Effectiveness of Home-Based Cardiac Rehabilitation, Using Wearable Sensors, as a Multicomponent, Cutting-Edge Intervention: A Systematic Review and Meta-Analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
FNBr, 65269705
Ministry of Health Czech Republic
PubMed
35807055
PubMed Central
PMC9267864
DOI
10.3390/jcm11133772
PII: jcm11133772
Knihovny.cz E-resources
- Keywords
- accelerometer, cardiorespiratory fitness, cardiovascular disease, home-based cardiac rehabilitation, physical activity, wearable sensors,
- Publication type
- Journal Article MeSH
- Review MeSH
Exercise-based cardiac rehabilitation is a highly recommended intervention towards the advancement of the cardiovascular disease (CVD) patients' health profile; though with low participation rates. Although home-based cardiac rehabilitation (HBCR) with the use of wearable sensors is proposed as a feasible alternative rehabilitation model, further investigation is needed. This systematic review and meta-analysis aimed to evaluate the effectiveness of wearable sensors-assisted HBCR in improving the CVD patients' cardiorespiratory fitness (CRF) and health profile. PubMed, Scopus, Cinahl, Cochrane Library, and PsycINFO were searched from 2010 to January 2022, using relevant keywords. A total of 14 randomized controlled trials, written in English, comparing wearable sensors-assisted HBCR to center-based cardiac rehabilitation (CBCR) or usual care (UC), were included. Wearable sensors-assisted HBCR significantly improved CRF when compared to CBCR (Hedges' g = 0.22, 95% CI 0.06, 0.39; I2 = 0%; p = 0.01), whilst comparison of HBCR to UC revealed a nonsignificant effect (Hedges' g = 0.87, 95% CI -0.87, 1.85; I2 = 96.41%; p = 0.08). Effects on physical activity, quality of life, depression levels, modification of cardiovascular risk factors/laboratory parameters, and adherence were synthesized narratively. No significant differences were noted. Technology tools are growing fast in the cardiac rehabilitation era and promote exercise-based interventions into a more home-based setting. Wearable-assisted HBCR presents the potential to act as an adjunct or an alternative to CBCR.
Department of Public Health Masaryk University Brno Zerotinovo nam 617 9 601 77 Brno Czech Republic
Department of Rehabilitation University Hospital Brno Jihlavska 20 62500 Brno Czech Republic
Faculty of Health University of Canberra Bruce 2617 Australia
See more in PubMed
Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56–e528. doi: 10.1161/CIR.0000000000000659. PubMed DOI
Visseren F.L.J., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Bäck M., Benetos A., Biffi A., Boavida J.-M., Capodanno D., et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC) Eur. Heart J. 2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484. PubMed DOI
Shields G.E., Wells A., Doherty P., Heagerty A., Buck D., Davies L.M. Cost-effectiveness of cardiac rehabilitation: A systematic review. Heart. 2018;104:1403. doi: 10.1136/heartjnl-2017-312809. PubMed DOI PMC
Piepoli M.F. Cardiac rehabilitation: What are the latest advances? Dialogues Cardiovasc. Med. 2017;23:33–38.
