Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine

. 2022 Jul 20 ; 23 (14) : . [epub] 20220720

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35887338

Grantová podpora
00023761 MH CZ - DRO, Institute of Endocrinology - EÚ
NU2IJ-01-00040 Czech Health Research Council, the Czech Ministry of Health (MH)

Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.

Zobrazit více v PubMed

Henderson V.W. Progesterone and human cognition. Climacteric J. Int. Menopause Soc. 2018;21:333–340. doi: 10.1080/13697137.2018.1476484. PubMed DOI PMC

Sundstrom-Poromaa I., Comasco E., Sumner R., Luders E. Progesterone—Friend or foe? Front. Neuroendocrinol. 2020;59:100856. doi: 10.1016/j.yfrne.2020.100856. PubMed DOI

Zhang Y., Nadeau M., Faucher F., Lescelleur O., Biron S., Daris M., Rheaume C., Luu-The V., Tchernof A. Progesterone metabolism in adipose cells. Mol. Cell. Endocrinol. 2009;298:76–83. doi: 10.1016/j.mce.2008.09.034. PubMed DOI

Rossato M., Nogara A., Merico M., Ferlin A., Foresta C. Identification of functional binding sites for progesterone in rat Leydig cell plasma membrane. Steroids. 1999;64:168–175. doi: 10.1016/S0039-128X(98)00104-4. PubMed DOI

Stoffel-Wagner B. Neurosteroid metabolism in the human brain. Eur. J. Endocrinol. 2001;145:669–679. doi: 10.1530/eje.0.1450669. PubMed DOI

Kuhl H. Pharmacology of progestogens. J. Für Reprod. Und Endokrinol.-J. Reprod. Med. Endocrinol. 2011;8:157–177.

Leonhardt S.A., Boonyaratanakornkit V., Edwards D.P. Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids. 2003;68:761–770. doi: 10.1016/S0039-128X(03)00129-6. PubMed DOI

Varticovski L., Stavreva D.A., McGowan A., Raziuddin R., Hager G.L. Endocrine disruptors of sex hormone activities. Mol. Cell. Endocrinol. 2022;539:111415. doi: 10.1016/j.mce.2021.111415. PubMed DOI PMC

Condon J.C., Hardy D.B., Kovaric K., Mendelson C.R. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol. Endocrinol. 2006;20:764–775. doi: 10.1210/me.2005-0242. PubMed DOI

Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet. Gynecol. Scand. 2015;94((Suppl. 161)):8–16. doi: 10.1111/aogs.12771. PubMed DOI

Singh M., Su C., Ng S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci. 2013;7:159. doi: 10.3389/fnins.2013.00159. PubMed DOI PMC

Gellersen B., Fernandes M.S., Brosens J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update. 2009;15:119–138. doi: 10.1093/humupd/dmn044. PubMed DOI

Luconi M., Francavilla F., Porazzi I., Macerola B., Forti G., Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 2004;69:553–559. doi: 10.1016/j.steroids.2004.05.013. PubMed DOI

Blackmore P.F., Neulen J., Lattanzio F., Beebe S.J. Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J. Biol. Chem. 1991;266:18655–18659. doi: 10.1016/S0021-9258(18)55113-9. PubMed DOI

Kirkman-Brown J.C., Bray C., Stewart P.M., Barratt C.L., Publicover S.J. Biphasic elevation of [Ca(2+)](i) in individual human spermatozoa exposed to progesterone. Dev. Biol. 2000;222:326–335. doi: 10.1006/dbio.2000.9729. PubMed DOI

El-Hefnawy T., Huhtaniemi I. Progesterone can participate in down-regulation of the luteinizing hormone receptor gene expression and function in cultured murine Leydig cells. Mol. Cell. Endocrinol. 1998;137:127–138. doi: 10.1016/S0303-7207(98)00002-1. PubMed DOI

Huhtaniemi I.T., Aittomaki K. Mutations of follicle-stimulating hormone and its receptor: Effects on gonadal function. Eur. J. Endocrinol. 1998;138:473–481. doi: 10.1530/eje.0.1380473. PubMed DOI

Zhu Y., Rice C.D., Pang Y., Pace M., Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA. 2003;100:2231–2236. doi: 10.1073/pnas.0336132100. PubMed DOI PMC

Thomas P., Zhu Y., Pace M. Progestin membrane receptors involved in the meiotic maturation of teleost oocytes: A review with some new findings. Steroids. 2002;67:511–517. doi: 10.1016/S0039-128X(01)00180-5. PubMed DOI

Maller J.L. The elusive progesterone receptor in Xenopus oocytes. Proc. Natl. Acad. Sci. USA. 2001;98:8–10. doi: 10.1073/pnas.98.1.8. PubMed DOI PMC

Bagowski C.P., Myers J.W., Ferrell J.E., Jr. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem. 2001;276:37708–37714. doi: 10.1074/jbc.M104582200. PubMed DOI

Guzman L., Romo X., Grandy R., Soto X., Montecino M., Hinrichs M., Olate J. A Gbetagamma stimulated adenylyl cyclase is involved in Xenopus laevis oocyte maturation. J. Cell. Physiol. 2005;202:223–229. doi: 10.1002/jcp.20102. PubMed DOI

Evaul K., Jamnongjit M., Bhagavath B., Hammes S.R. Testosterone and progesterone rapidly attenuate plasma membrane Gbetagamma-mediated signaling in Xenopus laevis oocytes by signaling through classical steroid receptors. Mol. Endocrinol. 2007;21:186–196. doi: 10.1210/me.2006-0301. PubMed DOI

Ben-Yehoshua L.J., Lewellyn A.L., Thomas P., Maller J.L. The role of Xenopus membrane progesterone receptor beta in mediating the effect of progesterone on oocyte maturation. Mol. Endocrinol. 2007;21:664–673. doi: 10.1210/me.2006-0256. PubMed DOI

Wasserman W.J., Pinto L.H., O’Connor C.M., Smith L.D. Progesterone induces a rapid increase in [Ca2+]in of Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA. 1980;77:1534–1536. doi: 10.1073/pnas.77.3.1534. PubMed DOI PMC

Dosiou C., Hamilton A.E., Pang Y., Overgaard M.T., Tulac S., Dong J., Thomas P., Giudice L.C. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J. Endocrinol. 2008;196:67–77. doi: 10.1677/JOE-07-0317. PubMed DOI

Ehring G.R., Kerschbaum H.H., Eder C., Neben A.L., Fanger C.M., Khoury R.M., Negulescu P.A., Cahalan M.D. A nongenomic mechanism for progesterone-mediated immunosuppression: Inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes. J. Exp. Med. 1998;188:1593–1602. doi: 10.1084/jem.188.9.1593. PubMed DOI PMC

Bar J., Lahav J., Hod M., Ben-Rafael Z., Weinberger I., Brosens J. Regulation of platelet aggregation and adenosine triphosphate release in vitro by 17beta-estradiol and medroxyprogesterone acetate in postmenopausal women. Thromb. Haemost. 2000;84:695–700. PubMed

Blackmore P.F. Extragenomic actions of progesterone in human sperm and progesterone metabolites in human platelets. Steroids. 1999;64:149–156. doi: 10.1016/S0039-128X(98)00109-3. PubMed DOI

Blackmore P.F. Progesterone metabolites rapidly stimulate calcium influx in human platelets by a src-dependent pathway. Steroids. 2008;73:738–750. doi: 10.1016/j.steroids.2008.02.008. PubMed DOI

Peluso J.J., Pappalardo A. Progesterone regulates granulosa cell viability through a protein kinase G-dependent mechanism that may involve 14-3-3sigma. Biol. Reprod. 2004;71:1870–1878. doi: 10.1095/biolreprod.104.031716. PubMed DOI

Peluso J.J., Fernandez G., Pappalardo A., White B.A. Characterization of a putative membrane receptor for progesterone in rat granulosa cells. Biol. Reprod. 2001;65:94–101. doi: 10.1095/biolreprod65.1.94. PubMed DOI

Barbagallo M., Dominguez L.J., Licata G., Shan J., Bing L., Karpinski E., Pang P.K., Resnick L.M. Vascular Effects of Progesterone: Role of Cellular Calcium Regulation. Hypertension. 2001;37:142–147. doi: 10.1161/01.HYP.37.1.142. PubMed DOI

Fu X.D., Giretti M.S., Baldacci C., Garibaldi S., Flamini M., Sanchez A.M., Gadducci A., Genazzani A.R., Simoncini T. Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton. PLoS ONE. 2008;3:e2790. doi: 10.1371/journal.pone.0002790. PubMed DOI PMC

Fu X.D., Flamini M., Sanchez A.M., Goglia L., Giretti M.S., Genazzani A.R., Simoncini T. Progestogens regulate endothelial actin cytoskeleton and cell movement via the actin-binding protein moesin. Mol. Hum. Reprod. 2008;14:225–234. doi: 10.1093/molehr/gan010. PubMed DOI

