Brainstem lesions are associated with diffuse spinal cord involvement in early multiple sclerosis
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
NV18-04-00168
Ministerstvo Zdravotnictví Ceské Republiky
RVO VFN 64165
Hospital Research Foundation
Cooperatio LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
Cooperatio LF1 and by the National Institute for Neurological Research (Programme EXCELES, ID project No LX22NPO5107)- funded by the European Union-Next Generation EU
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
35854235
PubMed Central
PMC9297663
DOI
10.1186/s12883-022-02778-z
PII: 10.1186/s12883-022-02778-z
Knihovny.cz E-resources
- Keywords
- Focal and diffuse lesions, thalamus, Infratentorial lesions, Multiple sclerosis, Spinal cord,
- MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Spinal Cord diagnostic imaging pathology MeSH
- Brain pathology MeSH
- Brain Stem diagnostic imaging pathology MeSH
- Spinal Cord Diseases * pathology MeSH
- Disability Evaluation MeSH
- Multiple Sclerosis, Relapsing-Remitting * diagnostic imaging pathology MeSH
- Multiple Sclerosis * diagnostic imaging pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Early infratentorial and focal spinal cord lesions on magnetic resonance imaging (MRI) are associated with a higher risk of long-term disability in patients with multiple sclerosis (MS). The role of diffuse spinal cord lesions remains less understood. The purpose of this study was to evaluate focal and especially diffuse spinal cord lesions in patients with early relapsing-remitting MS and their association with intracranial lesion topography, global and regional brain volume, and spinal cord volume. METHODS: We investigated 58 MS patients with short disease duration (< 5 years) from a large academic MS center and 58 healthy controls matched for age and sex. Brain, spinal cord, and intracranial lesion volumes were compared among patients with- and without diffuse spinal cord lesions and controls. Binary logistic regression models were used to analyse the association between the volume and topology of intracranial lesions and the presence of focal and diffuse spinal cord lesions. RESULTS: We found spinal cord involvement in 75% of the patients (43/58), including diffuse changes in 41.4% (24/58). Patients with diffuse spinal cord changes exhibited higher volumes of brainstem lesion volume (p = 0.008). The presence of at least one brainstem lesion was associated with a higher probability of the presence of diffuse spinal cord lesions (odds ratio 47.1; 95% confidence interval 6.9-321.6 p < 0.001) as opposed to focal spinal cord lesions (odds ratio 0.22; p = 0.320). Patients with diffuse spinal cord lesions had a lower thalamus volume compared to patients without diffuse spinal cord lesions (p = 0.007) or healthy controls (p = 0.002). CONCLUSIONS: Diffuse spinal cord lesions are associated with the presence of brainstem lesions and with a lower volume of the thalamus. This association was not found in patients with focal spinal cord lesions. If confirmed, thalamic atrophy in patients with diffuse lesions could increase our knowledge on the worse prognosis in patients with infratentorial and SC lesions.
2nd Department of Neurology Faculty of Medicine Comenius University Bratislava Slovakia
Advanced Clinical Imaging Technology Siemens Healthcare AG Lausanne Switzerland
Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
See more in PubMed
Barkhof F, Scheltens P, Comi GP. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis intraoperative EEG monitoring view project cortical graphs and brain disconnection in multiple sclerosis view project. 1997. PubMed
Minneboo A, Barkhof F, Polman CH, Uitdehaag BMJ, Knol DL, Castelijns JA. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol. 2004;61:217–221. doi: 10.1001/archneur.61.2.217. PubMed DOI
Tintore M, Rovira A, Arrambide G, Mitjana R, Río J, Auger C, et al. Brainstem lesions in clinically isolated syndromes. Neurology . 2010 ;75(21):1933–8. PubMed
Silveira F, Sánchez F, Miguez J, Contartese L, Gómez A, Patrucco L, et al. New MRI lesions and topography at 6 months of treatment initiation and disease activity during follow up in relapsing remitting multiple sclerosis patients. Neurol Res. 2020;42:148–152. doi: 10.1080/01616412.2019.1710415. PubMed DOI
Dekker I, Sombekke MH, Balk LJ, Moraal B, Geurts JJG, Barkhof F, et al. Infratentorial and spinal cord lesions: cumulative predictors of long-term disability? Mult Scler J. 2019;1:11. doi: 10.1177/1352458519864933. PubMed DOI PMC
