Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
00023761
MH CZ - DRO, Institute of Endocrinology - EÚ
NU2IJ-01-00040
Czech Health Research Council, the Czech Ministry of Health (MH)
PubMed
35887338
PubMed Central
PMC9322133
DOI
10.3390/ijms23147989
PII: ijms23147989
Knihovny.cz E-zdroje
- Klíčová slova
- CNS disorder, endocrine disruption, gynecology, menopause, miscarriage, neurosteroid, pregnancy, preterm birth, progestagen, progesterone, progestin, progestogen,
- MeSH
- hormony MeSH
- lidé MeSH
- novorozenec MeSH
- progesteron * farmakologie fyziologie MeSH
- progestiny * farmakologie terapeutické užití MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- hormony MeSH
- progesteron * MeSH
- progestiny * MeSH
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Zobrazit více v PubMed
Henderson V.W. Progesterone and human cognition. Climacteric J. Int. Menopause Soc. 2018;21:333–340. doi: 10.1080/13697137.2018.1476484. PubMed DOI PMC
Sundstrom-Poromaa I., Comasco E., Sumner R., Luders E. Progesterone—Friend or foe? Front. Neuroendocrinol. 2020;59:100856. doi: 10.1016/j.yfrne.2020.100856. PubMed DOI
Zhang Y., Nadeau M., Faucher F., Lescelleur O., Biron S., Daris M., Rheaume C., Luu-The V., Tchernof A. Progesterone metabolism in adipose cells. Mol. Cell. Endocrinol. 2009;298:76–83. doi: 10.1016/j.mce.2008.09.034. PubMed DOI
Rossato M., Nogara A., Merico M., Ferlin A., Foresta C. Identification of functional binding sites for progesterone in rat Leydig cell plasma membrane. Steroids. 1999;64:168–175. doi: 10.1016/S0039-128X(98)00104-4. PubMed DOI
Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur. J. Endocrinol. 2001;145:669–679. doi: 10.1530/eje.0.1450669. PubMed DOI
Kuhl H. Pharmacology of progestogens. J. Für Reprod. Und Endokrinol.-J. Reprod. Med. Endocrinol. 2011;8:157–177.
Leonhardt S.A., Boonyaratanakornkit V., Edwards D.P. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 2003;68:761–770. doi: 10.1016/S0039-128X(03)00129-6. PubMed DOI
Varticovski L., Stavreva D.A., McGowan A., Raziuddin R., Hager G.L. Endocrine disruptors of sex hormone activities. Mol. Cell. Endocrinol. 2022;539:111415. doi: 10.1016/j.mce.2021.111415. PubMed DOI PMC
Condon J.C., Hardy D.B., Kovaric K., Mendelson C.R. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol. Endocrinol. 2006;20:764–775. doi: 10.1210/me.2005-0242. PubMed DOI
Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 2015;94((Suppl. 161)):8–16. doi: 10.1111/aogs.12771. PubMed DOI
Singh M., Su C., Ng S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci. 2013;7:159. doi: 10.3389/fnins.2013.00159. PubMed DOI PMC
Gellersen B., Fernandes M.S., Brosens J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update. 2009;15:119–138. doi: 10.1093/humupd/dmn044. PubMed DOI
Luconi M., Francavilla F., Porazzi I., Macerola B., Forti G., Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 2004;69:553–559. doi: 10.1016/j.steroids.2004.05.013. PubMed DOI
Blackmore P.F., Neulen J., Lattanzio F., Beebe S.J. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J. Biol. Chem. 1991;266:18655–18659. doi: 10.1016/S0021-9258(18)55113-9. PubMed DOI
Kirkman-Brown J.C., Bray C., Stewart P.M., Barratt C.L., Publicover S.J. Biphasic elevation of [Ca(2+)](i) in individual human spermatozoa exposed to progesterone. Dev. Biol. 2000;222:326–335. doi: 10.1006/dbio.2000.9729. PubMed DOI
El-Hefnawy T., Huhtaniemi I. Progesterone can participate in down-regulation of the luteinizing hormone receptor gene expression and function in cultured murine Leydig cells. Mol. Cell. Endocrinol. 1998;137:127–138. doi: 10.1016/S0303-7207(98)00002-1. PubMed DOI
Huhtaniemi I.T., Aittomaki K. Mutations of follicle-stimulating hormone and its receptor: Effects on gonadal function. Eur. J. Endocrinol. 1998;138:473–481. doi: 10.1530/eje.0.1380473. PubMed DOI
Zhu Y., Rice C.D., Pang Y., Pace M., Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA. 2003;100:2231–2236. doi: 10.1073/pnas.0336132100. PubMed DOI PMC
Thomas P., Zhu Y., Pace M. Progestin membrane receptors involved in the meiotic maturation of teleost oocytes: A review with some new findings. Steroids. 2002;67:511–517. doi: 10.1016/S0039-128X(01)00180-5. PubMed DOI
Maller J.L. The elusive progesterone receptor in Xenopus oocytes. Proc. Natl. Acad. Sci. USA. 2001;98:8–10. doi: 10.1073/pnas.98.1.8. PubMed DOI PMC
Bagowski C.P., Myers J.W., Ferrell J.E., Jr. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem. 2001;276:37708–37714. doi: 10.1074/jbc.M104582200. PubMed DOI
Guzman L., Romo X., Grandy R., Soto X., Montecino M., Hinrichs M., Olate J. A Gbetagamma stimulated adenylyl cyclase is involved in Xenopus laevis oocyte maturation. J. Cell. Physiol. 2005;202:223–229. doi: 10.1002/jcp.20102. PubMed DOI
Evaul K., Jamnongjit M., Bhagavath B., Hammes S.R. Testosterone and progesterone rapidly attenuate plasma membrane Gbetagamma-mediated signaling in Xenopus laevis oocytes by signaling through classical steroid receptors. Mol. Endocrinol. 2007;21:186–196. doi: 10.1210/me.2006-0301. PubMed DOI
Ben-Yehoshua L.J., Lewellyn A.L., Thomas P., Maller J.L. The role of Xenopus membrane progesterone receptor beta in mediating the effect of progesterone on oocyte maturation. Mol. Endocrinol. 2007;21:664–673. doi: 10.1210/me.2006-0256. PubMed DOI
Wasserman W.J., Pinto L.H., O’Connor C.M., Smith L.D. Progesterone induces a rapid increase in [Ca2+]in of Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA. 1980;77:1534–1536. doi: 10.1073/pnas.77.3.1534. PubMed DOI PMC
Dosiou C., Hamilton A.E., Pang Y., Overgaard M.T., Tulac S., Dong J., Thomas P., Giudice L.C. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J. Endocrinol. 2008;196:67–77. doi: 10.1677/JOE-07-0317. PubMed DOI
Ehring G.R., Kerschbaum H.H., Eder C., Neben A.L., Fanger C.M., Khoury R.M., Negulescu P.A., Cahalan M.D. A nongenomic mechanism for progesterone-mediated immunosuppression: Inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J. Exp. Med. 1998;188:1593–1602. doi: 10.1084/jem.188.9.1593. PubMed DOI PMC
Bar J., Lahav J., Hod M., Ben-Rafael Z., Weinberger I., Brosens J. Regulation of platelet aggregation and adenosine triphosphate release in vitro by 17beta-estradiol and medroxyprogesterone acetate in postmenopausal women. Thromb. Haemost. 2000;84:695–700. PubMed