Bielefeldt K., Waite L., Abboud F.M., Conklin J.L. Nongenomic effects of progesterone on human intestinal smooth muscle cells. Pt 1Am. J. Physiol. 1996;271:G370–G376. doi: 10.1152/ajpgi.1996.271.2.G370. PubMed DOI

Hsu S.P., Chen T.H., Chou Y.P., Chen L.C., Kuo C.T., Lee T.S., Lin J.J., Chang N.C., Lee W.S. Extra-nuclear activation of progesterone receptor in regulating arterial smooth muscle cell migration. Atherosclerosis. 2011;217:83–89. doi: 10.1016/j.atherosclerosis.2011.02.051. PubMed DOI

Verikouki C.H., Hatzoglou C.H., Gourgoulianis K.I., Molyvdas P.A., Kallitsaris A., Messinis I.E. Rapid effect of progesterone on transepithelial resistance of human fetal membranes: Evidence for non-genomic action. Clin. Exp. Pharmacol. Physiol. 2008;35:174–179. doi: 10.1111/j.1440-1681.2007.04803.x. PubMed DOI

Saitoh M., Ohmichi M., Takahashi K., Kawagoe J., Ohta T., Doshida M., Takahashi T., Igarashi H., Mori-Abe A., Du B., et al. Medroxyprogesterone acetate induces cell proliferation through up-regulation of cyclin D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade in human breast cancer cells. Endocrinology. 2005;146:4917–4925. doi: 10.1210/en.2004-1535. PubMed DOI

Kaur P., Jodhka P.K., Underwood W.A., Bowles C.A., de Fiebre N.C., de Fiebre C.M., Singh M. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants. J. Neurosci. Res. 2007;85:2441–2449. doi: 10.1002/jnr.21370. PubMed DOI PMC

Nilsen J., Brinton R.D. Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling. Proc. Natl. Acad. Sci. USA. 2003;100:10506–10511. doi: 10.1073/pnas.1334098100. PubMed DOI PMC

Cai W., Zhu Y., Furuya K., Li Z., Sokabe M., Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology. 2008;55:127–138. doi: 10.1016/j.neuropharm.2008.04.023. PubMed DOI

Liu L., Wang J., Zhao L., Nilsen J., McClure K., Wong K., Brinton R.D. Progesterone increases rat neural progenitor cell cycle gene expression and proliferation via extracellularly regulated kinase and progesterone receptor membrane components 1 and 2. Endocrinology. 2009;150:3186–3196. doi: 10.1210/en.2008-1447. PubMed DOI PMC

Su C., Cunningham R.L., Rybalchenko N., Singh M. Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology. 2012;153:4389–4400. doi: 10.1210/en.2011-2177. PubMed DOI PMC

Koulen P., Madry C., Duncan R.S., Hwang J.Y., Nixon E., McClung N., Gregg E.V., Singh M. Progesterone potentiates IP(3)-mediated calcium signaling through Akt/PKB. Cell. Physiol. Biochem. 2008;21:161–172. doi: 10.1159/000113758. PubMed DOI

Sleiter N., Pang Y., Park C., Horton T.H., Dong J., Thomas P., Levine J.E. Progesterone receptor A (PRA) and PRB-independent effects of progesterone on gonadotropin-releasing hormone release. Endocrinology. 2009;150:3833–3844. doi: 10.1210/en.2008-0774. PubMed DOI PMC

Frye C.A., Sumida K., Lydon J.P., O’Malley B.W., Pfaff D.W. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis. Psychopharmacology. 2006;185:423–432. doi: 10.1007/s00213-005-0300-4. PubMed DOI

Anderson G.D., Odegard P.S. Pharmacokinetics of estrogen and progesterone in chronic kidney disease. Adv. Chronic Kidney Dis. 2004;11:357–360. doi: 10.1053/j.ackd.2004.07.001. PubMed DOI

Kristensen S.G., Mamsen L.S., Jeppesen J.V., Botkjaer J.A., Pors S.E., Borgbo T., Ernst E., Macklon K.T., Andersen C.Y. Hallmarks of Human Small Antral Follicle Development: Implications for Regulation of Ovarian Steroidogenesis and Selection of the Dominant Follicle. Front. Endocrinol. 2017;8:376. doi: 10.3389/fendo.2017.00376. PubMed DOI PMC

Baerwald A.R., Adams G.P., Pierson R.A. Ovarian antral folliculogenesis during the human menstrual cycle: A review. Hum. Reprod. Update. 2012;18:73–91. doi: 10.1093/humupd/dmr039. PubMed DOI

Sykes L., Bennett P.R. Efficacy of progesterone for prevention of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018;52:126–136. doi: 10.1016/j.bpobgyn.2018.08.006. PubMed DOI

Frost P., Gomez E.C., Weinstein G.D., Lamas J., Hsia S.L. Metabolism of progesterone-4-14C in vitro in human skin and vaginal mucosa. Biochemistry. 1969;8:948–952. doi: 10.1021/bi00831a027. PubMed DOI

Kondo D., Yabe R., Kurihara T., Saegusa H., Zong S., Tanabe T. Progesterone receptor antagonist is effective in relieving neuropathic pain. Eur. J. Pharmcol. 2006;541:44–48. doi: 10.1016/j.ejphar.2006.05.010. PubMed DOI

Priyanto B., Rosyidi R.M., Islam A.A., Turchan A., Pintaningrum Y. The effect of progesteron for expression delta (delta) opioid receptor spinal cord through peripheral nerve injury. Ann. Med. Surg. 2022;75:103376. doi: 10.1016/j.amsu.2022.103376. PubMed DOI PMC

Petersen S.L., LaFlamme K.D. Progesterone increases levels of mu-opioid receptor mRNA in the preoptic area and arcuate nucleus of ovariectomized, estradiol-treated female rats. Brain Res. Mol. Brain Res. 1997;52:32–37. doi: 10.1016/S0169-328X(97)00194-0. PubMed DOI

Selye H. Anesthetic effect of steroid hormones. Proc. Soc. Exp. Biol. Med. 1941;46:116–121. doi: 10.3181/00379727-46-11907. DOI

Selye H. Acquired adaptation to the anesthetic effect of steroid hormones. J. Immunol. 1941;41:259–268.

Kuba T., Wu H.B., Nazarian A., Festa E.D., Barr G.A., Jenab S., Inturrisi C.E., Quinones-Jenab V. Estradiol and progesterone differentially regulate formalin-induced nociception in ovariectomized female rats. Horm. Behav. 2006;49:441–449. doi: 10.1016/j.yhbeh.2005.09.007. PubMed DOI

Vincent K., Stagg C.J., Warnaby C.E., Moore J., Kennedy S., Tracey I. “Luteal Analgesia”: Progesterone Dissociates Pain Intensity and Unpleasantness by Influencing Emotion Regulation Networks. Front. Endocrinol. 2018;9:413. doi: 10.3389/fendo.2018.00413. PubMed DOI PMC

Wiesenfeld-Hallin Z. Sex differences in pain perception. Gend. Med. 2005;2:137–145. doi: 10.1016/S1550-8579(05)80042-7. PubMed DOI

Fillingim R.B., Ness T.J. Sex-related hormonal influences on pain and analgesic responses. Neurosci. Biobehav. Rev. 2000;24:485–501. doi: 10.1016/S0149-7634(00)00017-8. PubMed DOI

Giamberardino M.A., Berkley K.J., Iezzi S., de Bigontina P., Vecchiet L. Pain threshold variations in somatic wall tissues as a function of menstrual cycle, segmental site and tissue depth in non-dysmenorrheic women, dysmenorrheic women and men. Pain. 1997;71:187–197. doi: 10.1016/S0304-3959(97)03362-9. PubMed DOI

Hapidou E.G., De Catanzaro D. Sensitivity to cold pressor pain in dysmenorrheic and non-dysmenorrheic women as a function of menstrual cycle phase. Pain. 1988;34:277–283. doi: 10.1016/0304-3959(88)90123-6. PubMed DOI

Frolich M.A., Banks C., Warren W., Robbins M., Ness T. The Association Between Progesterone, Estradiol, and Oxytocin and Heat Pain Measures in Pregnancy: An Observational Cohort Study. Anesth. Analg. 2016;123:396–401. doi: 10.1213/ANE.0000000000001259. PubMed DOI

Lee J., Lee J., Ko S. The relationship between serum progesterone concentration and anesthetic and analgesic requirements: A prospective observational study of parturients undergoing cesarean delivery. Anesth. Analg. 2014;119:901–905. doi: 10.1213/ANE.0000000000000366. PubMed DOI

