., Reisel D., Eichner J., et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 2017;9:116. doi: 10.1186/s13073-017-0500-7. PubMed DOI PMC

Guo X.M., Miller H., Matsuo K., Roman L.D., Salhia B. Circulating Cell-Free DNA Methylation Profiles in the Early Detection of Ovarian Cancer: A Scoping Review of the Literature. Cancers. 2021;13:838. doi: 10.3390/cancers13040838. PubMed DOI PMC

Im H., Shao H., Park Y.I., Peterson V.M., Castro C.M., Weissleder R., Lee H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014;32:490–495. doi: 10.1038/nbt.2886. PubMed DOI PMC

Zhao Z., Yang Y., Zeng Y., He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–496. doi: 10.1039/C5LC01117E. PubMed DOI PMC

Liu S.-L., Sun P., Li Y., Liu S.-S., Lu Y. Exosomes as critical mediators of cell-to-cell communication in cancer pathogenesis and their potential clinical application. Transl. Cancer Res. 2019;8:298–311. doi: 10.21037/tcr.2019.01.03. PubMed DOI PMC

Taylor D.D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008;110:13–21. doi: 10.1016/j.ygyno.2008.04.033. PubMed DOI

Yoshimura A., Sawada K., Nakamura K., Kinose Y., Nakatsuka E., Kobayashi M., Miyamoto M., Ishida K., Matsumoto Y., Kodama M., et al. Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 2018;18:1–13. doi: 10.1186/s12885-018-4974-5. PubMed DOI PMC

Szajnik M., Derbis M., Lach M., Patalas P., Michalak M., Drzewiecka H., Szpurek D., Nowakowski A., Spaczynski M., Baranowski W., et al. Exosomes in Plasma of Patients with Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to Therapy. Gynecol. Obstet. 2013;4:3. doi: 10.4172/2161-0932.s4-003. PubMed DOI PMC

Li J., Sherman-Baust C.A., Tsai-Turton M., Bristow R.E., Roden R.B., Morin P.J. Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. 2009;9:244. doi: 10.1186/1471-2407-9-244. PubMed DOI PMC

Keller S., König A.-K., Marmé F., Runz S., Wolterink S., Koensgen D., Mustea A., Sehouli J., Altevogt P. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009;278:73–81. doi: 10.1016/j.canlet.2008.12.028. PubMed DOI

Zhou J., Gong G., Tan H., Dai F., Zhu X., Chen Y., Wang J., Liu Y., Chen P., Wu X., et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol. Rep. 2015;33:2915–2923. doi: 10.3892/or.2015.3937. PubMed DOI

Zhang P., Zhou X., Zeng Y. Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer. Chem. Sci. 2019;10:5495–5504. doi: 10.1039/C9SC00961B. PubMed DOI PMC

Tubbs A., Nussenzweig A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell. 2017;168:644–656. doi: 10.1016/j.cell.2017.01.002. PubMed DOI PMC

Jaffee E.M., Van Dang C., Agus D.B., Alexander B.M., Anderson K.C., Ashworth A., Barker A.D., Bastani R., Bhatia S., Bluestone J.A., et al. Future cancer research priorities in the USA: A Lancet Oncology Commission. Lancet Oncol. 2017;18:e653–e706. doi: 10.1016/S1470-2045(17)30698-8. PubMed DOI PMC

ACOG Committee Opinion No. 734: The Role of Transvaginal Ultrasonography in Evaluating the Endometrium of Women with Postmenopausal Bleeding. Obstet. Gynecol. 2018;131:e124–e129. doi: 10.1097/AOG.0000000000002631. PubMed DOI

Doubeni C.A., Doubeni A.R., Myers A.E. Diagnosis and Management of Ovarian Cancer. Am. Fam. Physician. 2016;93:937–944. PubMed

Bernard L., Kwon J.S., Simpson A.N., Ferguson S.E., Sinasac S., Pina A., Reade C.J. The levonorgestrel intrauterine system for prevention of endometrial cancer in women with obesity: A cost-effectiveness study. Gynecol. Oncol. 2021;161:367–373. doi: 10.1016/j.ygyno.2021.02.020. PubMed DOI

Yasin H.K., Taylor A.H., Ayakannu T. A Narrative Review of the Role of Diet and Lifestyle Factors in the Development and Prevention of Endometrial Cancer. Cancers. 2021;13:2149. doi: 10.3390/cancers13092149. PubMed DOI PMC

Dilley S.E., Havrilesky L.J., Bakkum-Gamez J., Cohn D.E., Straughn J.M., Jr., Caughey A.B., Rodriguez M.I. Cost-effectiveness of opportunistic salpingectomy for ovarian cancer prevention. Gynecol. Oncol. 2017;146:373–379. doi: 10.1016/j.ygyno.2017.05.034. PubMed DOI

Walker J.L., Powell C.B., Chen L.-M., Carter J., Jump V.L.B., Parker L.P., Borowsky M.E., Gibb R.K. Society of Gynecologic Oncology recommendations for the prevention of ovarian cancer. Cancer. 2015;121:2108–2120. doi: 10.1002/cncr.29321. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genetic analysis of uterine lavage fluids to identify women at high risk of endometrial cancer

. 2025 Mar 18 ; 18 (1) : 117. [epub] 20250318

Can Schlafen 11 Help to Stratify Ovarian Cancer Patients Treated with DNA-Damaging Agents?

. 2022 May 10 ; 14 (10) : . [epub] 20220510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...