Is there an association between pelvic organ prolapse and oxidative stress? A systematic review
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
35925910
PubMed Central
PMC9352098
DOI
10.1371/journal.pone.0271467
PII: PONE-D-21-39946
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- oxidační stres MeSH
- pánevní dno MeSH
- prolaps pánevních orgánů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
INTRODUCTION AND HYPOTHESIS: The pathophysiology of pelvic organ prolapse (POP) has not been fully elucidated, although accumulating evidence suggests that oxidative stress is involved. The present systematic review comprehensively discusses this topic. METHODS: The PubMed/Medline, Scopus, and Web of Science databases were searched for relevant studies published up to May 2021. This systematic review was registered in the PROSPERO database (registration number CRD42021242240). Two independent researchers screened and selected articles that fulfilled predefined inclusion criteria, performed a quality assessment, and extracted the relevant data. Of 901 original articles retrieved, 8 fulfilled the selection criteria and were included in the review. RESULTS: Elevated levels of markers of oxidative stress, such as advanced glycation end products, hydroxynonenal and hydroxydeoxyguanosine, were found in various parts of the pelvic floor of patients with POP. Accordingly, the levels of glutathione peroxidase and superoxide dismutase, known as major antioxidant enzymes, were reduced, compared to those in healthy controls. Levels of two other markers (mitofusin 2 and nuclear factor erythroid derived 2) also support hypotheses suggesting the involvement of oxidative stress in POP. CONCLUSIONS: In the literature available, an association between oxidative stress and pelvic organ prolapse was confirmed.
Zobrazit více v PubMed
Barber MD, Maher C. Epidemiology and outcome assessment of pelvic organ prolapse. Int Urogynecol J. 2013;24(11):1783–90. doi: 10.1007/s00192-013-2169-9 PubMed DOI
Vergeldt TF, Weemhoff M, IntHout J, Kluivers KB. Risk factors for pelvic organ prolapse and its recurrence: a systematic review. Int Urogynecol J. 2015;26(11):1559–73. doi: 10.1007/s00192-015-2695-8 PubMed DOI PMC
Delancey JO, Kane Low L, Miller JM, Patel DA, Tumbarello JA. Graphic integration of causal factors of pelvic floor disorders: an integrated life span model. Am J Obstet Gynecol. 2008;199(6):610.e1–5. doi: 10.1016/j.ajog.2008.04.001 PubMed DOI PMC
Dietz HP. Pelvic floor trauma following vaginal delivery. Curr Opin Obstet Gynecol. 2006;18(5):528–37. doi: 10.1097/01.gco.0000242956.40491.1e PubMed DOI
Urbankova I, Grohregin K, Hanacek J, Krcmar M, Feyereisl J, Deprest J, et al.. The effect of the first vaginal birth on pelvic floor anatomy and dysfunction. Int Urogynecol J. 2019;30(10):1689–96. doi: 10.1007/s00192-019-04044-2 PubMed DOI PMC
Dietz HP, Wilson PD. Childbirth and pelvic floor trauma. Best Pract Res Clin Obstet Gynaecol. 2005;19(6):913–24. doi: 10.1016/j.bpobgyn.2005.08.009 PubMed DOI
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097 PubMed DOI PMC
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. doi: 10.1186/s13643-016-0384-4 PubMed DOI PMC
S M, Z M, C T, E A, K S, R S, et al.. Chapter 7: Systematic reviews of etiology and risk. In: Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E MZEJBIRsMTJBI, 2017., editor. Available from https://jbiglobal/sites/default/files/2021-03/Checklist_for_Analytical_Cross_Sectional_Studiesdocx.valid5/2021ed2017.