Kashanian M., Dadkhah F., Zarei S., Sheikhansari N., Javanmanesh F. Evaluation the relationship between serum progesterone level and pain perception after cesarean delivery. J. Matern.-Fetal Neonatal Med. 2019;32:3548–3551. doi: 10.1080/14767058.2018.1466274. PubMed DOI

Gyermek L., Soyka L.F. Steroid anesthetics. Anesthesiology. 1975;42:331–344. doi: 10.1097/00000542-197503000-00017. PubMed DOI

Lawrence D.K., Gill E.W. Structurally specific effects of some steroid anesthetics on spin-labeled liposomes. Mol. Pharmcol. 1975;11:280–286. PubMed

Majewska M.D., Harrison N.L., Schwartz R.D., Barker J.L., Paul S.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–1007. doi: 10.1126/science.2422758. PubMed DOI

Demirgoren S., Majewska M.D., Spivak C.E., London E.D. Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience. 1991;45:127–135. doi: 10.1016/0306-4522(91)90109-2. PubMed DOI

Majewska M.D., Demirgoren S., Spivak C.E., London E.D. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res. 1990;526:143–146. doi: 10.1016/0006-8993(90)90261-9. PubMed DOI

Paul S.M., Purdy R.H. Neuroactive steroids. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1992;6:2311–2322. doi: 10.1096/fasebj.6.6.1347506. PubMed DOI

Hauser C.A., Chesnoy-Marchais D., Robel P., Baulieu E.E. Modulation of recombinant alpha 6 beta 2 gamma 2 GABAA receptors by neuroactive steroids. Eur. J. Pharmcol. 1995;289:249–257. doi: 10.1016/0922-4106(95)90101-9. PubMed DOI

Backstrom T., Das R., Bixo M. Positive GABAA receptor modulating steroids and their antagonists: Implications for clinical treatments. J. Neuroendocrinol. 2022;34:e13013. doi: 10.1111/jne.13013. PubMed DOI

Backstrom T., Bixo M., Stromberg J. GABAA Receptor-Modulating Steroids in Relation to Women’s Behavioral Health. Curr. Psychiatry Rep. 2015;17:92. doi: 10.1007/s11920-015-0627-4. PubMed DOI

Wu F.S., Gibbs T.T., Farb D.H. Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmcol. 1990;37:597–602. PubMed

Weaver C.E., Land M.B., Purdy R.H., Richards K.G., Gibbs T.T., Farb D.H. Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca(2+) accumulation and cell death. J. Pharmcol. Exp. Ther. 2000;293:747–754. PubMed

Park-Chung M., Wu F.S., Farb D.H. 3 alpha-Hydroxy-5 beta-pregnan-20-one sulfate: A negative modulator of the NMDA-induced current in cultured neurons. Mol. Pharmcol. 1994;46:146–150. PubMed

Valera S., Ballivet M., Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA. 1992;89:9949–9953. doi: 10.1073/pnas.89.20.9949. PubMed DOI PMC

Grazzini E., Guillon G., Mouillac B., Zingg H.H. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392:509–512. doi: 10.1038/33176. PubMed DOI

Schreiber V. Neuropeptides and neurosteroids (author’s transl) Cas. Lek. Ceskych. 1980;119:656–659. PubMed

Corpechot C., Robel P., Axelson M., Sjovall J., Baulieu E.E. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc. Natl. Acad. Sci. USA. 1981;78:4704–4707. doi: 10.1073/pnas.78.8.4704. PubMed DOI PMC

Brinton R.D., Thompson R.F., Foy M.R., Baudry M., Wang J., Finch C.E., Morgan T.E., Pike C.J., Mack W.J., Stanczyk F.Z., et al. Progesterone receptors: Form and function in brain. Front. Neuroendocrinol. 2008;29:313–339. doi: 10.1016/j.yfrne.2008.02.001. PubMed DOI PMC

Schumacher M., Mattern C., Ghoumari A., Oudinet J.P., Liere P., Labombarda F., Sitruk-Ware R., De Nicola A.F., Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 2014;113:6–39. doi: 10.1016/j.pneurobio.2013.09.004. PubMed DOI

Payne A.H., Hales D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004;25:947–970. doi: 10.1210/er.2003-0030. PubMed DOI

Schiffer L., Barnard L., Baranowski E.S., Gilligan L.C., Taylor A.E., Arlt W., Shackleton C.H.L., Storbeck K.H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid Biochem. Mol. Biol. 2019;194:105439. doi: 10.1016/j.jsbmb.2019.105439. PubMed DOI PMC

Kancheva R., Hill M., Cibula D., Vcelakova H., Kancheva L., Vrbikova J., Fait T., Parizek A., Starka L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J. Endocrinol. 2007;195:67–78. doi: 10.1677/JOE-06-0192. PubMed DOI

Hill M., Cibula D., Havlikova H., Kancheva L., Fait T., Kancheva R., Parizek A., Starka L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007;105:166–175. doi: 10.1016/j.jsbmb.2006.10.010. PubMed DOI

Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI

Hill M., Popov P., Havlikova H., Kancheva L., Vrbikova J., Kancheva R., Pouzar V., Cerny I., Starka L. Altered profiles of serum neuroactive steroids in premenopausal women treated for alcohol addiction. Steroids. 2005;70:515–524. doi: 10.1016/j.steroids.2005.02.013. PubMed DOI

Bixo M., Andersson A., Winblad B., Purdy R.H., Backstrom T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–178. doi: 10.1016/S0006-8993(97)00455-1. PubMed DOI

Hill M., Parizek A., Cibula D., Kancheva R., Jirasek J.E., Jirkovska M., Velikova M., Kubatova J., Klimkova M., Paskova A., et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 2010;122:114–132. doi: 10.1016/j.jsbmb.2010.05.007. PubMed DOI

Hampl R., Bicikova M., Sosvorova L. Hormones and the blood-brain barrier. Horm. Mol. Biol. Clin. Investig. 2015;21:159–164. doi: 10.1515/hmbci-2014-0042. PubMed DOI

Purdy R.H., Morrow A.L., Moore P.H., Jr., Paul S.M. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl. Acad. Sci. USA. 1991;88:4553–4557. doi: 10.1073/pnas.88.10.4553. PubMed DOI PMC

Droogleever Fortuyn H.A., van Broekhoven F., Span P.N., Backstrom T., Zitman F.G., Verkes R.J. Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density. Psychoneuroendocrinology. 2004;29:1341–1344. doi: 10.1016/j.psyneuen.2004.02.003. PubMed DOI

Wang M., Seippel L., Purdy R.H., Backstrom T. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: Study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J. Clin. Endocrinol. Metab. 1996;81:1076–1082. PubMed

Genazzani A.D., Luisi M., Malavasi B., Strucchi C., Luisi S., Casarosa E., Bernardi F., Genazzani A.R., Petraglia F. Pulsatile secretory characteristics of allopregnanolone, a neuroactive steroid, during the menstrual cycle and in amenorrheic subjects. Eur. J. Endocrinol. 2002;146:347–356. doi: 10.1530/eje.0.1460347. PubMed DOI

Brunton P.J., Russell J.A., Hirst J.J. Allopregnanolone in the brain: Protecting pregnancy and birth outcomes. Prog. Neurobiol. 2014;113:106–136. doi: 10.1016/j.pneurobio.2013.08.005. PubMed DOI

Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Hill M., Parizek A., Kancheva R., Jirasek J.E. Reduced progesterone metabolites in human late pregnancy. Physiol. Res. 2011;60:225–241. doi: 10.33549/physiolres.932077. PubMed DOI

Hill M., Parizek A., Kancheva R., Duskova M., Velikova M., Kriz L., Klimkova M., Paskova A., Zizka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI

Wang M.D., Wahlstrom G., Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J. Steroid Biochem. Mol. Biol. 1997;62:299–306. doi: 10.1016/S0960-0760(97)00041-1. PubMed DOI

Yoshihara S., Morimoto H., Ohori M., Yamada Y., Abe T., Arisaka O. A neuroactive steroid, allotetrahydrocorticosterone inhibits sensory nerves activation in guinea-pig airways. Neurosci. Res. 2005;53:210–215. doi: 10.1016/j.neures.2005.06.017. PubMed DOI

Melcangi R.C., Panzica G., Garcia-Segura L.M. Neuroactive steroids: Focus on human brain. Neuroscience. 2011;191:1–5. doi: 10.1016/j.neuroscience.2011.06.024. PubMed DOI

Hashiguchi T., Kurogi K., Shimohira T., Teramoto T., Liu M.C., Suiko M., Sakakibara Y. Delta(4)-3-ketosteroids as a new class of substrates for the cytosolic sulfotransferases. Biochim. Biophys. Acta Gen. Subj. 2017;1861 Pt A:2883–2890. doi: 10.1016/j.bbagen.2017.08.005. PubMed DOI PMC

