Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference

. 2022 Jul 02 ; 39 (7) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35776423

Genetic recombination plays a critical role in the emergence of pathogens with phenotypes such as drug resistance, virulence, and host adaptation. Here, we tested the hypothesis that recombination between sympatric ancestral populations leads to the emergence of divergent variants of the zoonotic parasite Cryptosporidium parvum with modified host ranges. Comparative genomic analyses of 101 isolates have identified seven subpopulations isolated by distance. They appear to be descendants of two ancestral populations, IIa in northwestern Europe and IId from southwestern Asia. Sympatric recombination in areas with both ancestral subtypes and subsequent selective sweeps have led to the emergence of new subpopulations with mosaic genomes and modified host preference. Subtelomeric genes could be involved in the adaptive selection of subpopulations, while copy number variations of genes encoding invasion-associated proteins are potentially associated with modified host ranges. These observations reveal ancestral origins of zoonotic C. parvum and suggest that pathogen import through modern animal farming might promote the emergence of divergent subpopulations of C. parvum with modified host preference.

Zobrazit více v PubMed

Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, Sreng S, Drury E, Stalker J, Miotto O, et al. . 2018. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis. 18:337–345. doi:10.1016/S1473-3099(18)30068-9 PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. . 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477. doi:10.1089/cmb.2012.0021 PubMed DOI PMC

Checkley W, White AC Jr, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, et al. . 2015. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 15:85–94. doi:10.1016/S1473-3099(14)70772-8 PubMed DOI PMC

Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92. doi:10.4161/fly.19695 PubMed DOI PMC

Corsi GI, Tichkule S, Sannella AR, Vatta P, Asnicar F, Segata N, Jex AR, van Oosterhout C, Caccio SM.. 2022. Recent genetic exchanges and admixture shape the genome and population structure of the zoonotic pathogen Cryptosporidium parvum. Mol Ecol. 34:997–1011. doi:10.1111/mec.16556 PubMed DOI

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, et al. . 2011. The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330 PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. . 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:1–4. doi:10.1093/gigascience/giab008 PubMed DOI PMC

Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:1394–1403. doi:10.1101/gr.2289704 PubMed DOI PMC

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. . 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 43:491–498. doi:10.1038/ng.806 PubMed DOI PMC

Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ. 2018. Genome-wide mosaicism in divergence between zoonotic malaria parasite subpopulations with separate sympatric transmission cycles. Mol Ecol. 27:860–870. doi:10.1111/mec.14477 PubMed DOI PMC

Feng Y, Li N, Roellig DM, Kelley A, Liu G, Amer S, Tang K, Zhang L, Xiao L. 2017. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol. 47:281–290. doi:10.1016/j.ijpara.2016.12.002 PubMed DOI PMC

Feng Y, Ryan UM, Xiao L. 2018. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 34:997–1011. doi:10.1016/j.pt.2018.07.009 PubMed DOI

Franz E, Rotariu O, Lopes BS, MacRae M, Bono JL, Laing C, Gannon V, Soderlund R, van Hoek A, Friesema I, et al. . 2019. Phylogeographic analysis reveals multiple international transmission events have driven the global emergence of Escherichia coli O157:H7. Clin Infect Dis. 69:428–437. doi:10.1093/cid/ciy919 PubMed DOI

Gharpure R, Perez A, Miller AD, Wikswo ME, Silver R, Hlavsa MC. 2019. Cryptosporidiosis outbreaks—United States, 2009–2017. Morb Mortal Weekly Rep. 19:2650–2654. doi: 10.15585/mmwr.mm6825a3 PubMed DOI PMC

Grigg ME, Bonnefoy S, Hehl AB, Suzuki Y, Boothroyd JC. 2001. Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries. Science 294:161–165. doi:10.1126/science.1061888 PubMed DOI