Blackmore P.F. Extragenomic actions of progesterone in human sperm and progesterone metabolites in human platelets. Steroids. 1999;64:149–156. doi: 10.1016/S0039-128X(98)00109-3. PubMed DOI
Blackmore P.F. Progesterone metabolites rapidly stimulate calcium influx in human platelets by a src-dependent pathway. Steroids. 2008;73:738–750. doi: 10.1016/j.steroids.2008.02.008. PubMed DOI
Peluso J.J., Pappalardo A. Progesterone regulates granulosa cell viability through a protein kinase G-dependent mechanism that may involve 14-3-3sigma. Biol. Reprod. 2004;71:1870–1878. doi: 10.1095/biolreprod.104.031716. PubMed DOI
Peluso J.J., Fernandez G., Pappalardo A., White B.A. Characterization of a putative membrane receptor for progesterone in rat granulosa cells. Biol. Reprod. 2001;65:94–101. doi: 10.1095/biolreprod65.1.94. PubMed DOI
Barbagallo M., Dominguez L.J., Licata G., Shan J., Bing L., Karpinski E., Pang P.K., Resnick L.M. Vascular Effects of Progesterone: Role of Cellular Calcium Regulation. Hypertension. 2001;37:142–147. doi: 10.1161/01.HYP.37.1.142. PubMed DOI
Fu X.D., Giretti M.S., Baldacci C., Garibaldi S., Flamini M., Sanchez A.M., Gadducci A., Genazzani A.R., Simoncini T. Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton. PLoS ONE. 2008;3:e2790. doi: 10.1371/journal.pone.0002790. PubMed DOI PMC
Fu X.D., Flamini M., Sanchez A.M., Goglia L., Giretti M.S., Genazzani A.R., Simoncini T. Progestogens regulate endothelial actin cytoskeleton and cell movement via the actin-binding protein moesin. Mol. Hum. Reprod. 2008;14:225–234. doi: 10.1093/molehr/gan010. PubMed DOI
Bielefeldt K., Waite L., Abboud F.M., Conklin J.L. Nongenomic effects of progesterone on human intestinal smooth muscle cells. Pt 1Am. J. Physiol. 1996;271:G370–G376. doi: 10.1152/ajpgi.1996.271.2.G370. PubMed DOI
Hsu S.P., Chen T.H., Chou Y.P., Chen L.C., Kuo C.T., Lee T.S., Lin J.J., Chang N.C., Lee W.S. Extra-nuclear activation of progesterone receptor in regulating arterial smooth muscle cell migration. Atherosclerosis. 2011;217:83–89. doi: 10.1016/j.atherosclerosis.2011.02.051. PubMed DOI
Verikouki C.H., Hatzoglou C.H., Gourgoulianis K.I., Molyvdas P.A., Kallitsaris A., Messinis I.E. Rapid effect of progesterone on transepithelial resistance of human fetal membranes: Evidence for non-genomic action. Clin. Exp. Pharmacol. Physiol. 2008;35:174–179. doi: 10.1111/j.1440-1681.2007.04803.x. PubMed DOI
Saitoh M., Ohmichi M., Takahashi K., Kawagoe J., Ohta T., Doshida M., Takahashi T., Igarashi H., Mori-Abe A., Du B., et al. Medroxyprogesterone acetate induces cell proliferation through up-regulation of cyclin D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade in human breast cancer cells. Endocrinology. 2005;146:4917–4925. doi: 10.1210/en.2004-1535. PubMed DOI
Kaur P., Jodhka P.K., Underwood W.A., Bowles C.A., de Fiebre N.C., de Fiebre C.M., Singh M. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. J. Neurosci. Res. 2007;85:2441–2449. doi: 10.1002/jnr.21370. PubMed DOI PMC
Nilsen J., Brinton R.D. Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling. Proc. Natl. Acad. Sci. USA. 2003;100:10506–10511. doi: 10.1073/pnas.1334098100. PubMed DOI PMC
Cai W., Zhu Y., Furuya K., Li Z., Sokabe M., Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology. 2008;55:127–138. doi: 10.1016/j.neuropharm.2008.04.023. PubMed DOI
Liu L., Wang J., Zhao L., Nilsen J., McClure K., Wong K., Brinton R.D. Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology. 2009;150:3186–3196. doi: 10.1210/en.2008-1447. PubMed DOI PMC
Su C., Cunningham R.L., Rybalchenko N., Singh M. Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology. 2012;153:4389–4400. doi: 10.1210/en.2011-2177. PubMed DOI PMC
Koulen P., Madry C., Duncan R.S., Hwang J.Y., Nixon E., McClung N., Gregg E.V., Singh M. Progesterone potentiates IP(3)-mediated calcium signaling through Akt/PKB. Cell. Physiol. Biochem. 2008;21:161–172. doi: 10.1159/000113758. PubMed DOI
Sleiter N., Pang Y., Park C., Horton T.H., Dong J., Thomas P., Levine J.E. Progesterone receptor A (PRA) and PRB-independent effects of progesterone on gonadotropin-releasing hormone release. Endocrinology. 2009;150:3833–3844. doi: 10.1210/en.2008-0774. PubMed DOI PMC
Frye C.A., Sumida K., Lydon J.P., O’Malley B.W., Pfaff D.W. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis. Psychopharmacology. 2006;185:423–432. doi: 10.1007/s00213-005-0300-4. PubMed DOI
Anderson G.D., Odegard P.S. Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv. Chronic Kidney Dis. 2004;11:357–360. doi: 10.1053/j.ackd.2004.07.001. PubMed DOI
Kristensen S.G., Mamsen L.S., Jeppesen J.V., Botkjaer J.A., Pors S.E., Borgbo T., Ernst E., Macklon K.T., Andersen C.Y. Hallmarks of Human Small Antral Follicle Development: Implications for Regulation of Ovarian Steroidogenesis and Selection of the Dominant Follicle. Front. Endocrinol. 2017;8:376. doi: 10.3389/fendo.2017.00376. PubMed DOI PMC
Baerwald A.R., Adams G.P., Pierson R.A. Ovarian antral folliculogenesis during the human menstrual cycle: A review. Hum. Reprod. Update. 2012;18:73–91. doi: 10.1093/humupd/dmr039. PubMed DOI
Sykes L., Bennett P.R. Efficacy of progesterone for prevention of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018;52:126–136. doi: 10.1016/j.bpobgyn.2018.08.006. PubMed DOI
Frost P., Gomez E.C., Weinstein G.D., Lamas J., Hsia S.L. Metabolism of progesterone-4-14C in vitro in human skin and vaginal mucosa. Biochemistry. 1969;8:948–952. doi: 10.1021/bi00831a027. PubMed DOI
Kondo D., Yabe R., Kurihara T., Saegusa H., Zong S., Tanabe T. Progesterone receptor antagonist is effective in relieving neuropathic pain. Eur. J. Pharmcol. 2006;541:44–48. doi: 10.1016/j.ejphar.2006.05.010. PubMed DOI
Priyanto B., Rosyidi R.M., Islam A.A., Turchan A., Pintaningrum Y. The effect of progesteron for expression delta (delta) opioid receptor spinal cord through peripheral nerve injury. Ann. Med. Surg. 2022;75:103376. doi: 10.1016/j.amsu.2022.103376. PubMed DOI PMC
Petersen S.L., LaFlamme K.D. Progesterone increases levels of mu-opioid receptor mRNA in the preoptic area and arcuate nucleus of ovariectomized, estradiol-treated female rats. Brain Res. Mol. Brain Res. 1997;52:32–37. doi: 10.1016/S0169-328X(97)00194-0. PubMed DOI
Selye H. Anesthetic effect of steroid hormones. Proc. Soc. Exp. Biol. Med. 1941;46:116–121. doi: 10.3181/00379727-46-11907. DOI
Selye H. Acquired adaptation to the anesthetic effect of steroid hormones. J. Immunol. 1941;41:259–268.
