• This record comes from PubMed

Genetic analysis of uterine lavage fluids to identify women at high risk of endometrial cancer

. 2025 Mar 18 ; 18 (1) : 117. [epub] 20250318

Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
NU21-09-00031 Agentura Pro Zdravotnický Výzkum České Republiky
BBMRI.cz no. LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy
P JAC; reg. no. CZ.02.01.01/00/22_008/0004644 European Union and The State Budget of the Czech Republic
MMCI, 00209805 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 40103006
PubMed Central PMC11921509
DOI 10.1186/s13104-025-07173-8
PII: 10.1186/s13104-025-07173-8
Knihovny.cz E-resources

OBJECTIVES: Endometrial cancer (EC) is the most common malignancy of the female genital tract in developed countries, yet preventive screening remains unavailable, and diagnostic approaches are largely limited to symptomatic women. Despite advancements in precision oncology, the biology of precancerous lesions is less understood compared to advanced disease. To address this gap, we conducted a prospective case-control study analysing uterine lavage fluid from women undergoing diagnostic evaluation. The study included 257 participants: 80 diagnosed with endometrial intraepithelial neoplasia (EIN), 89 with early-stage EC, and 88 healthy controls. Using targeted next-generation sequencing, we examined genetic alterations in 22 selected genes associated with EC development. RESULTS: Our findings did not confirm a direct association between specific genetic mutations in uterine lavage fluid and the presence of EIN or early-stage EC (p = 0.501). Mutations were detected in both cases and controls, with a higher overall mutation burden observed in controls, suggesting potential background genomic alterations unrelated to EC development. In conclusion, while molecular profiling of uterine lavage fluid remains a promising concept for non-invasive diagnosis, our results highlight significant challenges in specificity. Further studies with larger cohorts and additional biomarkers are necessary to clarify its diagnostic relevance and clinical applicability.

See more in PubMed

Lortet-Tieulent J, Ferlay J, Bray F, Jemal A. International patterns and trends in endometrial Cancer incidence, 1978–2013. J Natl Cancer Inst. 2018;110(4):354–61. PubMed

Mazidimoradi A, Momenimovahed Z, Khalajinia Z, Allahqoli L, Salehiniya H, Alkatout I. The global incidence, mortality, and burden of uterine cancer in 2019 and correlation with SDI, tobacco, dietary risks, and metabolic risk factors: an ecological study. Health Sci Rep. 2024;7(1):e1835. PubMed PMC

Sangtani A, Wang C, Weaver A, Hoppman NL, Kerr SE, Abyzov A, et al. Combining copy number, methylation markers, and mutations as a panel for endometrial cancer detection via intravaginal Tampon collection. Gynecol Oncol. 2020;156(2):387–92. PubMed PMC

Hrstka R, Podhorec J, Nenutil R, Sommerova L, Obacz J, Durech M, et al. Tamoxifen-Dependent induction of AGR2 is associated with increased aggressiveness of endometrial Cancer cells. Cancer Invest. 2017;35(5):313–24. PubMed

Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2016;387(10023):1094–108. PubMed

Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, et al. Precancer atlas to drive precision prevention trials. Cancer Res. 2017;77(7):1510–41. PubMed PMC

Schlosshauer PW, Ellenson LH, Soslow RA. Beta-catenin and E-cadherin expression patterns in high-grade endometrial carcinoma are associated with histological subtype. Mod Pathol. 2002;15(10):1032–7. PubMed

Holcakova J, Bartosik M, Anton M, Minar L, Hausnerova J, Bednarikova M et al. New trends in the detection of gynecological precancerous lesions and Early-Stage cancers. Cancers (Basel). 2021;13(24). PubMed PMC

Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. PubMed PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformaticsbabrahamacuk/projects/fastqc/. 2010.

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95. PubMed PMC

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. PubMed PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. Twelve years of samtools and BCFtools. Gigascience. 2021;10(2). PubMed PMC

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76. PubMed PMC

Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980–5. PubMed PMC

Asaturova A, Zaretsky A, Rogozhina A, Tregubova A, Badlaeva A. Advancements in minimally invasive techniques and biomarkers for the early detection of endometrial cancer: A comprehensive review of novel diagnostic approaches and clinical implications. J Clin Med. 2024;13:24. PubMed PMC

Shen Y, Yang W, Liu J, Zhang Y. Minimally invasive approaches for the early detection of endometrial cancer. Mol Cancer. 2023;22(1):53. PubMed PMC

Maritschnegg E, Wang Y, Pecha N, Horvat R, Van Nieuwenhuysen E, Vergote I, et al. Lavage of the uterine cavity for molecular detection of mullerian duct carcinomas: A Proof-of-Concept study. J Clin Oncol. 2015;33(36):4293–300. PubMed PMC

Nair N, Camacho-Vanegas O, Rykunov D, Dashkoff M, Camacho SC, Schumacher CA, et al. Genomic analysis of uterine lavage fluid detects early endometrial cancers and reveals a prevalent landscape of driver mutations in women without histopathologic evidence of cancer: A prospective Cross-Sectional study. PLoS Med. 2016;13(12):e1002206. PubMed PMC

Martignetti JA, Pandya D, Nagarsheth N, Chen Y, Camacho O, Tomita S et al. Detection of endometrial precancer by a targeted gynecologic cancer liquid biopsy. Cold Spring Harb Mol Case Stud. 2018;4(6). PubMed PMC

Chao A, Wu KY, Lin CY, Lee YS, Huang HJ, Tang YH, et al. Towards less invasive molecular diagnostics for endometrial cancer: massively parallel sequencing of endometrial lavage specimens in women attending for an office hysteroscopy. J Mol Med (Berl). 2022;100(9):1331–9. PubMed

Weng CH, Wu KY, Wang CJ, Huang HJ, Tsai CL, Lin CY, et al. Massively parallel sequencing of endometrial lavage specimens for the detection of cancer-associated mutations in atypical and non-atypical endometrial hyperplasia. Front Med (Lausanne). 2022;9:1090788. PubMed PMC

Mayo-de-Las-Casas C, Velasco A, Sanchez D, Martinez-Bueno A, Garzon-Ibanez M, Gatius S, et al. Detection of somatic mutations in peritoneal lavages and plasma of endometrial cancer patients: A proof-of-concept study. Int J Cancer. 2020;147(1):277–84. PubMed

Mota A, Colas E, Garcia-Sanz P, Campoy I, Rojo-Sebastian A, Gatius S, et al. Genetic analysis of uterine aspirates improves the diagnostic value and captures the intra-tumor heterogeneity of endometrial cancers. Mod Pathol. 2017;30(1):134–45. PubMed

Dugo E, Piva F, Giulietti M, Giannella L, Ciavattini A. Copy number variations in endometrial cancer: from biological significance to clinical utility. Int J Gynecol Cancer. 2024;34(7):1089–97. PubMed

Zheng H, Yu C, Yang L, Zhou F, Liu A. Research progress of DNA methylation markers for endometrial carcinoma diagnosis. J Cancer. 2025;16(3):812–20. PubMed PMC

Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A new revolution for gynecological cancers. Biomedicines. 2023;11(3). PubMed PMC

Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, et al. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med. 2025;57(1):2451766. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...