Guo Y, Li N, Lysen C, Frace M, Tang K, Sammons S, Roellig DM, Feng Y, Xiao L. 2015. Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing. J Clin Microbiol. 53:641–647. doi:10.1128/JCM.02962-14 PubMed DOI PMC

Guo Y, Li N, Ryan U, Feng Y, Xiao L. 2021. Small ruminants and zoonotic cryptosporidiosis. Parasitol Res. 120:4189–4198. doi:10.1007/s00436-021-07116-9 PubMed DOI

Guo Y, Ryan U, Feng Y, Xiao L. 2022a. Association of common zoonotic pathogens with concentrated animal feeding operations. Front Microbiol. 12:810142. doi:10.3389/fmicb.2021.810142 PubMed DOI PMC

Guo Y, Ryan U, Feng Y, Xiao L. 2022b. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol. 38:335–343. doi:10.1016/j.pt.2021.12.002 PubMed DOI

Guo Y, Tang K, Rowe LA, Li N, Roellig DM, Knipe K, Frace M, Yang C, Feng Y, Xiao L. 2015. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics 16:320. doi:10.1186/s12864-015-1517-1 PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi:10.1093/bioinformatics/btt086 PubMed DOI PMC

Hijjawi N, Zahedi A, Al-Falah M, Ryan U. 2022. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. Infect Genet Evol. 98:105212. doi:10.1016/j.meegid.2022.105212 PubMed DOI

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 23:254–267. doi:10.1093/molbev/msj030 PubMed DOI

Kennard A, Miller M, Khan A, Quinones M, Miller N, Sundar N, James E, Roos D, Conrad P, Grigg M. 2021. Virulence shift in a sexual clade of Type X Toxoplasma infecting Southern Sea Otters. bioRxiv:2021.03.31.437793; doi:10.1101/2021.03.31.437793 DOI

Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, et al. . 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222. doi:10.1016/S0140-6736(13)60844-2 PubMed DOI

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874. doi:10.1093/molbev/msw054 PubMed DOI PMC

Lebbad M, Winiecka-Krusnell J, Stensvold CR, Beser J. 2021. High diversity of Cryptosporidium species and subtypes identified in cryptosporidiosis acquired in Sweden and abroad. Pathogens 10:523. doi:10.3390/pathogens10050523 PubMed DOI PMC

Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung CK, Chen L, Ma J, et al. . 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 45:1431–1438. doi:10.1038/ng.2811 PubMed DOI

Martin SH, Davey JW, Jiggins CD. 2015. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol Biol Evol. 32:244–257. doi:10.1093/molbev/msu269 PubMed DOI PMC

Martin SH, Van Belleghem SM. 2017. Exploring evolutionary relationships across the genome using topology weighting. Genetics 206:429–438. doi:10.1534/genetics.116.194720 PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R.. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 37:1530–1534. doi:10.1093/molbev/msaa015 PubMed DOI PMC

Nader JL, Mathers TC, Ward BJ, Pachebat JA, Swain MT, Robinson G, Chalmers RM, Hunter PR, van Oosterhout C, Tyler KM. 2019. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat Microbiol. 4:826–836. doi:10.1038/s41564-019-0377-x PubMed DOI

Nkhoma SC, Trevino SG, Gorena KM, Nair S, Khoswe S, Jett C, Garcia R, Daniel B, Dia A, Terlouw DJ, et al. . 2020. Co-transmission of related malaria parasite lineages shapes within-host parasite diversity. Cell Host Microbe 27:93–103.e4. doi:10.1016/j.chom.2019.12.001 PubMed DOI PMC

Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589. doi:10.1534/genetics.114.164350 PubMed DOI PMC

Ranford-Cartwright LC, Mwangi JM. 2012. Analysis of malaria parasite phenotypes using experimental genetic crosses of Plasmodium falciparum. Int J Parasitol. 42:529–534. doi:10.1016/j.ijpara.2012.03.004 PubMed DOI PMC