Kuba T., Wu H.B., Nazarian A., Festa E.D., Barr G.A., Jenab S., Inturrisi C.E., Quinones-Jenab V. Estradiol and progesterone differentially regulate formalin-induced nociception in ovariectomized female rats. Horm. Behav. 2006;49:441–449. doi: 10.1016/j.yhbeh.2005.09.007. PubMed DOI
Vincent K., Stagg C.J., Warnaby C.E., Moore J., Kennedy S., Tracey I. “Luteal Analgesia”: Progesterone Dissociates Pain Intensity and Unpleasantness by Influencing Emotion Regulation Networks. Front. Endocrinol. 2018;9:413. doi: 10.3389/fendo.2018.00413. PubMed DOI PMC
Wiesenfeld-Hallin Z. Sex differences in pain perception. Gend. Med. 2005;2:137–145. doi: 10.1016/S1550-8579(05)80042-7. PubMed DOI
Fillingim R.B., Ness T.J. Sex-related hormonal influences on pain and analgesic responses. Neurosci. Biobehav. Rev. 2000;24:485–501. doi: 10.1016/S0149-7634(00)00017-8. PubMed DOI
Giamberardino M.A., Berkley K.J., Iezzi S., de Bigontina P., Vecchiet L. Pain threshold variations in somatic wall tissues as a function of menstrual cycle, segmental site and tissue depth in non-dysmenorrheic women, dysmenorrheic women and men. Pain. 1997;71:187–197. doi: 10.1016/S0304-3959(97)03362-9. PubMed DOI
Hapidou E.G., De Catanzaro D. Sensitivity to cold pressor pain in dysmenorrheic and non-dysmenorrheic women as a function of menstrual cycle phase. Pain. 1988;34:277–283. doi: 10.1016/0304-3959(88)90123-6. PubMed DOI
Frolich M.A., Banks C., Warren W., Robbins M., Ness T. The Association Between Progesterone, Estradiol, and Oxytocin and Heat Pain Measures in Pregnancy: An Observational Cohort Study. Anesth. Analg. 2016;123:396–401. doi: 10.1213/ANE.0000000000001259. PubMed DOI
Lee J., Lee J., Ko S. The relationship between serum progesterone concentration and anesthetic and analgesic requirements: A prospective observational study of parturients undergoing cesarean delivery. Anesth. Analg. 2014;119:901–905. doi: 10.1213/ANE.0000000000000366. PubMed DOI
Kashanian M., Dadkhah F., Zarei S., Sheikhansari N., Javanmanesh F. Evaluation the relationship between serum progesterone level and pain perception after cesarean delivery. J. Matern.-Fetal Neonatal Med. 2019;32:3548–3551. doi: 10.1080/14767058.2018.1466274. PubMed DOI
Gyermek L., Soyka L.F. Steroid anesthetics. Anesthesiology. 1975;42:331–344. doi: 10.1097/00000542-197503000-00017. PubMed DOI
Lawrence D.K., Gill E.W. Structurally specific effects of some steroid anesthetics on spin-labeled liposomes. Mol. Pharmcol. 1975;11:280–286. PubMed
Majewska M.D., Harrison N.L., Schwartz R.D., Barker J.L., Paul S.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–1007. doi: 10.1126/science.2422758. PubMed DOI
Demirgoren S., Majewska M.D., Spivak C.E., London E.D. Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience. 1991;45:127–135. doi: 10.1016/0306-4522(91)90109-2. PubMed DOI
Majewska M.D., Demirgoren S., Spivak C.E., London E.D. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res. 1990;526:143–146. doi: 10.1016/0006-8993(90)90261-9. PubMed DOI
Paul S.M., Purdy R.H. Neuroactive steroids. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1992;6:2311–2322. doi: 10.1096/fasebj.6.6.1347506. PubMed DOI
Hauser C.A., Chesnoy-Marchais D., Robel P., Baulieu E.E. Modulation of recombinant alpha 6 beta 2 gamma 2 GABAA receptors by neuroactive steroids. Eur. J. Pharmcol. 1995;289:249–257. doi: 10.1016/0922-4106(95)90101-9. PubMed DOI
Backstrom T., Das R., Bixo M. Positive GABAA receptor modulating steroids and their antagonists: Implications for clinical treatments. J. Neuroendocrinol. 2022;34:e13013. doi: 10.1111/jne.13013. PubMed DOI
Backstrom T., Bixo M., Stromberg J. GABAA Receptor-Modulating Steroids in Relation to Women’s Behavioral Health. Curr. Psychiatry Rep. 2015;17:92. doi: 10.1007/s11920-015-0627-4. PubMed DOI
Wu F.S., Gibbs T.T., Farb D.H. Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmcol. 1990;37:597–602. PubMed
Weaver C.E., Land M.B., Purdy R.H., Richards K.G., Gibbs T.T., Farb D.H. Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca(2+) accumulation and cell death. J. Pharmcol. Exp. Ther. 2000;293:747–754. PubMed
Park-Chung M., Wu F.S., Farb D.H. 3 alpha-Hydroxy-5 beta-pregnan-20-one sulfate: A negative modulator of the NMDA-induced current in cultured neurons. Mol. Pharmcol. 1994;46:146–150. PubMed
Valera S., Ballivet M., Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 1992;89:9949–9953. doi: 10.1073/pnas.89.20.9949. PubMed DOI PMC
Grazzini E., Guillon G., Mouillac B., Zingg H.H. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392:509–512. doi: 10.1038/33176. PubMed DOI
Schreiber V. Neuropeptides and neurosteroids (author’s transl) Cas. Lek. Ceskych. 1980;119:656–659. PubMed
Corpechot C., Robel P., Axelson M., Sjovall J., Baulieu E.E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA. 1981;78:4704–4707. doi: 10.1073/pnas.78.8.4704. PubMed DOI PMC
Brinton R.D., Thompson R.F., Foy M.R., Baudry M., Wang J., Finch C.E., Morgan T.E., Pike C.J., Mack W.J., Stanczyk F.Z., et al. Progesterone receptors: Form and function in brain. Front. Neuroendocrinol. 2008;29:313–339. doi: 10.1016/j.yfrne.2008.02.001. PubMed DOI PMC
Schumacher M., Mattern C., Ghoumari A., Oudinet J.P., Liere P., Labombarda F., Sitruk-Ware R., De Nicola A.F., Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 2014;113:6–39. doi: 10.1016/j.pneurobio.2013.09.004. PubMed DOI
Payne A.H., Hales D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004;25:947–970. doi: 10.1210/er.2003-0030. PubMed DOI
Schiffer L., Barnard L., Baranowski E.S., Gilligan L.C., Taylor A.E., Arlt W., Shackleton C.H.L., Storbeck K.H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid Biochem. Mol. Biol. 2019;194:105439. doi: 10.1016/j.jsbmb.2019.105439. PubMed DOI PMC
Kancheva R., Hill M., Cibula D., Vcelakova H., Kancheva L., Vrbikova J., Fait T., Parizek A., Starka L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J. Endocrinol. 2007;195:67–78. doi: 10.1677/JOE-06-0192. PubMed DOI
Hill M., Cibula D., Havlikova H., Kancheva L., Fait T., Kancheva R., Parizek A., Starka L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007;105:166–175. doi: 10.1016/j.jsbmb.2006.10.010. PubMed DOI
Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI
Hill M., Popov P., Havlikova H., Kancheva L., Vrbikova J., Kancheva R., Pouzar V., Cerny I., Starka L. Altered profiles of serum neuroactive steroids in premenopausal women treated for alcohol addiction. Steroids. 2005;70:515–524. doi: 10.1016/j.steroids.2005.02.013. PubMed DOI
Bixo M., Andersson A., Winblad B., Purdy R.H., Backstrom T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–178. doi: 10.1016/S0006-8993(97)00455-1. PubMed DOI
Hill M., Parizek A., Cibula D., Kancheva R., Jirasek J.E., Jirkovska M., Velikova M., Kubatova J., Klimkova M., Paskova A., et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 2010;122:114–132. doi: 10.1016/j.jsbmb.2010.05.007. PubMed DOI
Hampl R., Bicikova M., Sosvorova L. Hormones and the blood-brain barrier. Horm. Mol. Biol. Clin. Investig. 2015;21:159–164. doi: 10.1515/hmbci-2014-0042. PubMed DOI
