Smartphone Voice Calls Provide Early Biomarkers of Parkinsonism in Rapid Eye Movement Sleep Behavior Disorder
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky
NU20-08-00445
Ministerstvo Zdravotnictví Ceské Republiky
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
SGS23/170/OHK3/3T/13
České Vysoké Učení Technické v Praze
PubMed
39001636
DOI
10.1002/mds.29921
Knihovny.cz E-zdroje
- Klíčová slova
- Parkinson's disease, machine learning, prodromal synucleinopathy biomarker, speech, wearables,
- MeSH
- biologické markery MeSH
- chytrý telefon * MeSH
- hlas fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc * patofyziologie komplikace MeSH
- parkinsonské poruchy patofyziologie MeSH
- porucha chování v REM spánku * patofyziologie diagnóza MeSH
- poruchy řeči etiologie MeSH
- prodromální symptomy MeSH
- průřezové studie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
BACKGROUND: Speech dysfunction represents one of the initial motor manifestations to develop in Parkinson's disease (PD) and is measurable through smartphone. OBJECTIVE: The aim was to develop a fully automated and noise-resistant smartphone-based system that can unobtrusively screen for prodromal parkinsonian speech disorder in subjects with isolated rapid eye movement sleep behavior disorder (iRBD) in a real-world scenario. METHODS: This cross-sectional study assessed regular, everyday voice call data from individuals with iRBD compared to early PD patients and healthy controls via a developed smartphone application. The participants also performed an active, regular reading of a short passage on their smartphone. Smartphone data were continuously collected for up to 3 months after the standard in-person assessments at the clinic. RESULTS: A total of 3525 calls that led to 5990 minutes of preprocessed speech were extracted from 72 participants, comprising 21 iRBD patients, 26 PD patients, and 25 controls. With a high area under the curve of 0.85 between iRBD patients and controls, the combination of passive and active smartphone data provided a comparable or even more sensitive evaluation than laboratory examination using a high-quality microphone. The most sensitive features to induce prodromal neurodegeneration in iRBD included imprecise vowel articulation during phone calls (P = 0.03) and monopitch in reading (P = 0.05). Eighteen minutes of speech corresponding to approximately nine calls was sufficient to obtain the best sensitivity for the screening. CONCLUSION: We consider the developed tool widely applicable to deep longitudinal digital phenotyping data with future applications in neuroprotective trials, deep brain stimulation optimization, neuropsychiatry, speech therapy, population screening, and beyond. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Zobrazit více v PubMed
Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder. Sleep Med 2013;14(8):744–748.
Postuma RB, Gagnon JF, Bertrand JA, Génier Marchand D, Montplaisir JY. Parkinson risk in idiopathic REM sleep behavior disorder: preparing for neuroprotective trials. Neurology 2015;84(11):1104–1113. https://doi.org/10.1212/WNL.0000000000001364
Videnovic A, Ju YES, Arnulf I, et al. Clinical trials in REM sleep behavioural disorder: challenges and opportunities. J Neurol Neurosurg Psychiatry 2020;91(7):740–749. https://doi.org/10.1136/jnnp-2020-322875
Postuma RB, Berg D. Advances in markers of prodromal Parkinson disease. Nat Rev Neurol 2016;12(11):622–634.
Miglis MG, Adler CH, Antelmi E, et al. Biomarkers of conversion to α‐synucleinopathy in isolated rapid‐eye‐movement sleep behaviour disorder. Lancet Neurol 2021;20(8):671–684.
Dauvilliers Y, Schenck CH, Postuma RB, et al. REM sleep behaviour disorder. Nat Rev Dis Primers 2018;4(1):1–16. https://doi.org/10.1038/s41572-018-0016-5
Högl B, Stefani A, Videnovic A. Idiopathic REM sleep behaviour disorder and neurodegeneration — an update. Nat Rev Neurol 2018;14(1):40–55.
Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB. Evolution of prodromal Parkinson's disease and dementia with Lewy bodies: a prospective study. Brain 2019;142(7):2051–2067. https://doi.org/10.1093/brain/awz155
Adams JL, Kangarloo T, Tracey B, et al. Using a smartwatch and smartphone to assess early Parkinson's disease in the WATCH‐PD study. npj Parkinsons Dis 2023;9(1):1–10. https://doi.org/10.1038/s41531-023-00497-x
Bot BM, Suver C, Neto EC, et al. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data 2016;3:160011. https://doi.org/10.1038/sdata.2016.11
Lakovakis D, Hadjidimitriou S, Charisis V, et al. Motor impairment estimates via touchscreen typing dynamics toward Parkinson's disease detection from data harvested in‐the‐wild. Front ICT 2018;5:28. https://doi.org/10.3389/fict.2018.00028
Papadopoulos A, Kyritsis K, Klingelhoefer L, Bostanjopoulou S, Chaudhuri KR, Delopoulos A. Detecting parkinsonian Tremor from IMU data collected in‐the‐wild using deep multiple‐instance learning. IEEE J Biomed Health Inform 2020;24(9):2559–2569. https://doi.org/10.1109/JBHI.2019.2961748
Burton A. Smartphones versus Parkinson's disease: i‐PROGNOSIS. Lancet Neurol 2020;19(5):385–386.