Rubin G.L., Harrold A.J., Mills J.A., Falany C.N., Coughtrie M.W. Regulation of sulphotransferase expression in the endometrium during the menstrual cycle, by oral contraceptives and during early pregnancy. Mol. Hum. Reprod. 1999;5:995–1002. doi: 10.1093/molehr/5.11.995. PubMed DOI

Lindsay J., Wang L.L., Li Y., Zhou S.F. Structure, function and polymorphism of human cytosolic sulfotransferases. Curr. Drug Metab. 2008;9:99–105. PubMed

Brussaard A.B., Koksma J.J. Conditional regulation of neurosteroid sensitivity of GABAA receptors. Ann. N. Y. Acad. Sci. 2003;1007:29–36. doi: 10.1196/annals.1286.003. PubMed DOI

Barth C., Villringer A., Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015;9:37. doi: 10.3389/fnins.2015.00037. PubMed DOI PMC

Nichols D.E., Nichols C.D. Serotonin receptors. Chem. Rev. 2008;108:1614–1641. doi: 10.1021/cr078224o. PubMed DOI

Berger M., Gray J.A., Roth B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009;60:355–366. doi: 10.1146/annurev.med.60.042307.110802. PubMed DOI PMC

Bethea C.L., Lu N.Z., Gundlah C., Streicher J.M. Diverse actions of ovarian steroids in the serotonin neural system. Front. Neuroendocrinol. 2002;23:41–100. doi: 10.1006/frne.2001.0225. PubMed DOI

Brean A., Fredo H.L., Sollid S., Muller T., Sundstrom T., Eide P.K. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol. Scand. 2009;120:314–316. doi: 10.1111/j.1600-0404.2009.01250.x. PubMed DOI

Gundlah C., Lu N.Z., Bethea C.L. Ovarian steroid regulation of monoamine oxidase-A and -B mRNAs in the macaque dorsal raphe and hypothalamic nuclei. Psychopharmacology. 2002;160:271–282. doi: 10.1007/s00213-001-0959-0. PubMed DOI

Luine V.N., Rhodes J.C. Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology. 1983;36:235–241. doi: 10.1159/000123461. PubMed DOI

Benmansour S., Weaver R.S., Barton A.K., Adeniji O.S., Frazer A. Comparison of the effects of estradiol and progesterone on serotonergic function. Biol. Psychiatry. 2012;71:633–641. doi: 10.1016/j.biopsych.2011.11.023. PubMed DOI PMC

Perrotti L.I., Beck K.D., Luine V.N., Quinones V. Progesterone and cocaine administration affect serotonin in the medial prefrontal cortex of ovariectomized rats. Neurosci. Lett. 2000;291:155–158. doi: 10.1016/S0304-3940(00)01396-3. PubMed DOI

Fernandez-Ruiz J.J., Amor J.C., Ramos J.A. Time-dependent effects of estradiol and progesterone on the number of striatal dopaminergic D2-receptors. Brain Res. 1989;476:388–395. doi: 10.1016/0006-8993(89)91266-3. PubMed DOI

Lolier M., Wagner C.K. Sex differences in dopamine innervation and microglia are altered by synthetic progestin in neonatal medial prefrontal cortex. J. Neuroendocrinol. 2021;33:e12962. doi: 10.1111/jne.12962. PubMed DOI PMC

Druckmann R., Druckmann M.A. Progesterone and the immunology of pregnancy. J. Steroid Biochem. Mol. Biol. 2005;97:389–396. doi: 10.1016/j.jsbmb.2005.08.010. PubMed DOI

Szekeres-Bartho J., Barakonyi A., Par G., Polgar B., Palkovics T., Szereday L. Progesterone as an immunomodulatory molecule. Int. Immunopharmacol. 2001;1:1037–1048. doi: 10.1016/S1567-5769(01)00035-2. PubMed DOI

Szekeres-Bartho J., Reznikoff-Etievant M.F., Varga P., Pichon M.F., Varga Z., Chaouat G. Lymphocytic progesterone receptors in normal and pathological human pregnancy. J. Reprod. Immunol. 1989;16:239–247. doi: 10.1016/0165-0378(89)90053-3. PubMed DOI

Shah N.M., Lai P.F., Imami N., Johnson M.R. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front. Endocrinol. 2019;10:198. doi: 10.3389/fendo.2019.00198. PubMed DOI PMC

Szekeres-Bartho J., Polgar B., Kozma N., Miko E., Par G., Szereday L., Barakonyi A., Palkovics T., Papp O., Varga P. Progesterone-Dependent Immunomodulation. In: Markert U.R., editor. Immunology of Pregnancy. Karger; Jena, Germany: 2005. PubMed

Buyon J.P., Korchak H.M., Rutherford L.E., Ganguly M., Weissmann G. Female hormones reduce neutrophil responsiveness in vitro. Arthritis Rheum. 1984;27:623–630. doi: 10.1002/art.1780270604. PubMed DOI

Nadkarni S., Smith J., Sferruzzi-Perri A.N., Ledwozyw A., Kishore M., Haas R., Mauro C., Williams D.J., Farsky S.H., Marelli-Berg F.M., et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc. Natl. Acad. Sci. USA. 2016;113:E8415–E8424. doi: 10.1073/pnas.1611944114. PubMed DOI PMC

Arck P., Hansen P.J., Mulac Jericevic B., Piccinni M.P., Szekeres-Bartho J. Progesterone during pregnancy: Endocrine-immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 2007;58:268–279. doi: 10.1111/j.1600-0897.2007.00512.x. PubMed DOI

Hall O.J., Nachbagauer R., Vermillion M.S., Fink A.L., Phuong V., Krammer F., Klein S.L. Progesterone-Based Contraceptives Reduce Adaptive Immune Responses and Protection against Sequential Influenza A Virus Infections. J. Virol. 2017;91:e02160-16. doi: 10.1128/JVI.02160-16. PubMed DOI PMC

Lincová D., Farghali H. Základní a Aplikovaná Farmakologie. druhé, doplnûné a pfiepracované vydání; GalénPublishing; Prague, Czech Republic: 2007.

Simon J.A. Micronized progesterone: Vaginal and oral uses. Clin. Obstet. Gynecol. 1995;38:902–914. doi: 10.1097/00003081-199538040-00024. PubMed DOI

Gomes L.G., Huang N., Agrawal V., Mendonca B.B., Bachega T.A., Miller W.L. Extraadrenal 21-hydroxylation by CYP2C19 and CYP3A4: Effect on 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2009;94:89–95. doi: 10.1210/jc.2008-1174. PubMed DOI PMC

Niwa T., Narita K., Okamoto A., Murayama N., Yamazaki H. Comparison of Steroid Hormone Hydroxylations by and Docking to Human Cytochromes P450 3A4 and 3A5. J. Pharm. Pharm. Sci. 2019;22:332–339. doi: 10.18433/jpps30558. PubMed DOI

Niwa T., Toyota M., Kawasaki H., Ishii R., Sasaki S. Comparison of the Stimulatory and Inhibitory Effects of Steroid Hormones and alpha-Naphthoflavone on Steroid Hormone Hydroxylation Catalyzed by Human Cytochrome P450 3A Subfamilies. Biol. Pharm. Bull. 2021;44:579–584. doi: 10.1248/bpb.b20-00987. PubMed DOI

Patil A.S., Swamy G.K., Murtha A.P., Heine R.P., Zheng X., Grotegut C.A. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model. Reprod. Sci. 2015;22:1577–1586. doi: 10.1177/1933719115589414. PubMed DOI PMC

Quinney S.K., Benjamin T., Zheng X., Patil A.S. Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism. Fetal Pediatr. Pathol. 2017;36:400–411. doi: 10.1080/15513815.2017.1354411. PubMed DOI PMC

Di Renzo G.C., Tosto V., Tsibizova V. Progesterone: History, facts, and artifacts. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:2–12. doi: 10.1016/j.bpobgyn.2020.07.012. PubMed DOI

Spark M.J., Willis J. Systematic review of progesterone use by midlife and menopausal women. Maturitas. 2012;72:192–202. doi: 10.1016/j.maturitas.2012.03.015. PubMed DOI

Wambach G., Higgins J.R., Kem D.C., Kaufmann W. Interaction of synthetic progestagens with renal mineralocorticoid receptors. Acta Endocrinol. 1979;92:560–567. doi: 10.1530/acta.0.0920560. PubMed DOI

Rylance P.B., Brincat M., Lafferty K., De Trafford J.C., Brincat S., Parsons V., Studd J.W. Natural progesterone and antihypertensive action. Br. Med. J. (Clin. Res. Ed.) 1985;290:13–14. doi: 10.1136/bmj.290.6461.13. PubMed DOI PMC

Piette P.C.M. The pharmacodynamics and safety of progesterone. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:13–29. doi: 10.1016/j.bpobgyn.2020.06.002. PubMed DOI