Purdy R.H., Morrow A.L., Moore P.H., Jr., Paul S.M. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl. Acad. Sci. USA. 1991;88:4553–4557. doi: 10.1073/pnas.88.10.4553. PubMed DOI PMC
Droogleever Fortuyn H.A., van Broekhoven F., Span P.N., Backstrom T., Zitman F.G., Verkes R.J. Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology. 2004;29:1341–1344. doi: 10.1016/j.psyneuen.2004.02.003. PubMed DOI
Wang M., Seippel L., Purdy R.H., Backstrom T. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: Study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J. Clin. Endocrinol. Metab. 1996;81:1076–1082. PubMed
Genazzani A.D., Luisi M., Malavasi B., Strucchi C., Luisi S., Casarosa E., Bernardi F., Genazzani A.R., Petraglia F. Pulsatile secretory characteristics of allopregnanolone, a neuroactive steroid, during the menstrual cycle and in amenorrheic subjects. Eur. J. Endocrinol. 2002;146:347–356. doi: 10.1530/eje.0.1460347. PubMed DOI
Brunton P.J., Russell J.A., Hirst J.J. Allopregnanolone in the brain: Protecting pregnancy and birth outcomes. Prog. Neurobiol. 2014;113:106–136. doi: 10.1016/j.pneurobio.2013.08.005. PubMed DOI
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Hill M., Parizek A., Kancheva R., Jirasek J.E. Reduced progesterone metabolites in human late pregnancy. Physiol. Res. 2011;60:225–241. doi: 10.33549/physiolres.932077. PubMed DOI
Hill M., Parizek A., Kancheva R., Duskova M., Velikova M., Kriz L., Klimkova M., Paskova A., Zizka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI
Wang M.D., Wahlstrom G., Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J. Steroid Biochem. Mol. Biol. 1997;62:299–306. doi: 10.1016/S0960-0760(97)00041-1. PubMed DOI
Yoshihara S., Morimoto H., Ohori M., Yamada Y., Abe T., Arisaka O. A neuroactive steroid, allotetrahydrocorticosterone inhibits sensory nerves activation in guinea-pig airways. Neurosci. Res. 2005;53:210–215. doi: 10.1016/j.neures.2005.06.017. PubMed DOI
Melcangi R.C., Panzica G., Garcia-Segura L.M. Neuroactive steroids: Focus on human brain. Neuroscience. 2011;191:1–5. doi: 10.1016/j.neuroscience.2011.06.024. PubMed DOI
Hashiguchi T., Kurogi K., Shimohira T., Teramoto T., Liu M.C., Suiko M., Sakakibara Y. Delta(4)-3-ketosteroids as a new class of substrates for the cytosolic sulfotransferases. Biochim. Biophys. Acta Gen. Subj. 2017;1861 Pt A:2883–2890. doi: 10.1016/j.bbagen.2017.08.005. PubMed DOI PMC
Rubin G.L., Harrold A.J., Mills J.A., Falany C.N., Coughtrie M.W. Regulation of sulphotransferase expression in the endometrium during the menstrual cycle, by oral contraceptives and during early pregnancy. Mol. Hum. Reprod. 1999;5:995–1002. doi: 10.1093/molehr/5.11.995. PubMed DOI
Lindsay J., Wang L.L., Li Y., Zhou S.F. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr. Drug Metab. 2008;9:99–105. PubMed
Brussaard A.B., Koksma J.J. Conditional regulation of neurosteroid sensitivity of GABAA receptors. Ann. N. Y. Acad. Sci. 2003;1007:29–36. doi: 10.1196/annals.1286.003. PubMed DOI
Barth C., Villringer A., Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015;9:37. doi: 10.3389/fnins.2015.00037. PubMed DOI PMC
Nichols D.E., Nichols C.D. Serotonin receptors. Chem. Rev. 2008;108:1614–1641. doi: 10.1021/cr078224o. PubMed DOI
Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802. PubMed DOI PMC
Bethea C.L., Lu N.Z., Gundlah C., Streicher J.M. Diverse actions of ovarian steroids in the serotonin neural system. Front. Neuroendocrinol. 2002;23:41–100. doi: 10.1006/frne.2001.0225. PubMed DOI
Brean A., Fredo H.L., Sollid S., Muller T., Sundstrom T., Eide P.K. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol. Scand. 2009;120:314–316. doi: 10.1111/j.1600-0404.2009.01250.x. PubMed DOI
Gundlah C., Lu N.Z., Bethea C.L. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology. 2002;160:271–282. doi: 10.1007/s00213-001-0959-0. PubMed DOI
Luine V.N., Rhodes J.C. Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology. 1983;36:235–241. doi: 10.1159/000123461. PubMed DOI
Benmansour S., Weaver R.S., Barton A.K., Adeniji O.S., Frazer A. Comparison of the effects of estradiol and progesterone on serotonergic function. Biol. Psychiatry. 2012;71:633–641. doi: 10.1016/j.biopsych.2011.11.023. PubMed DOI PMC
Perrotti L.I., Beck K.D., Luine V.N., Quinones V. Progesterone and cocaine administration affect serotonin in the medial prefrontal cortex of ovariectomized rats. Neurosci. Lett. 2000;291:155–158. doi: 10.1016/S0304-3940(00)01396-3. PubMed DOI
Fernandez-Ruiz J.J., Amor J.C., Ramos J.A. Time-dependent effects of estradiol and progesterone on the number of striatal dopaminergic D2-receptors. Brain Res. 1989;476:388–395. doi: 10.1016/0006-8993(89)91266-3. PubMed DOI
Lolier M., Wagner C.K. Sex differences in dopamine innervation and microglia are altered by synthetic progestin in neonatal medial prefrontal cortex. J. Neuroendocrinol. 2021;33:e12962. doi: 10.1111/jne.12962. PubMed DOI PMC
Druckmann R., Druckmann M.A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 2005;97:389–396. doi: 10.1016/j.jsbmb.2005.08.010. PubMed DOI
Szekeres-Bartho J., Barakonyi A., Par G., Polgar B., Palkovics T., Szereday L. Progesterone as an immunomodulatory molecule. Int. Immunopharmacol. 2001;1:1037–1048. doi: 10.1016/S1567-5769(01)00035-2. PubMed DOI
Szekeres-Bartho J., Reznikoff-Etievant M.F., Varga P., Pichon M.F., Varga Z., Chaouat G. Lymphocytic progesterone receptors in normal and pathological human pregnancy. J. Reprod. Immunol. 1989;16:239–247. doi: 10.1016/0165-0378(89)90053-3. PubMed DOI
Shah N.M., Lai P.F., Imami N., Johnson M.R. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front. Endocrinol. 2019;10:198. doi: 10.3389/fendo.2019.00198. PubMed DOI PMC
Szekeres-Bartho J., Polgar B., Kozma N., Miko E., Par G., Szereday L., Barakonyi A., Palkovics T., Papp O., Varga P. Progesterone-Dependent Immunomodulation. In: Markert U.R., editor. Immunology of Pregnancy. Karger; Jena, Germany: 2005. PubMed
Buyon J.P., Korchak H.M., Rutherford L.E., Ganguly M., Weissmann G. Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum. 1984;27:623–630. doi: 10.1002/art.1780270604. PubMed DOI
Nadkarni S., Smith J., Sferruzzi-Perri A.N., Ledwozyw A., Kishore M., Haas R., Mauro C., Williams D.J., Farsky S.H., Marelli-Berg F.M., et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc. Natl. Acad. Sci. USA. 2016;113:E8415–E8424. doi: 10.1073/pnas.1611944114. PubMed DOI PMC
Arck P., Hansen P.J., Mulac Jericevic B., Piccinni M.P., Szekeres-Bartho J. Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 2007;58:268–279. doi: 10.1111/j.1600-0897.2007.00512.x. PubMed DOI
Hall O.J., Nachbagauer R., Vermillion M.S., Fink A.L., Phuong V., Krammer F., Klein S.L. Progesterone-Based Contraceptives Reduce Adaptive Immune Responses and Protection against Sequential Influenza A Virus Infections. J. Virol. 2017;91:e02160-16. doi: 10.1128/JVI.02160-16. PubMed DOI PMC
Lincová D., Farghali H. Základní a Aplikovaná Farmakologie. druhé, doplnûné a pfiepracované vydání; GalénPublishing; Prague, Czech Republic: 2007.