Arora S, Baig F, Lo C, et al. Smartphone motor testing to distinguish idiopathic REM sleep behavior disorder, controls, and PD. Neurology 2018;91(16):1528–1538.
Duffy J. Motor Speech Disorders: Substrates, Differential Diagnosis, and Management. 4th ed. St. Louis: Elsevier; 2019.
Postuma RB, Lang AE, Gagnon JF, Pelletier A, Montplaisir JY. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain 2012;135(6):1860–1870. https://doi.org/10.1093/brain/aws093
Rusz J, Janzen A, Tykalová T, et al. Dysprosody in isolated REM sleep behavior disorder with impaired olfaction but intact Nigrostriatal pathway. Mov Disord 2022;37(3):619–623. https://doi.org/10.1002/mds.28873
Skrabal D, Rusz J, Novotny M, et al. Articulatory undershoot of vowels in isolated REM sleep behavior disorder and early Parkinson's disease. npj Parkinsons Dis. 2022;8(1):1–7. https://doi.org/10.1038/s41531-022-00407-7
Braak H, Del TK, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9
Brabenec L, Mekyska J, Galaz Z, Rektorova I. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation. J Neural Transm 2017;124(3):303–334. https://doi.org/10.1007/s00702-017-1676-0
Illner V, Sovka P, Rusz J. Validation of freely‐available pitch detection algorithms across various noise levels in assessing speech captured by smartphone in Parkinson's disease. Biomed Signal Process Control 2020;58:1–13.
Šimek M, Rusz J. Validation of cepstral peak prominence in assessing early voice changes of Parkinson's disease. J Acoust Soc Am 2021;150(6):4522–4533. https://doi.org/10.1121/10.0009063
American Academy of Sleep Medicine. International Classification of Sleep Disorders, Third Edition: Diagnostic and Coding Manual. Darien, IL: American Academy of Sleep Medicine; 2014:1387–1394.
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2015;30(12):1591–1601. https://doi.org/10.1002/mds.26424
Goetz CG, Fahn S, Martinez‐Martin P, et al. Movement disorder society‐sponsored revision of the unified Parkinson's disease rating scale (MDS‐UPDRS): process, format, and clinimetric testing plan. Mov Disord 2007;22(1):41–47. https://doi.org/10.1002/mds.21198
Kopecek M, Stepankova H, Lukavsky J, Ripova D, Nikolai T, Bezdicek O. Montreal cognitive assessment (MoCA): normative data for old and very old Czech adults. Appl Neuropsychol Adult 2017;24(1):23–29. https://doi.org/10.1080/23279095.2015.1065261
Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson's disease: the SCOPA‐AUT. Mov Disord 2004;19(11):1306–1312. https://doi.org/10.1002/mds.20153
Doty RL, Shaman P, Kimmelman CP, Dann MS. University of pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 1984;94(2):176–178. https://doi.org/10.1288/00005537-198402000-00004
Kouba T, Illner V, Rusz J. Study protocol for using a smartphone application to investigate speech biomarkers of Parkinson's disease and other synucleinopathies. BMJ Open 2022;12(6):1–11. https://doi.org/10.1136/bmjopen-2021-059871
Darley FL, Aronson AE, Brown JR. Differential diagnostic patterns of dysarthria. J Speech Hear Res 1969;12(2):246–269. https://doi.org/10.1044/jshr.1202.246
Rusz J, Hlavnička J, Novotný M, et al. Speech biomarkers in rapid eye movement sleep behavior disorder and Parkinson disease. Ann Neurol 2021;90(1):62–75. https://doi.org/10.1002/ana.26085
Illner V, Tykalova T, Skrabal D, Klempir J, Rusz J. Automated vowel articulation analysis in connected speech among progressive neurological diseases, dysarthria types, and dysarthria severities. J Speech Lang Hear Res 2023;66(8):2600–2621. https://doi.org/10.1044/2023_JSLHR-22-00526
Illner V, Krýže P, Švihlík J, et al. Which aspects of motor speech disorder are captured by Mel frequency Cepstral coefficients? Evidence from the change in STN‐DBS conditions in Parkinson's disease. INTERSPEECH 2023. Dublin: ISCA; 2023:5027–5031. https://doi.org/10.21437/Interspeech.2023-1744
Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease. J Acoust Soc Am 2011;129(1):350–367. https://doi.org/10.1121/1.3514381
Hlavnička J, Čmejla R, Tykalová T, Šonka K, Růžička E, Rusz J. Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder. Sci Rep 2017;7(1):1–13.