Dibben G., Faulkner J., Oldridge N., Rees K., Thompson D.R., Zwisler A.D., Taylor R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021;11:CD001800. doi: 10.1002/14651858.CD001800.pub4. PubMed DOI PMC
McGregor G., Powell R., Kimani P., Underwood M. Does contemporary exercise-based cardiac rehabilitation improve quality of life for people with coronary artery disease? A systematic review and meta-analysis. BMJ Open. 2020;10:e036089. doi: 10.1136/bmjopen-2019-036089. PubMed DOI PMC
Anderson L., Oldridge N., Thompson D.R., Zwisler A.D., Rees K., Martin N., Taylor R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2016;67:1–12. doi: 10.1016/j.jacc.2015.10.044. PubMed DOI
Sandercock G.R., Cardoso F., Almodhy M., Pepera G. Cardiorespiratory fitness changes in patients receiving comprehensive outpatient cardiac rehabilitation in the UK: A multicentre study. Heart. 2013;99:785–790. doi: 10.1136/heartjnl-2012-303055. PubMed DOI
Prescott E., Eser P., Mikkelsen N., Holdgaard A., Marcin T., Wilhelm M., Gil C.P., González-Juanatey J.R., Moatemri F., Iliou M.C., et al. Cardiac rehabilitation of elderly patients in eight rehabilitation units in western Europe: Outcome data from the EU-CaRE multi-centre observational study. Eur. J. Prev. Cardiol. 2020;27:1716–1729. doi: 10.1177/2047487320903869. PubMed DOI
Kotseva K., De Backer G., De Bacquer D., Rydén L., Hoes A., Grobbee D., Maggioni A., Marques-Vidal P., Jennings C., Abreu A., et al. Lifestyle and impact on cardiovascular risk factor control in coronary patients across 27 countries: Results from the European Society of Cardiology ESC-EORP EUROASPIRE V registry. Eur. J. Prev. Cardiol. 2019;26:824–835. doi: 10.1177/2047487318825350. PubMed DOI
Resurrección D.M., Moreno-Peral P., Gómez-Herranz M., Rubio-Valera M., Pastor L., Caldas de Almeida J.M., Motrico E. Factors associated with non-participation in and dropout from cardiac rehabilitation programmes: A systematic review of prospective cohort studies. Eur. J. Cardiovasc. Nurs. 2019;18:38–47. doi: 10.1177/1474515118783157. PubMed DOI
Santiago de Araújo Pio C., Chaves G.S., Davies P., Taylor R.S., Grace S.L. Interventions to promote patient utilisation of cardiac rehabilitation. Cochrane Database Syst. Rev. 2019;2:Cd007131. doi: 10.1002/14651858.CD007131.pub4. PubMed DOI PMC
Ruano-Ravina A., Pena-Gil C., Abu-Assi E., Raposeiras S., van ‘t Hof A., Meindersma E., Bossano Prescott E.I., González-Juanatey J.R. Participation and adherence to cardiac rehabilitation programs. A systematic review. Int. J. Cardiol. 2016;223:436–443. doi: 10.1016/j.ijcard.2016.08.120. PubMed DOI
Winnige P., Filakova K., Hnatiak J., Dosbaba F., Bocek O., Pepera G., Papathanasiou J., Batalik L., Grace S.L. Validity and Reliability of the Cardiac Rehabilitation Barriers Scale in the Czech Republic (CRBS-CZE): Determination of Key Barriers in East-Central Europe. Int. J. Environ. Res. Public Health. 2021;18:3113. doi: 10.3390/ijerph182413113. PubMed DOI PMC
Kemps H.M.C., Brouwers R.W.M., Cramer M.J., Jorstad H.T., de Kluiver E.P., Kraaijenhagen R.A., Kuijpers P.M.J.C., van der Linde M.R., de Melker E., Rodrigo S.F., et al. Recommendations on how to provide cardiac rehabilitation services during the COVID-19 pandemic. Neth. Heart J. 2020;28:387–390. doi: 10.1007/s12471-020-01474-2. PubMed DOI PMC