McCann M.F., Potter L.S. Progestin-only oral contraception: A comprehensive review. Contraception. 1994;50((Suppl. 1)):S1–S195. doi: 10.1016/0010-7824(94)90113-9. PubMed DOI

de Lignieres B., Dennerstein L., Backstrom T. Influence of route of administration on progesterone metabolism. Maturitas. 1995;21:251–257. doi: 10.1016/0378-5122(94)00882-8. PubMed DOI

Prior J.C. Progesterone for treatment of symptomatic menopausal women. Climacteric J. Int. Menopause Soc. 2018;21:358–365. doi: 10.1080/13697137.2018.1472567. PubMed DOI

Seifert-Klauss V., Prior J.C. Progesterone and bone: Actions promoting bone health in women. J. Osteoporos. 2010;2010:845180. doi: 10.4061/2010/845180. PubMed DOI PMC

Kuhl H. Pharmacology of estrogens and progestogens: Influence of different routes of administration. Climacteric J. Int. Menopause Soc. 2005;8((Suppl. 1)):3–63. doi: 10.1080/13697130500148875. PubMed DOI

Kuhl H. Comparative pharmacology of newer progestogens. Drugs. 1996;51:188–215. doi: 10.2165/00003495-199651020-00002. PubMed DOI

Schindler A.E., Campagnoli C., Druckmann R., Huber J., Pasqualini J.R., Schweppe K.W., Thijssen J.H. Classification and pharmacology of progestins. Maturitas. 2003;46((Suppl. 1)):S7–S16. doi: 10.1016/j.maturitas.2003.09.014. PubMed DOI

Sitruk-Ware R. Pharmacological profile of progestins. Maturitas. 2004;47:277–283. doi: 10.1016/j.maturitas.2004.01.001. PubMed DOI

Wiegratz I., Kuhl H. Progestogen therapies: Differences in clinical effects? Trends Endocrinol. Metab. TEM. 2004;15:277–285. doi: 10.1016/j.tem.2004.06.006. PubMed DOI

Africander D., Louw R., Hapgood J.P. Investigating the anti-mineralocorticoid properties of synthetic progestins used in hormone therapy. Biochem. Biophys. Res. Commun. 2013;433:305–310. doi: 10.1016/j.bbrc.2013.02.086. PubMed DOI

Winneker R.C., Bitran D., Zhang Z. The preclinical biology of a new potent and selective progestin: Trimegestone. Steroids. 2003;68:915–920. doi: 10.1016/S0039-128X(03)00142-9. PubMed DOI

Ruan X., Seeger H., Mueck A.O. The pharmacology of nomegestrol acetate. Maturitas. 2012;71:345–353. doi: 10.1016/j.maturitas.2012.01.007. PubMed DOI

Kumar N., Koide S.S., Tsong Y., Sundaram K. Nestorone: A progestin with a unique pharmacological profile. Steroids. 2000;65:629–636. doi: 10.1016/S0039-128X(00)00119-7. PubMed DOI

Schneider M.A., Davies M.C., Honour J.W. The timing of placental competence in pregnancy after oocyte donation. Fertil. Steril. 1993;59:1059–1064. doi: 10.1016/S0015-0282(16)55928-7. PubMed DOI

Di Renzo G.C., Giardina I., Clerici G., Brillo E., Gerli S. Progesterone in normal and pathological pregnancy. Horm. Mol. Biol. Clin. Investig. 2016;27:35–48. doi: 10.1515/hmbci-2016-0038. PubMed DOI

Zakar T., Mesiano S. How does progesterone relax the uterus in pregnancy? N. Engl. J. Med. 2011;364:972–973. doi: 10.1056/NEJMcibr1100071. PubMed DOI

Walch K.T., Huber J.C. Progesterone for recurrent miscarriage: Truth and deceptions. Best Pract. Res. Clin. Obstet. Gynaecol. 2008;22:375–389. doi: 10.1016/j.bpobgyn.2007.08.009. PubMed DOI

Csapo A.I., Pulkkinen M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence. Obstet. Gynecol. Surv. 1978;33:69–81. doi: 10.1097/00006254-197802000-00001. PubMed DOI

Peyron R., Aubeny E., Targosz V., Silvestre L., Renault M., Elkik F., Leclerc P., Ulmann A., Baulieu E.E. Early termination of pregnancy with mifepristone (RU 486) and the orally active prostaglandin misoprostol. N. Engl. J. Med. 1993;328:1509–1513. doi: 10.1056/NEJM199305273282101. PubMed DOI

Parizek A., Koucky M., Duskova M. Progesterone, inflammation and preterm labor. J. Steroid Biochem. Mol. Biol. 2014;139:159–165. doi: 10.1016/j.jsbmb.2013.02.008. PubMed DOI

Norman J.E. Progesterone and preterm birth. Int. J. Gynaecol. Obstet. 2020;150:24–30. doi: 10.1002/ijgo.13187. PubMed DOI PMC

Pieber D., Allport V.C., Hills F., Johnson M., Bennett P.R. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol. Hum. Reprod. 2001;7:875–879. doi: 10.1093/molehr/7.9.875. PubMed DOI

Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J. Soc. Gynecol. Investig. 2004;11:193–202. doi: 10.1016/j.jsgi.2003.12.004. PubMed DOI

Stjernholm-Vladic Y., Wang H., Stygar D., Ekman G., Sahlin L. Differential regulation of the progesterone receptor A and B in the human uterine cervix at parturition. Gynecol. Endocrinol. 2004;18:41–46. doi: 10.1080/09513590310001651777. PubMed DOI

Oh S.Y., Kim C.J., Park I., Romero R., Sohn Y.K., Moon K.C., Yoon B.H. Progesterone receptor isoform (A/B) ratio of human fetal membranes increases during term parturition. Pt 2Am. J. Obstet. Gynecol. 2005;193:1156–1160. doi: 10.1016/j.ajog.2005.05.071. PubMed DOI

Shynlova O., Tsui P., Dorogin A., Lye S.J. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J. Immunol. 2008;181:1470–1479. doi: 10.4049/jimmunol.181.2.1470. PubMed DOI

Rathod K., Purohit P., Kunde K.N.N. Progesterone in Assisted Reproduction: Classification, Pharmacology and its clinical coorelation: A Commentary. Women’s Health Gynecol. 2020;5:2. doi: 10.35862/2369-307X/21/90. PubMed DOI

Groenewoud E.R., Cantineau A.E., Kollen B.J., Macklon N.S., Cohlen B.J. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum. Reprod. Updat. 2013;19:458–470. doi: 10.1093/humupd/dmt030. PubMed DOI

Labarta E., Rodríguez C. Progesterone use in assisted reproductive technology. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:74–84. doi: 10.1016/j.bpobgyn.2020.05.005. PubMed DOI

Labarta E. Relationship between serum progesterone (P) levels and pregnancy outcome: Lessons from artificial cycles when using vaginal natural micronized progesterone. J. Assist. Reprod. Genet. 2020;37:2047–2048. doi: 10.1007/s10815-020-01862-y. PubMed DOI PMC

Haas D.M., Ramsey P.S. Progestogen for preventing miscarriage. Cochrane Database Syst. Rev. 2013:CD003511. doi: 10.1002/14651858.CD003511.pub3. PubMed DOI

Wahabi H.A., Fayed A.A., Esmaeil S.A., Bahkali K.H. Progestogen for treating threatened miscarriage. Cochrane Database Syst. Rev. 2018:CD005943. doi: 10.1002/14651858.CD005943.pub5. PubMed DOI PMC

Li L., Zhang Y., Tan H., Bai Y., Fang F., Faramand A., Chong W., Hai Y. Effect of progestogen for women with threatened miscarriage: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2020;127:1055–1063. doi: 10.1111/1471-0528.16261. PubMed DOI

Parveen R., Khakwani M., Tabassum S., Masood S. Oral versus Vaginal Micronized Progesterone for the treatment of threatened miscarriage. Pak. J. Med. Sci. 2021;37:628. doi: 10.12669/pjms.37.3.3700. PubMed DOI PMC

Coomarasamy A., Devall A.J., Brosens J.J., Quenby S., Stephenson M.D., Sierra S., Christiansen O.B., Small R., Brewin J., Roberts T.E. Micronized vaginal progesterone to prevent miscarriage: A critical evaluation of randomized evidence. Am. J. Obstet. Gynecol. 2020;223:167–176. doi: 10.1016/j.ajog.2019.12.006. PubMed DOI PMC

Devall A.J., Melo P., Coomarasamy A. Progesterone for the prevention of threatened miscarriage. Obstet. Gynaecol. Reprod. Med. 2022;2:44–47. doi: 10.1016/j.ogrm.2022.01.005. DOI

Yan Y., Chen Z., Yang Y., Zheng X., Zou M., Cheng G., Yuan Z. Efficacy of progesterone on threatened miscarriage: An updated meta-analysis of randomized trials. Arch. Gynecol. Obstet. 2021;303:27–36. doi: 10.1007/s00404-020-05808-8. PubMed DOI

Tan T.C., Ku C.W., Kwek L.K., Lee K.W., Zhang X., Allen J.C., Zhang V.R.-Y., Tan N.S. Novel approach using serum progesterone as a triage to guide management of patients with threatened miscarriage: A prospective cohort study. Sci. Rep. 2020;10:9153. doi: 10.1038/s41598-020-66155-x. PubMed DOI PMC

Ku C.W., Allen J.C., Jr., Lek S.M., Chia M.L., Tan N.S., Tan T.C. Serum progesterone distribution in normal pregnancies compared to pregnancies complicated by threatened miscarriage from 5 to 13 weeks gestation: A prospective cohort study. BMC Pregnancy Childbirth. 2018;18:360. doi: 10.1186/s12884-018-2002-z. PubMed DOI PMC

National Institute for Health and Care Excellence . Ectopic Pregnancy and Miscarriage: Diagnosis and Initial Management. National Institute for Health and Care Excellence (NICE); London, UK: 2021. National Institute for Health and Care Excellence: Guidelines.