Radford A, Kim JW, Xu T, Brockman G, McLeavey C, Sutskever I. Robust speech recognition via large‐scale weak supervision. Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research; 2023:1182. http://arxiv.org/abs/2212.04356.
Illner V, Tykalová T, Novotný M, Klempíř J, Dušek P, Rusz J. Toward automated articulation rate analysis via connected speech in Dysarthrias. J Speech Lang Hear Res 2022;65(4):1386–1401. https://doi.org/10.1044/2021_JSLHR-21-00549
Laganas C, Iakovakis D, Hadjidimitriou SK, et al. Parkinson's disease detection based on running speech data from phone calls. IEEE Trans Biomed Eng 2022;65(9):1573–1584.
Rusz J, Tykalova T, Ramig LO, Tripoliti E. Guidelines for speech recording and acoustic analyses in Dysarthrias of movement disorders. Mov Disord 2021;36(4):803–814. https://doi.org/10.1002/mds.28465
Krýže P, Tykalová T, Růžička E, Rusz J. Effect of reading passage length on quantitative acoustic speech assessment in Czech‐speaking individuals with Parkinson's disease treated with subthalamic nucleus deep brain stimulation. J Acoust Soc Am 2021;149(5):3366–3374. https://doi.org/10.1121/10.0005050
Thies T, Mücke D, Geerts N, et al. Compensatory articulatory mechanisms preserve intelligibility in prodromal Parkinson's disease. Parkinsonism Relat Disord 2023;112:105487. https://doi.org/10.1016/j.parkreldis.2023.105487
Sapir S. Multiple factors are involved in the dysarthria associated with Parkinson's disease: a review with implications for clinical practice and research. J Speech Lang Hear Res 2014;57(4):1330–1343. https://doi.org/10.1044/2014_JSLHR-S-13-0039
Weismer G, Jeng JY, Laures JS, Kent RD, Kent JF. Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders. Folia Phoniatr Logop 2001;53(1):1–18. https://www.karger.com/Article/FullText/52649
Šubert M, Novotný M, Tykalová T, et al. Spoken language alterations can predict Phenoconversion in isolated rapid eye movement sleep behavior disorder: a multicentric study. Ann Neurol 2023;95:530–543. https://doi.org/10.1002/ana.26835
Jeancolas L, Mangone G, Petrovska‐Delacrétaz D, et al. Voice characteristics from isolated rapid eye movement sleep behavior disorder to early Parkinson's disease. Parkinsonism Relat Disord 2022;95:86–91. https://doi.org/10.1016/j.parkreldis.2022.01.003
Moreau C, Ozsancak C, Blatt JL, Derambure P, Destee A, Defebvre L. Oral festination in Parkinson's disease: biomechanical analysis and correlation with festination and freezing of gait. Mov Disord 2007;22(10):1503–1506. https://doi.org/10.1002/mds.21549
Nancy H. Management of Palilalia with a pacing board. J Speech Hear Disord 1979;44(3):350–353. https://doi.org/10.1044/jshd.4403.350
Kardous CA, Shaw PB. Evaluation of smartphone sound measurement applications. J Acoust Soc Am 2014;135(4):186–192. https://doi.org/10.1121/1.4865269
Rusz J, Novotny M, Hlavnicka J, Tykalova T, Ruzicka E. High‐accuracy voice‐based classification between patients with Parkinson's disease and other neurological diseases may Be an easy task with inappropriate experimental design. IEEE Trans Neural Syst Rehabil Eng 2017;25(8):1319–1321. https://doi.org/10.1109/TNSRE.2016.2621885
Martinez‐Martin N, Insel TR, Dagum P, Greely HT, Cho MK. Data mining for health: staking out the ethical territory of digital phenotyping. npj Digit Med 2018;1(1):1–5. https://doi.org/10.1038/s41746-018-0075-8
Rusz J, Tykalova T, Novotny M, et al. Defining speech subtypes in De novo Parkinson disease. Neurology 2021;97(21):e2124–e2135. https://doi.org/10.1212/WNL.0000000000012878
Digital speech biomarkers can measure acute effects of levodopa in Parkinson's disease
Long-term dopaminergic therapy improves spoken language in de-novo Parkinson's disease