Besnier F., Gayda M., Nigam A., Juneau M., Bherer L. Cardiac Rehabilitation During Quarantine in COVID-19 Pandemic: Challenges for Center-Based Programs. Arch. Phys. Med. Rehabil. 2020;101:1835–1838. doi: 10.1016/j.apmr.2020.06.004. PubMed DOI PMC
Mattioli A.V., Ballerini Puviani M., Nasi M., Farinetti A. COVID-19 pandemic: The effects of quarantine on cardiovascular risk. Eur. J. Clin. Nutr. 2020;74:852–855. doi: 10.1038/s41430-020-0646-z. PubMed DOI PMC
Pepera G., Tribali M.S., Batalik L., Petrov I., Papathanasiou J. Epidemiology, risk factors and prognosis of cardiovascular disease in the Coronavirus Disease 2019 (COVID-19) pandemic era: A systematic review. Rev. Cardiovasc Med. 2022;23:28. doi: 10.31083/j.rcm2301028. PubMed DOI
Dalal H.M., Taylor R.S., Jolly K., Davis R.C., Doherty P., Miles J., van Lingen R., Warren F.C., Green C., Wingham J., et al. The effects and costs of home-based rehabilitation for heart failure with reduced ejection fraction: The REACH-HF multicentre randomized controlled trial. Eur. J. Prev. Cardiol. 2019;26:262–272. doi: 10.1177/2047487318806358. PubMed DOI PMC
Anderson L., Sharp G.A., Norton R.J., Dalal H., Dean S.G., Jolly K., Cowie A., Zawada A., Taylor R.S. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst. Rev. 2017;6:CD007130. doi: 10.1002/14651858.CD007130.pub4. PubMed DOI PMC
Stefanakis M., Batalik L., Papathanasiou J., Dipla L., Antoniou V., Pepera G. Exercise-based cardiac rehabilitation programs in the era of COVID-19: A critical review. Rev. Cardiovasc. Med. 2021;22:1143–1155. doi: 10.31083/j.rcm2204123. PubMed DOI
Jin K., Khonsari S., Gallagher R., Gallagher P., Clark A.M., Freedman B., Briffa T., Bauman A., Redfern J., Neubeck L. Telehealth interventions for the secondary prevention of coronary heart disease: A systematic review and meta-analysis. Eur. J. Cardiovasc. Nurs. 2019;18:260–271. doi: 10.1177/1474515119826510. PubMed DOI
Neubeck L., Lowres N., Benjamin E.J., Freedman S.B., Coorey G., Redfern J. The mobile revolution—Using smartphone apps to prevent cardiovascular disease. Nat. Rev. Cardiol. 2015;12:350–360. doi: 10.1038/nrcardio.2015.34. PubMed DOI
Su J.J., Yu D.S.F., Paguio J.T. Effect of eHealth cardiac rehabilitation on health outcomes of coronary heart disease patients: A systematic review and meta-analysis. J. Adv. Nurs. 2020;76:754–772. doi: 10.1111/jan.14272. PubMed DOI
Gandhi S., Chen S., Hong L., Sun K., Gong E., Li C., Yan L.L., Schwalm J.D. Effect of Mobile Health Interventions on the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-analysis. Can. J. Cardiol. 2017;33:219–231. doi: 10.1016/j.cjca.2016.08.017. PubMed DOI
Batalik L., Filakova K., Batalikova K., Dosbaba F. Remotely monitored telerehabilitation for cardiac patients: A review of the current situation. World J. Clin. Cases. 2020;8:1818–1831. doi: 10.12998/wjcc.v8.i10.1818. PubMed DOI PMC
Batalik L., Pepera G., Papathanasiou J., Rutkowski S., Líška D., Batalikova K., Hartman M., Felšőci M., Dosbaba F. Is the Training Intensity in Phase Two Cardiovascular Rehabilitation Different in Telehealth versus Outpatient Rehabilitation? J. Clin. Med. 2021;10:4069. doi: 10.3390/jcm10184069. PubMed DOI PMC
Lau J., Ioannidis J.P., Schmid C.H. Quantitative synthesis in systematic reviews. Ann. Intern. Med. 1997;127:820–826. doi: 10.7326/0003-4819-127-9-199711010-00008. PubMed DOI
Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928. PubMed DOI PMC
Cai C., Bao Z., Wu N., Wu F., Sun G., Yang G., Chen M. A novel model of home-based, patient-tailored and mobile application-guided cardiac telerehabilitation in patients with atrial fibrillation: A randomised controlled trial. Clin. Rehabil. 2021;36:40–50. doi: 10.1177/02692155211032372. PubMed DOI
Maddison R., Rawstorn J.C., Stewart R.A.H., Benatar J., Whittaker R., Rolleston A., Jiang Y., Gao L., Moodie M., Warren I., et al. Effects and costs of real-time cardiac telerehabilitation: Randomised controlled non-inferiority trial. Heart. 2019;105:122–129. doi: 10.1136/heartjnl-2018-313189. PubMed DOI PMC
Hwang R., Bruning J., Morris N.R., Mandrusiak A., Russell T. Home-based telerehabilitation is not inferior to a centre-based program in patients with chronic heart failure: A randomised trial. Clin. Rehabil. 2017;63:101–107. doi: 10.1016/j.jphys.2017.02.017. PubMed DOI
Kraal J.J., Van den Akker-Van Marle M.E., Abu-Hanna A., Stut W., Peek N., Kemps H.M.C. Clinical and cost-effectiveness of home-based cardiac rehabilitation compared to conventional, centre-based cardiac rehabilitation: Results of the FIT@Home study. Eur. J. Prev. Cardiol. 2017;24:1260–1273. doi: 10.1177/2047487317710803. PubMed DOI PMC
Frederix I., Hansen D., Coninx K., Vandervoort P., Vandijck D., Hens N., Van Craenenbroeck E., Van Driessche N., Dendale P. Medium-Term Effectiveness of a Comprehensive Internet-Based and Patient-Specific Telerehabilitation Program with Text Messaging Support for Cardiac Patients: Randomized Controlled Trial. J. Med. Internet Res. 2015;17:e185. doi: 10.2196/jmir.4799. PubMed DOI PMC
Piotrowicz E., Zieliłski T., Bodalski R., Rywik T., Dobraszkiewicz-Wasilewska B., Sobieszczałska-Małek M., Stepnowska M., Przybylski A., Browarek A., Szumowski ł., et al. Home-based telemonitored Nordic walking training is well accepted, safe, effective and has high adherence among heart failure patients, including those with cardiovascular implantable electronic devices: A randomised controlled study. Eur. J. Prev. Cardiol. 2015;22:1368–1377. doi: 10.1177/2047487314551537. PubMed DOI
Snoek J.A., Prescott E.I., van der Velde A.E., Eijsvogels T.M.H., Mikkelsen N., Prins L.F., Bruins W., Meindersma E., González-Juanatey J.R., Peña-Gil C., et al. Effectiveness of Home-Based Mobile Guided Cardiac Rehabilitation as Alternative Strategy for Nonparticipation in Clinic-Based Cardiac Rehabilitation Among Elderly Patients in Europe: A Randomized Clinical Trial. JAMA Cardiol. 2021;6:463–468. doi: 10.1001/jamacardio.2020.5218. PubMed DOI PMC
Skobel E., Knackstedt C., Martinez-Romero A., Salvi D., Vera-Munoz C., Napp A., Luprano J., Bover R., Glöggler S., Bjarnason-Wehrens B., et al. Internet-based training of coronary artery patients: The Heart Cycle Trial. Heart Vessel. 2017;32:408–418. doi: 10.1007/s00380-016-0897-8. PubMed DOI
Bravo-Escobar R., González-Represas A., Gómez-González A.M., Montiel-Trujillo A., Aguilar-Jimenez R., Carrasco-Ruíz R., Salinas-Sánchez P. Effectiveness and safety of a home-based cardiac rehabilitation programme of mixed surveillance in patients with ischemic heart disease at moderate cardiovascular risk: A randomised, controlled clinical trial. BMC Cardiovasc. Disord. 2017;17:66. doi: 10.1186/s12872-017-0499-0. PubMed DOI PMC