Simon J.A. Micronized progesterone: Vaginal and oral uses. Clin. Obstet. Gynecol. 1995;38:902–914. doi: 10.1097/00003081-199538040-00024. PubMed DOI
Gomes L.G., Huang N., Agrawal V., Mendonca B.B., Bachega T.A., Miller W.L. Extraadrenal 21-hydroxylation by CYP2C19 and CYP3A4: Effect on 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2009;94:89–95. doi: 10.1210/jc.2008-1174. PubMed DOI PMC
Niwa T., Narita K., Okamoto A., Murayama N., Yamazaki H. Comparison of Steroid Hormone Hydroxylations by and Docking to Human Cytochromes P450 3A4 and 3A5. J. Pharm. Pharm. Sci. 2019;22:332–339. doi: 10.18433/jpps30558. PubMed DOI
Niwa T., Toyota M., Kawasaki H., Ishii R., Sasaki S. Comparison of the Stimulatory and Inhibitory Effects of Steroid Hormones and alpha-Naphthoflavone on Steroid Hormone Hydroxylation Catalyzed by Human Cytochrome P450 3A Subfamilies. Biol. Pharm. Bull. 2021;44:579–584. doi: 10.1248/bpb.b20-00987. PubMed DOI
Patil A.S., Swamy G.K., Murtha A.P., Heine R.P., Zheng X., Grotegut C.A. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model. Reprod. Sci. 2015;22:1577–1586. doi: 10.1177/1933719115589414. PubMed DOI PMC
Quinney S.K., Benjamin T., Zheng X., Patil A.S. Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism. Fetal Pediatr. Pathol. 2017;36:400–411. doi: 10.1080/15513815.2017.1354411. PubMed DOI PMC
Di Renzo G.C., Tosto V., Tsibizova V. Progesterone: History, facts, and artifacts. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:2–12. doi: 10.1016/j.bpobgyn.2020.07.012. PubMed DOI
Spark M.J., Willis J. Systematic review of progesterone use by midlife and menopausal women. Maturitas. 2012;72:192–202. doi: 10.1016/j.maturitas.2012.03.015. PubMed DOI
Wambach G., Higgins J.R., Kem D.C., Kaufmann W. Interaction of synthetic progestagens with renal mineralocorticoid receptors. Acta Endocrinol. 1979;92:560–567. doi: 10.1530/acta.0.0920560. PubMed DOI
Rylance P.B., Brincat M., Lafferty K., De Trafford J.C., Brincat S., Parsons V., Studd J.W. Natural progesterone and antihypertensive action. Br. Med. J. (Clin. Res. Ed.) 1985;290:13–14. doi: 10.1136/bmj.290.6461.13. PubMed DOI PMC
Piette P.C.M. The pharmacodynamics and safety of progesterone. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:13–29. doi: 10.1016/j.bpobgyn.2020.06.002. PubMed DOI
McCann M.F., Potter L.S. Progestin-only oral contraception: A comprehensive review. Contraception. 1994;50((Suppl. 1)):S1–S195. doi: 10.1016/0010-7824(94)90113-9. PubMed DOI
de Lignieres B., Dennerstein L., Backstrom T. Influence of route of administration on progesterone metabolism. Maturitas. 1995;21:251–257. doi: 10.1016/0378-5122(94)00882-8. PubMed DOI
Prior J.C. Progesterone for treatment of symptomatic menopausal women. Climacteric J. Int. Menopause Soc. 2018;21:358–365. doi: 10.1080/13697137.2018.1472567. PubMed DOI
Seifert-Klauss V., Prior J.C. Progesterone and bone: Actions promoting bone health in women. J. Osteoporos. 2010;2010:845180. doi: 10.4061/2010/845180. PubMed DOI PMC
Kuhl H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric J. Int. Menopause Soc. 2005;8((Suppl. 1)):3–63. doi: 10.1080/13697130500148875. PubMed DOI
Kuhl H. Comparative pharmacology of newer progestogens. Drugs. 1996;51:188–215. doi: 10.2165/00003495-199651020-00002. PubMed DOI
Schindler A.E., Campagnoli C., Druckmann R., Huber J., Pasqualini J.R., Schweppe K.W., Thijssen J.H. Classification and pharmacology of progestins. Maturitas. 2003;46((Suppl. 1)):S7–S16. doi: 10.1016/j.maturitas.2003.09.014. PubMed DOI
Sitruk-Ware R. Pharmacological profile of progestins. Maturitas. 2004;47:277–283. doi: 10.1016/j.maturitas.2004.01.001. PubMed DOI
Wiegratz I., Kuhl H. Progestogen therapies: Differences in clinical effects? Trends Endocrinol. Metab. TEM. 2004;15:277–285. doi: 10.1016/j.tem.2004.06.006. PubMed DOI
Africander D., Louw R., Hapgood J.P. Investigating the anti-mineralocorticoid properties of synthetic progestins used in hormone therapy. Biochem. Biophys. Res. Commun. 2013;433:305–310. doi: 10.1016/j.bbrc.2013.02.086. PubMed DOI
Winneker R.C., Bitran D., Zhang Z. The preclinical biology of a new potent and selective progestin: Trimegestone. Steroids. 2003;68:915–920. doi: 10.1016/S0039-128X(03)00142-9. PubMed DOI
Ruan X., Seeger H., Mueck A.O. The pharmacology of nomegestrol acetate. Maturitas. 2012;71:345–353. doi: 10.1016/j.maturitas.2012.01.007. PubMed DOI
Kumar N., Koide S.S., Tsong Y., Sundaram K. Nestorone: A progestin with a unique pharmacological profile. Steroids. 2000;65:629–636. doi: 10.1016/S0039-128X(00)00119-7. PubMed DOI
Schneider M.A., Davies M.C., Honour J.W. The timing of placental competence in pregnancy after oocyte donation. Fertil. Steril. 1993;59:1059–1064. doi: 10.1016/S0015-0282(16)55928-7. PubMed DOI
Di Renzo G.C., Giardina I., Clerici G., Brillo E., Gerli S. Progesterone in normal and pathological pregnancy. Horm. Mol. Biol. Clin. Investig. 2016;27:35–48. doi: 10.1515/hmbci-2016-0038. PubMed DOI
Zakar T., Mesiano S. How does progesterone relax the uterus in pregnancy? N. Engl. J. Med. 2011;364:972–973. doi: 10.1056/NEJMcibr1100071. PubMed DOI
Walch K.T., Huber J.C. Progesterone for recurrent miscarriage: Truth and deceptions. Best Pract. Res. Clin. Obstet. Gynaecol. 2008;22:375–389. doi: 10.1016/j.bpobgyn.2007.08.009. PubMed DOI
Csapo A.I., Pulkkinen M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence. Obstet. Gynecol. Surv. 1978;33:69–81. doi: 10.1097/00006254-197802000-00001. PubMed DOI
Peyron R., Aubeny E., Targosz V., Silvestre L., Renault M., Elkik F., Leclerc P., Ulmann A., Baulieu E.E. Early termination of pregnancy with mifepristone (RU 486) and the orally active prostaglandin misoprostol. N. Engl. J. Med. 1993;328:1509–1513. doi: 10.1056/NEJM199305273282101. PubMed DOI
Parizek A., Koucky M., Duskova M. Progesterone, inflammation and preterm labor. J. Steroid Biochem. Mol. Biol. 2014;139:159–165. doi: 10.1016/j.jsbmb.2013.02.008. PubMed DOI
Norman J.E. Progesterone and preterm birth. Int. J. Gynaecol. Obstet. 2020;150:24–30. doi: 10.1002/ijgo.13187. PubMed DOI PMC
Pieber D., Allport V.C., Hills F., Johnson M., Bennett P.R. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol. Hum. Reprod. 2001;7:875–879. doi: 10.1093/molehr/7.9.875. PubMed DOI
Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J. Soc. Gynecol. Investig. 2004;11:193–202. doi: 10.1016/j.jsgi.2003.12.004. PubMed DOI
Stjernholm-Vladic Y., Wang H., Stygar D., Ekman G., Sahlin L. Differential regulation of the progesterone receptor A and B in the human uterine cervix at parturition. Gynecol. Endocrinol. 2004;18:41–46. doi: 10.1080/09513590310001651777. PubMed DOI
Oh S.Y., Kim C.J., Park I., Romero R., Sohn Y.K., Moon K.C., Yoon B.H. Progesterone receptor isoform (A/B) ratio of human fetal membranes increases during term parturition. Pt 2Am. J. Obstet. Gynecol. 2005;193:1156–1160. doi: 10.1016/j.ajog.2005.05.071. PubMed DOI
Shynlova O., Tsui P., Dorogin A., Lye S.J. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J. Immunol. 2008;181:1470–1479. doi: 10.4049/jimmunol.181.2.1470. PubMed DOI
Rathod K., Purohit P., Kunde K.N.N. Progesterone in Assisted Reproduction: Classification, Pharmacology and its clinical coorelation: A Commentary. Women’s Health Gynecol. 2020;5:2. doi: 10.35862/2369-307X/21/90. PubMed DOI
Groenewoud E.R., Cantineau A.E., Kollen B.J., Macklon N.S., Cohlen B.J. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum. Reprod. Updat. 2013;19:458–470. doi: 10.1093/humupd/dmt030. PubMed DOI
Labarta E., Rodríguez C. Progesterone use in assisted reproductive technology. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:74–84. doi: 10.1016/j.bpobgyn.2020.05.005. PubMed DOI
Labarta E. Relationship between serum progesterone (P) levels and pregnancy outcome: Lessons from artificial cycles when using vaginal natural micronized progesterone. J. Assist. Reprod. Genet. 2020;37:2047–2048. doi: 10.1007/s10815-020-01862-y. PubMed DOI PMC
Haas D.M., Ramsey P.S. Progestogen for preventing miscarriage. Cochrane Database Syst. Rev. 2013:CD003511. doi: 10.1002/14651858.CD003511.pub3. PubMed DOI
Wahabi H.A., Fayed A.A., Esmaeil S.A., Bahkali K.H. Progestogen for treating threatened miscarriage. Cochrane Database Syst. Rev. 2018:CD005943. doi: 10.1002/14651858.CD005943.pub5. PubMed DOI PMC
Li L., Zhang Y., Tan H., Bai Y., Fang F., Faramand A., Chong W., Hai Y. Effect of progestogen for women with threatened miscarriage: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2020;127:1055–1063. doi: 10.1111/1471-0528.16261. PubMed DOI
Parveen R., Khakwani M., Tabassum S., Masood S. Oral versus Vaginal Micronized Progesterone for the treatment of threatened miscarriage. Pak. J. Med. Sci. 2021;37:628. doi: 10.12669/pjms.37.3.3700. PubMed DOI PMC
Coomarasamy A., Devall A.J., Brosens J.J., Quenby S., Stephenson M.D., Sierra S., Christiansen O.B., Small R., Brewin J., Roberts T.E. Micronized vaginal progesterone to prevent miscarriage: A critical evaluation of randomized evidence. Am. J. Obstet. Gynecol. 2020;223:167–176. doi: 10.1016/j.ajog.2019.12.006. PubMed DOI PMC
Devall A.J., Melo P., Coomarasamy A. Progesterone for the prevention of threatened miscarriage. Obstet. Gynaecol. Reprod. Med. 2022;2:44–47. doi: 10.1016/j.ogrm.2022.01.005. DOI
Yan Y., Chen Z., Yang Y., Zheng X., Zou M., Cheng G., Yuan Z. Efficacy of progesterone on threatened miscarriage: An updated meta-analysis of randomized trials. Arch. Gynecol. Obstet. 2021;303:27–36. doi: 10.1007/s00404-020-05808-8. PubMed DOI
Tan T.C., Ku C.W., Kwek L.K., Lee K.W., Zhang X., Allen J.C., Zhang V.R.-Y., Tan N.S. Novel approach using serum progesterone as a triage to guide management of patients with threatened miscarriage: A prospective cohort study. Sci. Rep. 2020;10:9153. doi: 10.1038/s41598-020-66155-x. PubMed DOI PMC
Ku C.W., Allen J.C., Jr., Lek S.M., Chia M.L., Tan N.S., Tan T.C. Serum progesterone distribution in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation: A prospective cohort study. BMC Pregnancy Childbirth. 2018;18:360. doi: 10.1186/s12884-018-2002-z. PubMed DOI PMC
National Institute for Health and Care Excellence . Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management. National Institute for Health and Care Excellence (NICE); London, UK: 2021. National Institute for Health and Care Excellence: Guidelines.