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 34:3299–3302. doi:10.1093/molbev/msx248 PubMed DOI

Sangster L, Blake DP, Robinson G, Hopkins TC, Sa RC, Cunningham AA, Chalmers RM, Lawson B. 2016. Detection and molecular characterisation of Cryptosporidium parvum in British European hedgehogs (Erinaceus europaeus). Vet Parasitol. 217:39–44. doi:10.1016/j.vetpar.2015.12.006 PubMed DOI

Schaffner SF, Taylor AR, Wong W, Wirth DF, Neafsey DE. 2018. hmmIBD: software to infer pairwise identity by descent between haploid genotypes. Malar J. 17:196. doi:10.1186/s12936-018-2349-7 PubMed DOI PMC

Slater GS, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. doi:10.1186/1471-2105-6-31 PubMed DOI PMC

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. 2015. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31:2032–2034. doi:10.1093/bioinformatics/btv098 PubMed DOI PMC

Tichkule S, Caccio SM, Robinson G, Chalmers RM, Mueller I, Emery-Corbin SJ, Eibach D, Tyler KM, van Oosterhout C, Jex AR. 2022. Global population genomics of two subspecies of Cryptosporidium hominis during 500 years of evolution. Mol Biol Evol. 39:msac056. doi:10.1093/molbev/msac056 PubMed DOI PMC

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. . 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963 PubMed DOI PMC

Weetman D, Mitchell SN, Wilding CS, Birks DP, Yawson AE, Essandoh J, Mawejje HD, Djogbenou LS, Steen K, Rippon EJ, et al. . 2015. Contemporary evolution of resistance at the major insecticide target site gene Ace-1 by mutation and copy number variation in the malaria mosquito Anopheles gambiae. Mol Ecol. 24:2656–2672. doi:10.1111/mec.13197 PubMed DOI PMC

Wilke G, Funkhouser-Jones LJ, Wang Y, Ravindran S, Wang Q, Beatty WL, Baldridge MT, VanDussen KL, Shen B, Kuhlenschmidt MS, et al. . 2019. A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability. Cell Host Microbe 26:123–134.e8. doi:10.1016/j.chom.2019.05.007 PubMed DOI PMC

Xiao L, Hlavsa MC, Yoder J, Ewers C, Dearen T, Yang W, Nett R, Harris S, Brend SM, Harris M, et al. . 2009. Subtype analysis of Cryptosporidium specimens from sporadic cases in Colorado, Idaho, New Mexico, and Iowa in 2007: widespread occurrence of one Cryptosporidium hominis subtype and case history of an infection with the Cryptosporidium horse genotype. J Clin Microbiol. 47:3017–3020. doi:10.1128/JCM.00226-09 PubMed DOI PMC

Xu Z, Guo Y, Roellig DM, Feng Y, Xiao L. 2019. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics 20:406. doi:10.1186/s12864-019-5788-9 PubMed DOI PMC

Xu Z, Li N, Guo Y, Feng Y, Xiao L. 2020. Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microb Genomics 6:e000379. doi:10.1099/mgen.0.000379 PubMed DOI PMC

Yang X, Guo Y, Xiao L, Feng Y. 2021. Molecular epidemiology of human cryptosporidiosis in low- and middle-income countries. Clin Microbiol Rev. 34:e00087-19. doi:10.1128/CMR.00087-19 PubMed DOI PMC

Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788. doi:10.1093/bioinformatics/bty875 PubMed DOI

Zhang Z, Hu S, Zhao W, Guo Y, Li N, Zheng Z, Zhang L, Kvac M, Xiao L, Feng Y. 2020. Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites Vectors 13:425. doi:10.1186/s13071-020-04303-y PubMed DOI PMC

Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. 2020. Evolution and domestication of the Bovini species. Anim Genet. 51:637–657. doi:10.1111/age.12974 PubMed DOI

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. 2012. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328. doi:10.1093/bioinformatics/bts606 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...