Arrambide G, Rovira A, Sastre-Garriga J, Tur C, Castilló J, Río J, et al. Spinal cord lesions: a modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult Scler J. 2018;24:301–312. doi: 10.1177/1352458517697830. PubMed DOI
Kohler M, Kohler E, Vrech C, Pappolla A, Miguez J, Patrucco L, et al. Aggressive multiple sclerosis in Argentina: data from the nationwide registry RelevarEM. J Clin Neurosci. 2021;89:360–364. doi: 10.1016/j.jocn.2021.05.047. PubMed DOI
Weier K, Mazraeh J, Naegelin Y, Thoeni A, Hirsch JG, Fabbro T, et al. Biplanar MRI for the assessment of the spinal cord in multiple sclerosis. Mult Scler J. 2012;18:1560–1569. doi: 10.1177/1352458512442754. PubMed DOI
Weier K, Penner IK, Magon S, Amann M, Naegelin Y, Andelova M, et al. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis. PLoS One. 2014;9(1):e86916. doi: 10.1371/journal.pone.0086916. PubMed DOI PMC
Lycklama G, Thompson A, Filippi M, Miller D, Polman C, Fazekas F, et al. Spinal-cord MRI in multiple sclerosis. Lancet Neurol. 2003;2:555–562. doi: 10.1016/S1474-4422(03)00504-0. PubMed DOI
Hua LH, Donlon SL, Sobhanian MJ, Portner SM, Okuda DT. Thoracic spinal cord lesions are influenced by the degree of cervical spine involvement in multiple sclerosis. Spinal Cord. 2015;53:520–525. doi: 10.1038/sc.2014.238. PubMed DOI
Bonek R, Orlicka KMZ. Demyelinating lesions in the cervical cord in multiple sclerosis 10 years after onset of the disease. Correlation between MRI parameters and clinical course. Neurol Neurochir Pol. 2007;41(3):229–233. PubMed
Bellenberg B, Busch M, Trampe N, Gold R, Chan A, Lukas C. 1H-magnetic resonance spectroscopy in diffuse and focal cervical cord lesions in multiple sclerosis. Eur Radiol. 2013;23(12):3379–3392. doi: 10.1007/s00330-013-2942-7. PubMed DOI
Lukas C, Sombekke MH, Bellenberg B, Hahn HK, Popescu V, Bendfeldt K, et al. Relevance of spinal cord abnormalities to clinical Disability in Multiple sclerosis: MR Imaging Findings in a Large Cohort of Patients. Radiol n Radiol. 2013;269:542–552. PubMed
Andelova M, Uher T, Krasensky J, Sobisek L, Kusova E, Srpova B, et al. Additive effect of spinal cord volume, diffuse and focal cord pathology on disability in multiple sclerosis. Front Neurol. 2019;10:820. doi: 10.3389/fneur.2019.00820. PubMed DOI PMC
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Gass A, Rocca MA, Agosta F, Ciccarelli O, Chard D, Valsasina P, et al. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol. 2015;14(4):443–454. doi: 10.1016/S1474-4422(14)70294-7. PubMed DOI
Tsagkas C, Naegelin Y, Amann M, Papadopoulou A, Barro C, Chakravarty MM, et al. Central nervous system atrophy predicts future dynamics of disability progression in a real-world multiple sclerosis cohort. Eur J Neurol. 2021;28(12):4153–4166. doi: 10.1111/ene.15098. PubMed DOI PMC
Bischof A, Papinutto N, Keshavan A, Rajesh A, Kirkish G, Zhang X, et al. Spinal cord atrophy predicts progressive disease in relapsing multiple sclerosis. Ann Neurol. 2022;91:268–281. doi: 10.1002/ana.26281. PubMed DOI PMC
Uher T, Krasensky J, Vaneckova M, Sobisek L, Seidl Z, Havrdova E, et al. A novel Semiautomated pipeline to measure brain atrophy and lesion burden in multiple sclerosis: a long-term comparative study. J Neuroimaging. 2017;27(6):620–629. doi: 10.1111/jon.12445. PubMed DOI
Nijeholt GJ LÀ, Barkhof F, Scheltens P, Castelijns JA, Adèr H, Van Waesberghe JH, et al. MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability. Am J Neuroradiol. 1997;18(6):1041–1048. PubMed PMC
Nijeholt GJ LÀ, MAA VW, Castelijns JA, JHTM VW, Polman C, Scheltens P, et al. Brain and spinal cord abnormalities in multiple sclerosis: correlation between MRI parameters, clinical subtypes and symptoms. Brain. 1998;121(Pt 4):687–697. doi: 10.1093/brain/121.4.687. PubMed DOI
Schmitter D, Roche A, Maréchal B, Ribes D, Abdulkadir A, Bach-Cuadra M, et al. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease. NeuroImage Clin. 2015;7:7–17. doi: 10.1016/j.nicl.2014.11.001. PubMed DOI PMC
Fartaria MJ, Kober T, Granziera C, Bach CM. Longitudinal analysis of white matter and cortical lesions in multiple sclerosis. NeuroImage Clin. 2019;23:101938. doi: 10.1016/j.nicl.2019.101938. PubMed DOI PMC
Bot JC, Barkhof F, Polman CH, Lycklama à Nijeholt GJ, de Groot V, Bergers E, Ader HJ CJ. Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology. 2004;27 62(2):226–233. doi: 10.1212/WNL.62.2.226. PubMed DOI
Eriksson M, Andersen O, Runmarker B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler. 2003;9:260–274. doi: 10.1191/1352458503ms914oa. PubMed DOI