Chen HY, Lu Y, Qi Y, Bai WP, Liao QP. Relationship between the expressions of mitofusin-2 and procollagen in uterosacral ligament fibroblasts of postmenopausal patients with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol. 2014;174:141–5. doi: 10.1016/j.ejogrb.2013.11.024 PubMed DOI
Kim EJ, Chung N, Park SH, Lee KH, Kim SW, Kim JY, et al.. Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol. 2013;189(2):588–94. doi: 10.1016/j.juro.2012.09.041 PubMed DOI
Liu C, Yang Q, Fang G, Li BS, Wu DB, Guo WJ, et al.. Collagen metabolic disorder induced by oxidative stress in human uterosacral ligament‑derived fibroblasts: A possible pathophysiological mechanism in pelvic organ prolapse. Mol Med Rep. 2016;13(4):2999–3008. doi: 10.3892/mmr.2016.4919 PubMed DOI PMC
Fang G, Hong L, Liu C, Yang Q, Zhang Q, Li Y, et al.. Oxidative status of cardinal ligament in pelvic organ prolapse. Exp Ther Med. 2018;16(4):3293–302. doi: 10.3892/etm.2018.6633 PubMed DOI PMC
Vetuschi A, Pompili S, Gallone A, D’Alfonso A, Carbone MG, Carta G, et al.. Immunolocalization of Advanced Glycation End Products, Mitogen Activated Protein Kinases, and Transforming Growth Factor-β/Smads in Pelvic Organ Prolapse. J Histochem Cytochem. 2018;66(9):673–86. doi: 10.1369/0022155418772798 PubMed DOI PMC
Lin T, Ji Y, Zhao Y, Xia Z. Expression of COX-2 and Nrf2/GPx3 in the anterior vaginal wall tissues of women with pelvic organ prolapse. Arch Gynecol Obstet. 2021;303(5):1245–53. doi: 10.1007/s00404-020-05913-8 PubMed DOI
Chen Y, Huang J, Hu C, Hua K. Relationship of advanced glycation end products and their receptor to pelvic organ prolapse. Int J Clin Exp Pathol. 2015;8(3):2288–99. PubMed PMC
Li BS, Hong L, Min J, Wu DB, Hu M, Guo WJ. The expression of glutathione peroxidase-1 and the anabolism of collagen regulation pathway transforming growth factor-beta1-connective tissue growth factor in women with uterine prolapse and the clinic significance. Clin Exp Obstet Gynecol. 2013;40(4):586–90. PubMed
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al.. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid Redox Signal. 2015;23(14):1144–70. doi: 10.1089/ars.2015.6317 PubMed DOI PMC
Chen YS, Wang XJ, Feng W, Hua KQ. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways. Int J Mol Med. 2017;40(4):987–98. doi: 10.3892/ijmm.2017.3097 PubMed DOI PMC
Alarab M, Kufaishi H, Lye S, Drutz H, Shynlova O. Expression of extracellular matrix-remodeling proteins is altered in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Reprod Sci. 2014;21(6):704–15. doi: 10.1177/1933719113512529 PubMed DOI PMC
Dviri M, Leron E, Dreiher J, Mazor M, Shaco-Levy R. Increased matrix metalloproteinases-1,-9 in the uterosacral ligaments and vaginal tissue from women with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol. 2011;156(1):113–7. doi: 10.1016/j.ejogrb.2010.12.043 PubMed DOI
Chaudhary P, Sharma R, Sharma A, Vatsyayan R, Yadav S, Singhal SS, et al.. Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling. Biochemistry. 2010;49(29):6263–75. doi: 10.1021/bi100517x PubMed DOI PMC
Wang X, Zhou Y, Peng C, Chen H, Lu Y. Mitofusin2 regulates the proliferation and function of fibroblasts: The possible mechanisms underlying pelvic organ prolapse development. Mol Med Rep. 2019;20(3):2859–66. doi: 10.3892/mmr.2019.10501 PubMed DOI
Choy KW, Liu YM, Chu CY, Wang CC, Lui WT, Lee LL, et al.. High isoprostane level in cardinal ligament-derived fibroblasts and urine sample of women with uterine prolapse. Bjog. 2008;115(9):1179–83. doi: 10.1111/j.1471-0528.2008.01806.x PubMed DOI
Findik RB, İlkaya F, Guresci S, Guzel H, Karabulut S, Karakaya J. Effect of vitamin C on collagen structure of cardinal and uterosacral ligaments during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2016;201:31–5. doi: 10.1016/j.ejogrb.2016.03.022 PubMed DOI
Allott BS, Dittmer KE, Kenyon AG, Elder PA. Preliminary investigation of the effect of treating sheep during pregnancy with a vitamin A, D, E formulation on the incidence of vaginal prolapse. N Z Vet J. 2020;68(3):193–7. doi: 10.1080/00480169.2019.1696719 PubMed DOI
Zhang Q, Liu C, Hong S, Min J, Yang Q, Hu M, et al.. Excess mechanical stress and hydrogen peroxide remodel extracellular matrix of cultured human uterosacral ligament fibroblasts by disturbing the balance of MMPs/TIMPs via the regulation of TGF‑β1 signaling pathway. Mol Med Rep. 2017;15(1):423–30. doi: 10.3892/mmr.2016.5994 PubMed DOI
Khassaf M, Child RB, McArdle A, Brodie DA, Esanu C, Jackson MJ. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol (1985). 2001;90(3):1031–5. doi: 10.1152/jappl.2001.90.3.1031 PubMed DOI