Jarde A., Lutsiv O., Beyene J., McDonald S.D. Vaginal progesterone, oral progesterone, 17-OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnancies: An updated systematic review and network meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019;126:556–567. doi: 10.1111/1471-0528.15566. PubMed DOI
Romero R., Conde-Agudelo A., Da Fonseca E., O’Brien J.M., Cetingoz E., Creasy G.W., Hassan S.S., Nicolaides K.H. Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: A meta-analysis of individual patient data. Am. J. Obstet. Gynecol. 2018;218:161–180. doi: 10.1016/j.ajog.2017.11.576. PubMed DOI PMC
Conde-Agudelo A., Romero R., Da Fonseca E., O’Brien J.M., Cetingoz E., Creasy G.W., Hassan S.S., Erez O., Pacora P., Nicolaides K.H. Vaginal progesterone is as effective as cervical cerclage to prevent preterm birth in women with a singleton gestation, previous spontaneous preterm birth, and a short cervix: Updated indirect comparison meta-analysis. Am. J. Obstet. Gynecol. 2018;219:10–25. doi: 10.1016/j.ajog.2018.03.028. PubMed DOI PMC
Boelig R.C., Della Corte L., Ashoush S., McKenna D., Saccone G., Rajaram S., Berghella V. Oral progesterone for the prevention of recurrent preterm birth: Systematic review and metaanalysis. Am. J. Obstet. Gynecol. MFM. 2019;1:50–62. doi: 10.1016/j.ajogmf.2019.03.001. PubMed DOI PMC
da Fonseca E.B., Damião R., Moreira D.A. Preterm birth prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:40–49. doi: 10.1016/j.bpobgyn.2020.09.003. PubMed DOI
Stewart L.A., Simmonds M., Duley L., Llewellyn A., Sharif S., Walker R.A., Beresford L., Wright K., Aboulghar M.M., Alfirevic Z. Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): Meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021;397:1183–1194. doi: 10.1016/S0140-6736(21)00217-8. PubMed DOI
Boelig R.C., Locci M., Saccone G., Gragnano E., Berghella V. Vaginal progesterone compared with intramuscular 17-alpha-hydroxyprogesterone caproate for prevention of recurrent preterm birth in singleton gestations: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2022;4:100658. doi: 10.1016/j.ajogmf.2022.100658. PubMed DOI
Boelig R.C., Schoen C.N., Frey H., Gimovsky A.C., Springel E., Backley S., Berghella V. Vaginal progesterone vs intramuscular 17-hydroxyprogesterone caproate for prevention of recurrent preterm birth: A randomized controlled trial. Am. J. Obstet. Gynecol. 2022;226:722.e1–722.e12. doi: 10.1016/j.ajog.2022.02.012. PubMed DOI
Gillen-Goldstein J., Roque H., Young B.K. Steroidogenesis patterns in common trisomies. J. Perinat. Med. 2002;30:132–136. doi: 10.1515/JPM.2002.016. PubMed DOI
Kratzer P.G., Golbus M.S., Monroe S.E., Finkelstein D.E., Taylor R.N. First-trimester aneuploidy screening using serum human chorionic gonadotropin (hCG), free ahCG, and progesterone. Prenat. Diagn. 1991;11:751–763. doi: 10.1002/pd.1970111003. PubMed DOI
Jewson M., Purohit P., Lumsden M.A. Progesterone and abnormal uterine bleeding/menstrual disorders. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:62–73. doi: 10.1016/j.bpobgyn.2020.05.004. PubMed DOI
Kadir R.A. Menorrhagia: Treatment options. Thromb. Res. 2009;123((Suppl. 2)):S21–S29. doi: 10.1016/S0049-3848(09)70005-2. PubMed DOI
Li Y., Adur M.K., Kannan A., Davila J., Zhao Y., Nowak R.A., Bagchi M.K., Bagchi I.C., Li Q. Progesterone Alleviates Endometriosis via Inhibition of Uterine Cell Proliferation, Inflammation and Angiogenesis in an Immunocompetent Mouse Model. PLoS ONE. 2016;11:e0165347. doi: 10.1371/journal.pone.0165347. PubMed DOI PMC
Casper R.F. Progestin-only pills may be a better first-line treatment for endometriosis than combined estrogen-progestin contraceptive pills. Fertil. Steril. 2017;107:533–536. doi: 10.1016/j.fertnstert.2017.01.003. PubMed DOI
Poulos C., Soliman A.M., Renz C.L., Posner J., Agarwal S.K. Patient Preferences for Endometriosis Pain Treatments in the United States. Value Health. 2019;22:728–738. doi: 10.1016/j.jval.2018.12.010. PubMed DOI
Chandra V., Kim J.J., Benbrook D.M., Dwivedi A., Rai R. Therapeutic options for management of endometrial hyperplasia. J. Gynecol. Oncol. 2016;27:e8. doi: 10.3802/jgo.2016.27.e8. PubMed DOI PMC
Kim J.J., Chapman-Davis E. Role of progesterone in endometrial cancer. Semin. Reprod. Med. 2010;28:81–90. doi: 10.1055/s-0029-1242998. PubMed DOI PMC
Gompel A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:95–107. doi: 10.1016/j.bpobgyn.2020.05.003. PubMed DOI
Master-Hunter T., Heiman D.L. Amenorrhea: Evaluation and treatment. Am. Fam. Physician. 2006;73:1374–1382. PubMed
McIver B., Romanski S.A., Nippoldt T.B. Mayo Clinic Proceedings. Elsevier; Amsterdam, The Netherlands: 1997. Evaluation and Management of Amenorrhea; pp. 1161–1169. PubMed
Kiningham R.B., Apgar B.S., Schwenk T.L. Evaluation of amenorrhea. Am. Fam. Physician. 1996;53:1185–1194. PubMed
Klein D.A., Paradise S.L., Reeder R.M. Amenorrhea: A Systematic Approach to Diagnosis and Management. Am. Fam. Physician. 2019;100:39–48. PubMed
Ford O., Lethaby A., Roberts H., Mol B.W. Progesterone for premenstrual syndrome. Cochrane Database Syst. Rev. 2012:CD003415. doi: 10.1002/14651858.CD003415.pub4. PubMed DOI
Itriyeva K. Premenstrual syndrome and premenstrual dysphoric disorder in adolescents. Curr. Probl. Pediatr. Adolesc. Health Care. 2022;52:101187. doi: 10.1016/j.cppeds.2022.101187. PubMed DOI
Burger H.G. Physiology and endocrinology of the menopause. Medicine. 2006;34:27–30. doi: 10.1383/medc.2006.34.1.27. DOI
Deliveliotou A.E. Skin, Mucosa and Menopause. Springer; Berlin/Heidelberg, Germany: 2015. What is menopause? An overview of physiological changes; pp. 3–14.