Jarde A., Lutsiv O., Beyene J., McDonald S.D. Vaginal progesterone, oral progesterone, 17-OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnancies: An updated systematic review and network meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019;126:556–567. doi: 10.1111/1471-0528.15566. PubMed DOI

Romero R., Conde-Agudelo A., Da Fonseca E., O’Brien J.M., Cetingoz E., Creasy G.W., Hassan S.S., Nicolaides K.H. Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: A meta-analysis of individual patient data. Am. J. Obstet. Gynecol. 2018;218:161–180. doi: 10.1016/j.ajog.2017.11.576. PubMed DOI PMC

Conde-Agudelo A., Romero R., Da Fonseca E., O’Brien J.M., Cetingoz E., Creasy G.W., Hassan S.S., Erez O., Pacora P., Nicolaides K.H. Vaginal progesterone is as effective as cervical cerclage to prevent preterm birth in women with a singleton gestation, previous spontaneous preterm birth, and a short cervix: Updated indirect comparison meta-analysis. Am. J. Obstet. Gynecol. 2018;219:10–25. doi: 10.1016/j.ajog.2018.03.028. PubMed DOI PMC

Boelig R.C., Della Corte L., Ashoush S., McKenna D., Saccone G., Rajaram S., Berghella V. Oral progesterone for the prevention of recurrent preterm birth: Systematic review and metaanalysis. Am. J. Obstet. Gynecol. MFM. 2019;1:50–62. doi: 10.1016/j.ajogmf.2019.03.001. PubMed DOI PMC

da Fonseca E.B., Damião R., Moreira D.A. Preterm birth prevention. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:40–49. doi: 10.1016/j.bpobgyn.2020.09.003. PubMed DOI

Stewart L.A., Simmonds M., Duley L., Llewellyn A., Sharif S., Walker R.A., Beresford L., Wright K., Aboulghar M.M., Alfirevic Z. Evaluating Progestogens for Preventing Preterm birth International Collaborative (EPPPIC): Meta-analysis of individual participant data from randomised controlled trials. Lancet. 2021;397:1183–1194. doi: 10.1016/S0140-6736(21)00217-8. PubMed DOI

Boelig R.C., Locci M., Saccone G., Gragnano E., Berghella V. Vaginal progesterone compared with intramuscular 17-alpha-hydroxyprogesterone caproate for prevention of recurrent preterm birth in singleton gestations: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2022;4:100658. doi: 10.1016/j.ajogmf.2022.100658. PubMed DOI

Boelig R.C., Schoen C.N., Frey H., Gimovsky A.C., Springel E., Backley S., Berghella V. Vaginal progesterone vs intramuscular 17-hydroxyprogesterone caproate for prevention of recurrent preterm birth: A randomized controlled trial. Am. J. Obstet. Gynecol. 2022;226:722.e1–722.e12. doi: 10.1016/j.ajog.2022.02.012. PubMed DOI

Gillen-Goldstein J., Roque H., Young B.K. Steroidogenesis patterns in common trisomies. J. Perinat. Med. 2002;30:132–136. doi: 10.1515/JPM.2002.016. PubMed DOI

Kratzer P.G., Golbus M.S., Monroe S.E., Finkelstein D.E., Taylor R.N. First-trimester aneuploidy screening using serum human chorionic gonadotropin (hCG), free ahCG, and progesterone. Prenat. Diagn. 1991;11:751–763. doi: 10.1002/pd.1970111003. PubMed DOI

Jewson M., Purohit P., Lumsden M.A. Progesterone and abnormal uterine bleeding/menstrual disorders. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:62–73. doi: 10.1016/j.bpobgyn.2020.05.004. PubMed DOI

Kadir R.A. Menorrhagia: Treatment options. Thromb. Res. 2009;123((Suppl. 2)):S21–S29. doi: 10.1016/S0049-3848(09)70005-2. PubMed DOI

Li Y., Adur M.K., Kannan A., Davila J., Zhao Y., Nowak R.A., Bagchi M.K., Bagchi I.C., Li Q. Progesterone Alleviates Endometriosis via Inhibition of Uterine Cell Proliferation, Inflammation and Angiogenesis in an Immunocompetent Mouse Model. PLoS ONE. 2016;11:e0165347. doi: 10.1371/journal.pone.0165347. PubMed DOI PMC

Casper R.F. Progestin-only pills may be a better first-line treatment for endometriosis than combined estrogen-progestin contraceptive pills. Fertil. Steril. 2017;107:533–536. doi: 10.1016/j.fertnstert.2017.01.003. PubMed DOI

Poulos C., Soliman A.M., Renz C.L., Posner J., Agarwal S.K. Patient Preferences for Endometriosis Pain Treatments in the United States. Value Health. 2019;22:728–738. doi: 10.1016/j.jval.2018.12.010. PubMed DOI

Chandra V., Kim J.J., Benbrook D.M., Dwivedi A., Rai R. Therapeutic options for management of endometrial hyperplasia. J. Gynecol. Oncol. 2016;27:e8. doi: 10.3802/jgo.2016.27.e8. PubMed DOI PMC

Kim J.J., Chapman-Davis E. Role of progesterone in endometrial cancer. Semin. Reprod. Med. 2010;28:81–90. doi: 10.1055/s-0029-1242998. PubMed DOI PMC

Gompel A. Progesterone and endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2020;69:95–107. doi: 10.1016/j.bpobgyn.2020.05.003. PubMed DOI

Master-Hunter T., Heiman D.L. Amenorrhea: Evaluation and treatment. Am. Fam. Physician. 2006;73:1374–1382. PubMed

McIver B., Romanski S.A., Nippoldt T.B. Mayo Clinic Proceedings. Elsevier; Amsterdam, The Netherlands: 1997. Evaluation and Management of Amenorrhea; pp. 1161–1169. PubMed

Kiningham R.B., Apgar B.S., Schwenk T.L. Evaluation of amenorrhea. Am. Fam. Physician. 1996;53:1185–1194. PubMed

Klein D.A., Paradise S.L., Reeder R.M. Amenorrhea: A Systematic Approach to Diagnosis and Management. Am. Fam. Physician. 2019;100:39–48. PubMed

Ford O., Lethaby A., Roberts H., Mol B.W. Progesterone for premenstrual syndrome. Cochrane Database Syst. Rev. 2012:CD003415. doi: 10.1002/14651858.CD003415.pub4. PubMed DOI

Itriyeva K. Premenstrual syndrome and premenstrual dysphoric disorder in adolescents. Curr. Probl. Pediatr. Adolesc. Health Care. 2022;52:101187. doi: 10.1016/j.cppeds.2022.101187. PubMed DOI

Burger H.G. Physiology and endocrinology of the menopause. Medicine. 2006;34:27–30. doi: 10.1383/medc.2006.34.1.27. DOI

Deliveliotou A.E. Skin, Mucosa and Menopause. Springer; Berlin/Heidelberg, Germany: 2015. What is menopause? An overview of physiological changes; pp. 3–14.