Song Y., Ren C., Liu P., Tao L., Zhao W., Gao W. Effect of Smartphone-Based Telemonitored Exercise Rehabilitation among Patients with Coronary Heart Disease. J. Cardiovasc. Transl. Res. 2020;13:659–667. doi: 10.1007/s12265-019-09938-6. PubMed DOI PMC
Batalik L., Dosbaba F., Hartman M., Batalikova K., Spinar J. Benefits and effectiveness of using a wrist heart rate monitor as a telerehabilitation device in cardiac patients: A randomized controlled trial. Medicine. 2020;99:e19556. doi: 10.1097/MD.0000000000019556. PubMed DOI PMC
Avila A., Claes J., Buys R., Azzawi M., Vanhees L., Cornelissen V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: Does it improve long-term physical fitness? Eur. J. Prev. Cardiol. 2020;27:367–377. doi: 10.1177/2047487319892201. PubMed DOI
Avila A., Claes J., Goetschalckx K., Buys R., Azzawi M., Vanhees L., Cornelissen V. Home-Based Rehabilitation with Telemonitoring Guidance for Patients with Coronary Artery Disease (Short-Term Results of the TRiCH Study): Randomized Controlled Trial. J. Med. Internet Res. 2018;20:e225. doi: 10.2196/jmir.9943. PubMed DOI PMC
Dehghani M., Cheraghi M., Namdari M., Roshan V.D. Effects of Phase IV Pedometer Feedback Home-Based Cardiac Rehabilitation on Cardiovascular Functional Capacity in Patients With Myocardial Infarction: A Randomized Controlled Trial. Int. J. Basic. Sci. Med. 2019;4:75–80. doi: 10.15171/ijbsm.2019.15. DOI
World Bank W.D.I. The World by Income and Region. [(accessed on 10 February 2022)]. Available online: https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html.
Zwisler A.D., Norton R.J., Dean S.G., Dalal H., Tang L.H., Wingham J., Taylor R.S. Home-based cardiac rehabilitation for people with heart failure: A systematic review and meta-analysis. Int. J. Cardiol. 2016;221:963–969. doi: 10.1016/j.ijcard.2016.06.207. PubMed DOI
Ramachandran H.J., Jiang Y., Tam W.W.S., Yeo T.J., Wang W. Effectiveness of home-based cardiac telerehabilitation as an alternative to Phase 2 cardiac rehabilitation of coronary heart disease: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2021;29:1017–1043. doi: 10.1093/eurjpc/zwab106. PubMed DOI PMC
Stefanakis M., Batalik L., Antoniou V., Pepera G. Safety of home-based cardiac rehabilitation: A systematic review. Heart Lung. 2022;55:117–126. doi: 10.1016/j.hrtlng.2022.04.016. PubMed DOI
Rawstorn J.C., Gant N., Direito A., Beckmann C., Maddison R. Telehealth exercise-based cardiac rehabilitation: A systematic review and meta-analysis. Heart. 2016;102:1183. doi: 10.1136/heartjnl-2015-308966. PubMed DOI
Su J., Zhang Y., Ke Q.Q., Su J.K., Yang Q.H. Mobilizing artificial intelligence to cardiac telerehabilitation. Rev. Cardiovasc. Med. 2022;23:45. doi: 10.31083/j.rcm2302045. PubMed DOI
Chong M.S., Sit J.W.H., Karthikesu K., Chair S.Y. Effectiveness of technology-assisted cardiac rehabilitation: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2021;124:104087. doi: 10.1016/j.ijnurstu.2021.104087. PubMed DOI
Panagiotakos D., Notara V., Kouvari M., Pitsavos C. The Mediterranean and other Dietary Patterns in Secondary Cardiovascular Disease Prevention: A Review. Curr. Vasc. Pharmacol. 2016;14:442–451. doi: 10.2174/1570161114999160719104731. PubMed DOI
Effect of exercise-based cancer rehabilitation via telehealth: a systematic review and meta-analysis