Hall J.E. Endocrinology of the Menopause. Endocrinol. Metab. Clin. N. Am. 2015;44:485–496. doi: 10.1016/j.ecl.2015.05.010. PubMed DOI PMC
Campagnoli C., Clavel-Chapelon F., Kaaks R., Peris C., Berrino F. Progestins and progesterone in hormone replacement therapy and the risk of breast cancer. J. Steroid Biochem. Mol. Biol. 2005;96:95–108. doi: 10.1016/j.jsbmb.2005.02.014. PubMed DOI PMC
Vigneswaran K., Hamoda H. Hormone replacement therapy—Current recommendations. Best Pract. Res. Clin. Obstet. Gynaecol. 2021;81:8–21. doi: 10.1016/j.bpobgyn.2021.12.001. PubMed DOI
Oettel M., Mukhopadhyay A.K. Progesterone: The forgotten hormone in men? Aging Male. 2004;7:236–257. doi: 10.1080/13685530400004199. PubMed DOI
Matthiesson K.L., McLachlan R.I. Male hormonal contraception: Concept proven, product in sight? Hum. Reprod. Update. 2006;12:463–482. doi: 10.1093/humupd/dml010. PubMed DOI
McLachlan R.I., Robertson D.M., Pruysers E., Ugoni A., Matsumoto A.M., Anawalt B.D., Bremner W.J., Meriggiola C. Relationship between serum gonadotropins and spermatogenic suppression in men undergoing steroidal contraceptive treatment. J. Clin. Endocrinol. Metab. 2004;89:142–149. doi: 10.1210/jc.2003-030616. PubMed DOI
Wang C., Cui Y.G., Wang X.H., Jia Y., Sinha Hikim A., Lue Y.H., Tong J.S., Qian L.X., Sha J.H., Zhou Z.M., et al. Transient scrotal hyperthermia and levonorgestrel enhance testosterone-induced spermatogenesis suppression in men through increased germ cell apoptosis. J. Clin. Endocrinol. Metab. 2007;92:3292–3304. doi: 10.1210/jc.2007-0367. PubMed DOI
Falsetti C., Baldi E., Krausz C., Casano R., Failli P., Forti G. Decreased responsiveness to progesterone of spermatozoa in oligozoospermic patients. J. Androl. 1993;14:17–22. PubMed
Oehninger S., Blackmore P., Morshedi M., Sueldo C., Acosta A.A., Alexander N.J. Defective calcium influx and acrosome reaction (spontaneous and progesterone-induced) in spermatozoa of infertile men with severe teratozoospermia. Fertil. Steril. 1994;61:349–354. doi: 10.1016/S0015-0282(16)56530-3. PubMed DOI
Abid S., Gokral J., Maitra A., Meherji P., Kadam S., Pires E., Modi D. Altered expression of progesterone receptors in testis of infertile men. Reprod. Biomed. Online. 2008;17:175–184. doi: 10.1016/S1472-6483(10)60192-7. PubMed DOI
Tesarik J., Mendoza C. Defective function of a nongenomic progesterone receptor as a sole sperm anomaly in infertile patients. Fertil. Steril. 1992;58:793–797. doi: 10.1016/S0015-0282(16)55329-1. PubMed DOI
Sitruk-Ware R., Bonsack B., Brinton R., Schumacher M., Kumar N., Lee J.Y., Castelli V., Corey S., Coats A., Sadanandan N., et al. Progress in progestin-based therapies for neurological disorders. Neurosci. Biobehav. Rev. 2021;122:38–65. doi: 10.1016/j.neubiorev.2020.12.007. PubMed DOI
Garay L., Gonzalez Deniselle M.C., Lima A., Roig P., De Nicola A.F. Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J. Steroid Biochem. Mol. Biol. 2007;107:228–237. doi: 10.1016/j.jsbmb.2007.03.040. PubMed DOI
Del Rio J.P., Alliende M.I., Molina N., Serrano F.G., Molina S., Vigil P. Steroid Hormones and Their Action in Women’s Brains: The Importance of Hormonal Balance. Front. Public Health. 2018;6:141. doi: 10.3389/fpubh.2018.00141. PubMed DOI PMC
Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocrinol. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI
Theis V., Theiss C. Progesterone Effects in the Nervous System. Anat. Rec. 2019;302:1276–1286. doi: 10.1002/ar.24121. PubMed DOI
Mancino D.N., Leicaj M.L., Lima A., Roig P., Guennoun R., Schumacher M., De Nicola A.F., Garay L.I. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J. Steroid Biochem. Mol. Biol. 2021;207:105820. doi: 10.1016/j.jsbmb.2021.105820. PubMed DOI
Koenig H.L., Schumacher M., Ferzaz B., Thi A.N., Ressouches A., Guennoun R., Jung-Testas I., Robel P., Akwa Y., Baulieu E.E. Progesterone synthesis and myelin formation by Schwann cells. Science. 1995;268:1500–1503. doi: 10.1126/science.7770777. PubMed DOI
Acs P., Kipp M., Norkute A., Johann S., Clarner T., Braun A., Berente Z., Komoly S., Beyer C. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia. 2009;57:807–814. doi: 10.1002/glia.20806. PubMed DOI
Garay L., Gonzalez Deniselle M.C., Gierman L., Meyer M., Lima A., Roig P., De Nicola A.F. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroimmunomodulation. 2008;15:76–83. doi: 10.1159/000135627. PubMed DOI
Sayeed I., Stein D.G. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog. Brain Res. 2009;175:219–237. PubMed
Ghoumari A.M., Ibanez C., El-Etr M., Leclerc P., Eychenne B., O’Malley B.W., Baulieu E.E., Schumacher M. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J. Neurochem. 2003;86:848–859. doi: 10.1046/j.1471-4159.2003.01881.x. PubMed DOI
Ghoumari A.M., Baulieu E.E., Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience. 2005;135:47–58. doi: 10.1016/j.neuroscience.2005.05.023. PubMed DOI
Kipp M., Amor S., Krauth R., Beyer C. Multiple sclerosis: Neuroprotective alliance of estrogen-progesterone and gender. Front. Neuroendocrinol. 2012;33:1–16. doi: 10.1016/j.yfrne.2012.01.001. PubMed DOI
Schumacher M., Guennoun R., Robert F., Carelli C., Gago N., Ghoumari A., Gonzalez Deniselle M.C., Gonzalez S.L., Ibanez C., Labombarda F., et al. Local synthesis and dual actions of progesterone in the nervous system: Neuroprotection and myelination. Growth Horm. IGF Res. 2004;14((Suppl. A)):S18–S33. doi: 10.1016/j.ghir.2004.03.007. PubMed DOI
Ibanez C., Shields S.A., El-Etr M., Baulieu E.E., Schumacher M., Franklin R.J. Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol. Appl. Neurobiol. 2004;30:80–89. doi: 10.1046/j.0305-1846.2003.00515.x. PubMed DOI
Labombarda F., Gonzalez S., Gonzalez Deniselle M.C., Garay L., Guennoun R., Schumacher M., De Nicola A.F. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J. Neurotrauma. 2006;23:181–192. doi: 10.1089/neu.2006.23.181. PubMed DOI
Hughes M.D. Multiple sclerosis and pregnancy. Neurol. Clin. 2004;22:757–769. doi: 10.1016/j.ncl.2004.06.004. PubMed DOI
Kipp M., Hochstrasser T., Schmitz C., Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci. Biobehav. Rev. 2016;67:125–136. doi: 10.1016/j.neubiorev.2015.11.016. PubMed DOI
Gargiulo-Monachelli G., Meyer M., Lara A., Garay L., Lima A., Roig P., De Nicola A.F., Gonzalez Deniselle M.C. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J. Steroid Biochem. Mol. Biol. 2019;192:105385. doi: 10.1016/j.jsbmb.2019.105385. PubMed DOI
Meyer M., Garay L.I., Kruse M.S., Lara A., Gargiulo-Monachelli G., Schumacher M., Guennoun R., Coirini H., De Nicola A.F., Gonzalez Deniselle M.C. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J. Steroid Biochem. Mol. Biol. 2017;174:201–216. doi: 10.1016/j.jsbmb.2017.09.015. PubMed DOI
Meyer M., Gonzalez Deniselle M.C., Garay L.I., Monachelli G.G., Lima A., Roig P., Guennoun R., Schumacher M., De Nicola A.F. Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration. Cell. Mol. Neurobiol. 2010;30:123–135. doi: 10.1007/s10571-009-9437-8. PubMed DOI PMC
Gonzalez Deniselle M.C., Carreras M.C., Garay L., Gargiulo-Monachelli G., Meyer M., Poderoso J.J., De Nicola A.F. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J. Neurochem. 2012;122:185–195. doi: 10.1111/j.1471-4159.2012.07753.x. PubMed DOI
Ludwig P.E., Patil A.A., Chamczuk A.J., Agrawal D.K. Hormonal therapy in traumatic spinal cord injury. Am. J. Transl. Res. 2017;9:3881–3895. PubMed PMC