Hall J.E. Endocrinology of the Menopause. Endocrinol. Metab. Clin. N. Am. 2015;44:485–496. doi: 10.1016/j.ecl.2015.05.010. PubMed DOI PMC

Campagnoli C., Clavel-Chapelon F., Kaaks R., Peris C., Berrino F. Progestins and progesterone in hormone replacement therapy and the risk of breast cancer. J. Steroid Biochem. Mol. Biol. 2005;96:95–108. doi: 10.1016/j.jsbmb.2005.02.014. PubMed DOI PMC

Vigneswaran K., Hamoda H. Hormone replacement therapy—Current recommendations. Best Pract. Res. Clin. Obstet. Gynaecol. 2021;81:8–21. doi: 10.1016/j.bpobgyn.2021.12.001. PubMed DOI

Oettel M., Mukhopadhyay A.K. Progesterone: The forgotten hormone in men? Aging Male. 2004;7:236–257. doi: 10.1080/13685530400004199. PubMed DOI

Matthiesson K.L., McLachlan R.I. Male hormonal contraception: Concept proven, product in sight? Hum. Reprod. Update. 2006;12:463–482. doi: 10.1093/humupd/dml010. PubMed DOI

McLachlan R.I., Robertson D.M., Pruysers E., Ugoni A., Matsumoto A.M., Anawalt B.D., Bremner W.J., Meriggiola C. Relationship between serum gonadotropins and spermatogenic suppression in men undergoing steroidal contraceptive treatment. J. Clin. Endocrinol. Metab. 2004;89:142–149. doi: 10.1210/jc.2003-030616. PubMed DOI

Wang C., Cui Y.G., Wang X.H., Jia Y., Sinha Hikim A., Lue Y.H., Tong J.S., Qian L.X., Sha J.H., Zhou Z.M., et al. Transient scrotal hyperthermia and levonorgestrel enhance testosterone-induced spermatogenesis suppression in men through increased germ cell apoptosis. J. Clin. Endocrinol. Metab. 2007;92:3292–3304. doi: 10.1210/jc.2007-0367. PubMed DOI

Falsetti C., Baldi E., Krausz C., Casano R., Failli P., Forti G. Decreased responsiveness to progesterone of spermatozoa in oligozoospermic patients. J. Androl. 1993;14:17–22. PubMed

Oehninger S., Blackmore P., Morshedi M., Sueldo C., Acosta A.A., Alexander N.J. Defective calcium influx and acrosome reaction (spontaneous and progesterone-induced) in spermatozoa of infertile men with severe teratozoospermia. Fertil. Steril. 1994;61:349–354. doi: 10.1016/S0015-0282(16)56530-3. PubMed DOI

Abid S., Gokral J., Maitra A., Meherji P., Kadam S., Pires E., Modi D. Altered expression of progesterone receptors in testis of infertile men. Reprod. Biomed. Online. 2008;17:175–184. doi: 10.1016/S1472-6483(10)60192-7. PubMed DOI

Tesarik J., Mendoza C. Defective function of a nongenomic progesterone receptor as a sole sperm anomaly in infertile patients. Fertil. Steril. 1992;58:793–797. doi: 10.1016/S0015-0282(16)55329-1. PubMed DOI

Sitruk-Ware R., Bonsack B., Brinton R., Schumacher M., Kumar N., Lee J.Y., Castelli V., Corey S., Coats A., Sadanandan N., et al. Progress in progestin-based therapies for neurological disorders. Neurosci. Biobehav. Rev. 2021;122:38–65. doi: 10.1016/j.neubiorev.2020.12.007. PubMed DOI

Garay L., Gonzalez Deniselle M.C., Lima A., Roig P., De Nicola A.F. Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis. J. Steroid Biochem. Mol. Biol. 2007;107:228–237. doi: 10.1016/j.jsbmb.2007.03.040. PubMed DOI

Del Rio J.P., Alliende M.I., Molina N., Serrano F.G., Molina S., Vigil P. Steroid Hormones and Their Action in Women’s Brains: The Importance of Hormonal Balance. Front. Public Health. 2018;6:141. doi: 10.3389/fpubh.2018.00141. PubMed DOI PMC

Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocrinol. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI

Theis V., Theiss C. Progesterone Effects in the Nervous System. Anat. Rec. 2019;302:1276–1286. doi: 10.1002/ar.24121. PubMed DOI

Mancino D.N., Leicaj M.L., Lima A., Roig P., Guennoun R., Schumacher M., De Nicola A.F., Garay L.I. Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination. J. Steroid Biochem. Mol. Biol. 2021;207:105820. doi: 10.1016/j.jsbmb.2021.105820. PubMed DOI

Koenig H.L., Schumacher M., Ferzaz B., Thi A.N., Ressouches A., Guennoun R., Jung-Testas I., Robel P., Akwa Y., Baulieu E.E. Progesterone synthesis and myelin formation by Schwann cells. Science. 1995;268:1500–1503. doi: 10.1126/science.7770777. PubMed DOI

Acs P., Kipp M., Norkute A., Johann S., Clarner T., Braun A., Berente Z., Komoly S., Beyer C. 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia. 2009;57:807–814. doi: 10.1002/glia.20806. PubMed DOI

Garay L., Gonzalez Deniselle M.C., Gierman L., Meyer M., Lima A., Roig P., De Nicola A.F. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroimmunomodulation. 2008;15:76–83. doi: 10.1159/000135627. PubMed DOI

Sayeed I., Stein D.G. Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog. Brain Res. 2009;175:219–237. PubMed

Ghoumari A.M., Ibanez C., El-Etr M., Leclerc P., Eychenne B., O’Malley B.W., Baulieu E.E., Schumacher M. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J. Neurochem. 2003;86:848–859. doi: 10.1046/j.1471-4159.2003.01881.x. PubMed DOI

Ghoumari A.M., Baulieu E.E., Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience. 2005;135:47–58. doi: 10.1016/j.neuroscience.2005.05.023. PubMed DOI

Kipp M., Amor S., Krauth R., Beyer C. Multiple sclerosis: Neuroprotective alliance of estrogen-progesterone and gender. Front. Neuroendocrinol. 2012;33:1–16. doi: 10.1016/j.yfrne.2012.01.001. PubMed DOI

Schumacher M., Guennoun R., Robert F., Carelli C., Gago N., Ghoumari A., Gonzalez Deniselle M.C., Gonzalez S.L., Ibanez C., Labombarda F., et al. Local synthesis and dual actions of progesterone in the nervous system: Neuroprotection and myelination. Growth Horm. IGF Res. 2004;14((Suppl. A)):S18–S33. doi: 10.1016/j.ghir.2004.03.007. PubMed DOI

Ibanez C., Shields S.A., El-Etr M., Baulieu E.E., Schumacher M., Franklin R.J. Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol. Appl. Neurobiol. 2004;30:80–89. doi: 10.1046/j.0305-1846.2003.00515.x. PubMed DOI

Labombarda F., Gonzalez S., Gonzalez Deniselle M.C., Garay L., Guennoun R., Schumacher M., De Nicola A.F. Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord. J. Neurotrauma. 2006;23:181–192. doi: 10.1089/neu.2006.23.181. PubMed DOI

Hughes M.D. Multiple sclerosis and pregnancy. Neurol. Clin. 2004;22:757–769. doi: 10.1016/j.ncl.2004.06.004. PubMed DOI

Kipp M., Hochstrasser T., Schmitz C., Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci. Biobehav. Rev. 2016;67:125–136. doi: 10.1016/j.neubiorev.2015.11.016. PubMed DOI

Gargiulo-Monachelli G., Meyer M., Lara A., Garay L., Lima A., Roig P., De Nicola A.F., Gonzalez Deniselle M.C. Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J. Steroid Biochem. Mol. Biol. 2019;192:105385. doi: 10.1016/j.jsbmb.2019.105385. PubMed DOI

Meyer M., Garay L.I., Kruse M.S., Lara A., Gargiulo-Monachelli G., Schumacher M., Guennoun R., Coirini H., De Nicola A.F., Gonzalez Deniselle M.C. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J. Steroid Biochem. Mol. Biol. 2017;174:201–216. doi: 10.1016/j.jsbmb.2017.09.015. PubMed DOI

Meyer M., Gonzalez Deniselle M.C., Garay L.I., Monachelli G.G., Lima A., Roig P., Guennoun R., Schumacher M., De Nicola A.F. Stage dependent effects of progesterone on motoneurons and glial cells of wobbler mouse spinal cord degeneration. Cell. Mol. Neurobiol. 2010;30:123–135. doi: 10.1007/s10571-009-9437-8. PubMed DOI PMC

Gonzalez Deniselle M.C., Carreras M.C., Garay L., Gargiulo-Monachelli G., Meyer M., Poderoso J.J., De Nicola A.F. Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J. Neurochem. 2012;122:185–195. doi: 10.1111/j.1471-4159.2012.07753.x. PubMed DOI

Ludwig P.E., Patil A.A., Chamczuk A.J., Agrawal D.K. Hormonal therapy in traumatic spinal cord injury. Am. J. Transl. Res. 2017;9:3881–3895. PubMed PMC

De Nicola A.F., Gonzalez S.L., Labombarda F., Gonzalez Deniselle M.C., Garay L., Guennoun R., Schumacher M. Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination. J. Mol. Neurosci. MN. 2006;28:3–15. doi: 10.1385/JMN:28:1:3. PubMed DOI