Qiu W, Raven S, James I, Luo Y, Wu J, Castley A, et al. Spinal cord involvement in multiple sclerosis: a correlative MRI and high-resolution HLA-DRB1 genotyping study. J Neurol Sci. 2011;300:114–119. doi: 10.1016/j.jns.2010.09.006. PubMed DOI
Droby A, Fleischer V, Carnini M, Zimmermann H, Siffrin V, Gawehn J, et al. The impact of isolated lesions on white-matter fiber tracts in multiple sclerosis patients. NeuroImage Clin. 2015;8:110–116. doi: 10.1016/j.nicl.2015.03.003. PubMed DOI PMC
Nijeholt GJ L à, Bergers E, Kamphorst W, Bot J, Nicolay K, Castelijns JA, et al. Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis a correlative study with conventional MRI, histopathology and clinical phenotype. Brain. 2001;124:154–166. doi: 10.1093/brain/124.1.154. PubMed DOI
Bot JCJ, Blezer ELA, Kamphorst W, Nijeholt GJ LÀ, Ader HJ, Castelijns JA, et al. The spinal cord in multiple sclerosis: relationship of high-spatial- resolution quantitative MR imaging findings to histopathologic results. Radiology. 2004;233:531–540. doi: 10.1148/radiol.2332031572. PubMed DOI
Bergers E, Bot JCJ, De Groot CJA, Polman CH, Nijeholt GJ L à, Castelijns JA, et al. Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology. 2002;59:1766–1771. doi: 10.1212/01.WNL.0000036566.00866.26. PubMed DOI
Sombekke MH, Lukas C, Bart ; J, Crusius A, Tejedor D, Killestein J, et al. HLA-DRB1*1501 and Spinal Cord Magnetic Resonance Imaging Lesions in Multiple Sclerosis. Arch Neurol. 2009;66(12):1531–6. PubMed
Ganesvaran G, Greer JM, Pender MP. Prominent brainstem and cerebellar involvement in multiple sclerosis with psoriasis. Mult Scler. 2009;15:763–766. doi: 10.1177/1352458509103612. PubMed DOI
Greer JM, Csurhes PA, Muller DM, Pender MP. Correlation of blood T cell and antibody reactivity to myelin proteins with HLA type and lesion localization in multiple sclerosis. J Immunol. 2008;180(9):6402–10. PubMed
Biberacher V, Boucard CC, Schmidt P, Engl C, Buck D, Berthele A, et al. Atrophy and structural variability of the upper cervical cord in early multiple sclerosis. Mult Scler. 2015;21:875–884. doi: 10.1177/1352458514546514. PubMed DOI
Miller DH. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain. 2002. 10.1093/brain/awf177. PubMed
Azevedo CJ, Overton E, Khadka S, Buckley J, Liu S, Sampat M, et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e102. PubMed PMC
Henry RG, Shieh M, Okuda DT, Evangelista A, Gorno-Tempini ML, Pelletier D. Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry. 2008;79:1236–1244. doi: 10.1136/jnnp.2007.134825. PubMed DOI PMC
Dekker I, Schoonheim MM, Venkatraghavan V, Eijlers AJC, Brouwer I, Bron EE, et al. The sequence of structural, functional and cognitive changes in multiple sclerosis. NeuroImage Clin. 2021;29:102550. doi: 10.1016/j.nicl.2020.102550. PubMed DOI PMC
Wagenknecht N, Becker B, Scheld M, Beyer C, Clarner T, Hochstrasser T, et al. Thalamus degeneration and inflammation in two distinct multiple sclerosis animal models. J Mol Neurosci. 2016;60(1):102–114. doi: 10.1007/s12031-016-0790-z. PubMed DOI
Tsagkas C, Parmar K, Pezold S, Barro C, Chakravarty MM, Gaetano L, et al. Classification of multiple sclerosis based on patterns of CNS regional atrophy covariance. Hum Brain Mapp. 2021;42(8):2399–2415. doi: 10.1002/hbm.25375. PubMed DOI PMC
Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. 2018;83(2):210–222. doi: 10.1002/ana.25145. PubMed DOI PMC
Magon S, Tsagkas C, Gaetano L, Patel R, Naegelin Y, Amann M, et al. Volume loss in the deep gray matter and thalamic subnuclei: a longitudinal study on disability progression in multiple sclerosis. J Neurol. 2020;267(5):1536–1546. doi: 10.1007/s00415-020-09740-4. PubMed DOI
Combès B, Kerbrat A, Ferré JC, Callot V, Maranzano J, Badji A, et al. Focal and diffuse cervical spinal cord damage in patients with early relapsing–remitting MS: a multicentre magnetisation transfer ratio study. Mult Scler. 2019;25(8):1113–23. PubMed
Oh J, Saidha S, Chen M, Smith SA, Prince J, Jones C, et al. Spinal cord quantitative MRI discriminates between disability levels in multiple sclerosis. Neurology. 2013;80(6):540-7. PubMed PMC
Von Meyenburg J, Wilm BJ, Weck A, Petersen J, Gallus E, Mathys J, et al. Spinal cord diffusion-tensor imaging and motor-evoked potentials in multiple sclerosis patients: microstructural and functional asymmetry. Radiology. 2013;267:869–879. doi: 10.1148/radiol.13112776. PubMed DOI
Eden D. Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain. 2019;142(3):633–646. doi: 10.1093/brain/awy352. PubMed DOI PMC