De Nicola A.F., Gonzalez S.L., Labombarda F., Gonzalez Deniselle M.C., Garay L., Guennoun R., Schumacher M. Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J. Mol. Neurosci. MN. 2006;28:3–15. doi: 10.1385/JMN:28:1:3. PubMed DOI
Aminmansour B., Asnaashari A., Rezvani M., Ghaffarpasand F., Amin Noorian S.M., Saboori M., Abdollahzadeh P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J. Spinal Cord Med. 2016;39:272–280. doi: 10.1080/10790268.2015.1114224. PubMed DOI PMC
Frechou M., Zhang S., Liere P., Delespierre B., Soyed N., Pianos A., Schumacher M., Mattern C., Guennoun R. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology. 2015;97:394–403. doi: 10.1016/j.neuropharm.2015.06.002. PubMed DOI
Won S., Lee J.H., Wali B., Stein D.G., Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: Involvement of the VEGF-MMP pathway. J. Cereb. Blood Flow Metab. 2014;34:72–80. doi: 10.1038/jcbfm.2013.163. PubMed DOI PMC
Jiang C., Wang J., Li X., Liu C., Chen N., Hao Y. Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke. Inflamm. Res. 2009;58:619–624. doi: 10.1007/s00011-009-0032-8. PubMed DOI
Yousuf S., Atif F., Sayeed I., Wang J., Stein D.G. Neuroprotection by progesterone after transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Horm. Behav. 2016;84:29–40. doi: 10.1016/j.yhbeh.2016.06.002. PubMed DOI
Aggarwal R., Medhi B., Pathak A., Dhawan V., Chakrabarti A. Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice. J. Pharm. Pharmacol. 2008;60:731–737. doi: 10.1211/jpp.60.6.0008. PubMed DOI
Milani P., Mondelli M., Ginanneschi F., Mazzocchio R., Rossi A. Progesterone—New therapy in mild carpal tunnel syndrome? Study design of a randomized clinical trial for local therapy. J. Brachial Plex. Peripher. Nerve Inj. 2010;5:11. doi: 10.1186/1749-7221-5-11. PubMed DOI PMC
Ginanneschi F., Milani P., Filippou G., Mondelli M., Frediani B., Melcangi R.C., Rossi A. Evidences for antinociceptive effect of 17-alpha-hydroxyprogesterone caproate in carpal tunnel syndrome. J. Mol. Neurosci. MN. 2012;47:59–66. doi: 10.1007/s12031-011-9679-z. PubMed DOI
Bahrami M.H., Shahraeeni S., Raeissadat S.A. Comparison between the effects of progesterone versus corticosteroid local injections in mild and moderate carpal tunnel syndrome: A randomized clinical trial. BMC Musculoskelet. Disord. 2015;16:322. doi: 10.1186/s12891-015-0752-6. PubMed DOI PMC
Raeissadat S.A., Shahraeeni S., Sedighipour L., Vahdatpour B. Randomized controlled trial of local progesterone vs corticosteroid injection for carpal tunnel syndrome. Acta Neurol. Scand. 2017;136:365–371. doi: 10.1111/ane.12739. PubMed DOI
Fent K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. Environ. Int. 2015;84:115–130. doi: 10.1016/j.envint.2015.06.012. PubMed DOI
Zucchi S., Castiglioni S., Fent K. Progestins and antiprogestins affect gene expression in early development in zebrafish (Danio rerio) at environmental concentrations. Environ. Sci. Technol. 2012;46:5183–5192. doi: 10.1021/es300231y. PubMed DOI
Zucchi S., Castiglioni S., Fent K. Progesterone alters global transcription profiles at environmental concentrations in brain and ovary of female zebrafish (Danio rerio) Environ. Sci. Technol. 2013;47:12548–12556. doi: 10.1021/es403800y. PubMed DOI
Chang H., Wan Y., Wu S., Fan Z., Hu J. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: Comparison to estrogens. Water Res. 2011;45:732–740. doi: 10.1016/j.watres.2010.08.046. PubMed DOI
Sauer P., Stara A., Golovko O., Valentova O., Borik A., Grabic R., Kroupova H.K. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics. Water Res. 2018;137:64–71. doi: 10.1016/j.watres.2018.02.065. PubMed DOI
Liu S., Ying G.G., Zhang R.Q., Zhou L.J., Lai H.J., Chen Z.F. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. Environ. Pollut. 2012;170:190–201. doi: 10.1016/j.envpol.2012.07.016. PubMed DOI
Chatterjee S., Majumder C.B., Roy P. Development of a yeast-based assay to determine the (anti)androgenic contaminants from pulp and paper mill effluents in India. Environ. Toxicol. Pharmacol. 2007;24:114–121. doi: 10.1016/j.etap.2007.04.006. PubMed DOI
Brockmeier E.K., Jayasinghe B.S., Pine W.E., Wilkinson K.A., Denslow N.D. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure. PLoS ONE. 2014;9:e106644. PubMed PMC
Kroupova H.K., Trubiroha A., Lorenz C., Contardo-Jara V., Lutz I., Grabic R., Kocour M., Kloas W. The progestin levonorgestrel disrupts gonadotropin expression and sex steroid levels in pubertal roach (Rutilus rutilus) Aquat. Toxicol. 2014;154:154–162. doi: 10.1016/j.aquatox.2014.05.008. PubMed DOI
Kumar V., Johnson A.C., Trubiroha A., Tumova J., Ihara M., Grabic R., Kloas W., Tanaka H., Kroupova H.K. The challenge presented by progestins in ecotoxicological research: A critical review. Environ. Sci. Technol. 2015;49:2625–2638. doi: 10.1021/es5051343. PubMed DOI
Raghavan R., Romano M.E., Karagas M.R., Penna F.J. Pharmacologic and Environmental Endocrine Disruptors in the Pathogenesis of Hypospadias: A Review. Curr. Environ. Health Rep. 2018;5:499–511. doi: 10.1007/s40572-018-0214-z. PubMed DOI PMC
Liang Y.Q., Xu W., Liang X., Jing Z., Pan C.G., Tian F. The synthetic progestin norethindrone causes thyroid endocrine disruption in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;236:108819. doi: 10.1016/j.cbpc.2020.108819. PubMed DOI
Liang Y.Q., Huang G.Y., Liu S.S., Zhao J.L., Yang Y.Y., Chen X.W., Tian F., Jiang Y.X., Ying G.G. Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio) Aquat. Toxicol. 2015;160:172–179. doi: 10.1016/j.aquatox.2015.01.006. PubMed DOI
Liang Y.Q., Huang G.Y., Ying G.G., Liu S.S., Jiang Y.X., Liu S., Peng F.J. A time-course transcriptional kinetics of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes in zebrafish eleutheroembryos after exposure to norgestrel. Environ. Toxicol. Chem. 2015;34:112–119. doi: 10.1002/etc.2766. PubMed DOI
Runnalls T.J., Beresford N., Losty E., Scott A.P., Sumpter J.P. Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ. Sci. Technol. 2013;47:2077–2084. doi: 10.1021/es3048834. PubMed DOI
Zeilinger J., Steger-Hartmann T., Maser E., Goller S., Vonk R., Lange R. Effects of synthetic gestagens on fish reproduction. Environ. Toxicol. Chem. 2009;28:2663–2670. doi: 10.1897/08-485.1. PubMed DOI
Svensson J., Fick J., Brandt I., Brunstrom B. The synthetic progestin levonorgestrel is a potent androgen in the three-spined stickleback (Gasterosteus aculeatus) Environ. Sci. Technol. 2013;47:2043–2051. doi: 10.1021/es304305k. PubMed DOI
Liu S., Chen H., Xu X.R., Liu S.S., Sun K.F., Zhao J.L., Ying G.G. Steroids in marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioconcentration, and human dietary exposure. Sci. Total Environ. 2015;502:400–407. doi: 10.1016/j.scitotenv.2014.09.039. PubMed DOI
Sauer P., Tumova J., Steinbach C., Golovko O., Komen H., Maillot-Marechal E., Machova J., Grabic R., Ait-Aissa S., Kocour Kroupova H. Chronic simultaneous exposure of common carp (Cyprinus carpio) from embryonic to juvenile stage to drospirenone and gestodene at low ng/L level caused intersex. Ecotoxicol. Environ. Saf. 2020;188:109912. doi: 10.1016/j.ecoenv.2019.109912. PubMed DOI
Silva E., Rajapakse N., Kortenkamp A. Something from “nothing”—Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 2002;36:1751–1756. doi: 10.1021/es0101227. PubMed DOI
Prolactin and oxytocin: potential targets for migraine treatment