Aminmansour B., Asnaashari A., Rezvani M., Ghaffarpasand F., Amin Noorian S.M., Saboori M., Abdollahzadeh P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J. Spinal Cord Med. 2016;39:272–280. doi: 10.1080/10790268.2015.1114224. PubMed DOI PMC

Frechou M., Zhang S., Liere P., Delespierre B., Soyed N., Pianos A., Schumacher M., Mattern C., Guennoun R. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology. 2015;97:394–403. doi: 10.1016/j.neuropharm.2015.06.002. PubMed DOI

Won S., Lee J.H., Wali B., Stein D.G., Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: Involvement of the VEGF-MMP pathway. J. Cereb. Blood Flow Metab. 2014;34:72–80. doi: 10.1038/jcbfm.2013.163. PubMed DOI PMC

Jiang C., Wang J., Li X., Liu C., Chen N., Hao Y. Progesterone exerts neuroprotective effects by inhibiting inflammatory response after stroke. Inflamm. Res. 2009;58:619–624. doi: 10.1007/s00011-009-0032-8. PubMed DOI

Yousuf S., Atif F., Sayeed I., Wang J., Stein D.G. Neuroprotection by progesterone after transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Horm. Behav. 2016;84:29–40. doi: 10.1016/j.yhbeh.2016.06.002. PubMed DOI

Aggarwal R., Medhi B., Pathak A., Dhawan V., Chakrabarti A. Neuroprotective effect of progesterone on acute phase changes induced by partial global cerebral ischaemia in mice. J. Pharm. Pharmacol. 2008;60:731–737. doi: 10.1211/jpp.60.6.0008. PubMed DOI

Milani P., Mondelli M., Ginanneschi F., Mazzocchio R., Rossi A. Progesterone—New therapy in mild carpal tunnel syndrome? Study design of a randomized clinical trial for local therapy. J. Brachial Plex. Peripher. Nerve Inj. 2010;5:11. doi: 10.1186/1749-7221-5-11. PubMed DOI PMC

Ginanneschi F., Milani P., Filippou G., Mondelli M., Frediani B., Melcangi R.C., Rossi A. Evidences for antinociceptive effect of 17-alpha-hydroxyprogesterone caproate in carpal tunnel syndrome. J. Mol. Neurosci. MN. 2012;47:59–66. doi: 10.1007/s12031-011-9679-z. PubMed DOI

Bahrami M.H., Shahraeeni S., Raeissadat S.A. Comparison between the effects of progesterone versus corticosteroid local injections in mild and moderate carpal tunnel syndrome: A randomized clinical trial. BMC Musculoskelet. Disord. 2015;16:322. doi: 10.1186/s12891-015-0752-6. PubMed DOI PMC

Raeissadat S.A., Shahraeeni S., Sedighipour L., Vahdatpour B. Randomized controlled trial of local progesterone vs corticosteroid injection for carpal tunnel syndrome. Acta Neurol. Scand. 2017;136:365–371. doi: 10.1111/ane.12739. PubMed DOI

Fent K. Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. Environ. Int. 2015;84:115–130. doi: 10.1016/j.envint.2015.06.012. PubMed DOI

Zucchi S., Castiglioni S., Fent K. Progestins and antiprogestins affect gene expression in early development in zebrafish (Danio rerio) at environmental concentrations. Environ. Sci. Technol. 2012;46:5183–5192. doi: 10.1021/es300231y. PubMed DOI

Zucchi S., Castiglioni S., Fent K. Progesterone alters global transcription profiles at environmental concentrations in brain and ovary of female zebrafish (Danio rerio) Environ. Sci. Technol. 2013;47:12548–12556. doi: 10.1021/es403800y. PubMed DOI

Chang H., Wan Y., Wu S., Fan Z., Hu J. Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: Comparison to estrogens. Water Res. 2011;45:732–740. doi: 10.1016/j.watres.2010.08.046. PubMed DOI

Sauer P., Stara A., Golovko O., Valentova O., Borik A., Grabic R., Kroupova H.K. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics. Water Res. 2018;137:64–71. doi: 10.1016/j.watres.2018.02.065. PubMed DOI

Liu S., Ying G.G., Zhang R.Q., Zhou L.J., Lai H.J., Chen Z.F. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. Environ. Pollut. 2012;170:190–201. doi: 10.1016/j.envpol.2012.07.016. PubMed DOI

Chatterjee S., Majumder C.B., Roy P. Development of a yeast-based assay to determine the (anti)androgenic contaminants from pulp and paper mill effluents in India. Environ. Toxicol. Pharmacol. 2007;24:114–121. doi: 10.1016/j.etap.2007.04.006. PubMed DOI

Brockmeier E.K., Jayasinghe B.S., Pine W.E., Wilkinson K.A., Denslow N.D. Exposure to paper mill effluent at a site in North Central Florida elicits molecular-level changes in gene expression indicative of progesterone and androgen exposure. PLoS ONE. 2014;9:e106644. PubMed PMC

Kroupova H.K., Trubiroha A., Lorenz C., Contardo-Jara V., Lutz I., Grabic R., Kocour M., Kloas W. The progestin levonorgestrel disrupts gonadotropin expression and sex steroid levels in pubertal roach (Rutilus rutilus) Aquat. Toxicol. 2014;154:154–162. doi: 10.1016/j.aquatox.2014.05.008. PubMed DOI

Kumar V., Johnson A.C., Trubiroha A., Tumova J., Ihara M., Grabic R., Kloas W., Tanaka H., Kroupova H.K. The challenge presented by progestins in ecotoxicological research: A critical review. Environ. Sci. Technol. 2015;49:2625–2638. doi: 10.1021/es5051343. PubMed DOI

Raghavan R., Romano M.E., Karagas M.R., Penna F.J. Pharmacologic and Environmental Endocrine Disruptors in the Pathogenesis of Hypospadias: A Review. Curr. Environ. Health Rep. 2018;5:499–511. doi: 10.1007/s40572-018-0214-z. PubMed DOI PMC

Liang Y.Q., Xu W., Liang X., Jing Z., Pan C.G., Tian F. The synthetic progestin norethindrone causes thyroid endocrine disruption in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;236:108819. doi: 10.1016/j.cbpc.2020.108819. PubMed DOI

Liang Y.Q., Huang G.Y., Liu S.S., Zhao J.L., Yang Y.Y., Chen X.W., Tian F., Jiang Y.X., Ying G.G. Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio) Aquat. Toxicol. 2015;160:172–179. doi: 10.1016/j.aquatox.2015.01.006. PubMed DOI

Liang Y.Q., Huang G.Y., Ying G.G., Liu S.S., Jiang Y.X., Liu S., Peng F.J. A time-course transcriptional kinetics of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes in zebrafish eleutheroembryos after exposure to norgestrel. Environ. Toxicol. Chem. 2015;34:112–119. doi: 10.1002/etc.2766. PubMed DOI

Runnalls T.J., Beresford N., Losty E., Scott A.P., Sumpter J.P. Several synthetic progestins with different potencies adversely affect reproduction of fish. Environ. Sci. Technol. 2013;47:2077–2084. doi: 10.1021/es3048834. PubMed DOI

Zeilinger J., Steger-Hartmann T., Maser E., Goller S., Vonk R., Lange R. Effects of synthetic gestagens on fish reproduction. Environ. Toxicol. Chem. 2009;28:2663–2670. doi: 10.1897/08-485.1. PubMed DOI

Svensson J., Fick J., Brandt I., Brunstrom B. The synthetic progestin levonorgestrel is a potent androgen in the three-spined stickleback (Gasterosteus aculeatus) Environ. Sci. Technol. 2013;47:2043–2051. doi: 10.1021/es304305k. PubMed DOI

Liu S., Chen H., Xu X.R., Liu S.S., Sun K.F., Zhao J.L., Ying G.G. Steroids in marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioconcentration, and human dietary exposure. Sci. Total Environ. 2015;502:400–407. doi: 10.1016/j.scitotenv.2014.09.039. PubMed DOI

Sauer P., Tumova J., Steinbach C., Golovko O., Komen H., Maillot-Marechal E., Machova J., Grabic R., Ait-Aissa S., Kocour Kroupova H. Chronic simultaneous exposure of common carp (Cyprinus carpio) from embryonic to juvenile stage to drospirenone and gestodene at low ng/L level caused intersex. Ecotoxicol. Environ. Saf. 2020;188:109912. doi: 10.1016/j.ecoenv.2019.109912. PubMed DOI

Silva E., Rajapakse N., Kortenkamp A. Something from “nothing”—Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ. Sci. Technol. 2002;36:1751–1756. doi: 10.1021/es0101227. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Prolactin and oxytocin: potential targets for migraine treatment

. 2023 Mar 27 ; 24 (1) : 31. [epub] 20230327

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...