• This record comes from PubMed

Synthesis and Antimycobacterial Activity of Isoniazid Derivatives Tethered with Aliphatic Amines

. 2022 ; 22 (32) : 2695-2706.

Language English Country United Arab Emirates Media print

Document type Journal Article

Grant support
20-19638Y Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN
260 547 ERDF and SVV

BACKGROUND: There is an urgent need for new antitubercular compounds. Modification of antimycobacterial isonicotinohydrazide at hydrazide N2 provided antimycobacterial active compounds. OBJECTIVE: Combining this scaffold with various aliphatic amines that are also frequently present in antitubercular compounds, we have designed, synthesized, and evaluated twenty-three N- (cyclo)alkyl-2-(2-isonicotinoylhydrazineylidene)propanamides and their analogues as potential antimycobacterial compounds. By increasing lipophilicity, we intended to facilitate the penetration of mycobacteria's highly impermeable cell wall. METHODS: The target amides were prepared via condensation of isoniazid and pyruvic acid, followed by carbodiimide-mediated coupling with yields from 35 to 98 %. The compounds were screened against Mycobacterium tuberculosis H37Rv and two nontuberculous mycobacteria (M. avium, M. kansasii). RESULTS: All the derivatives exhibited low minimum inhibitory concentrations (MIC) from ≤0.125 and 2 μM against M. tuberculosis and nontuberculous mycobacteria, respectively. The most active molecules were substituted by a longer n-alkyl from C8 to C14. Importantly, the compounds showed comparable or even several-fold lower MIC than parent isonicotinohydrazide. Based on in silico predictions, a vast majority of the derivatives share suitable physicochemical properties and structural features for drug-likeness. CONCLUSION: Presented amides are promising antimycobacterial agents.

See more in PubMed

Global Tuberculosis Report 2020 Geneva: WHOAvailable from: 2020

Pinheiro D.O.; Pessoa M.S.L.; Lima C.F.C.; Holanda J.L.B.; Tuberculosis and coronavirus disease 2019 coinfection. Rev Soc Bras Med Trop 2020,53,e20200671 PubMed DOI

Seung K.J.; Keshavjee S.; Rich M.L.; Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb Perspect Med 2015,5(9),a017863 PubMed DOI

Rychtarčíková Z.; Krátký M.; Gazvoda M.; Komlóová M.; Polanc S.; Kočevar M.; Stolaříková J.; Vinšová J.; N-substituted 2-isonicotinoylhydrazinecarboxamides new antimycobacterial active molecules. Molecules 2014,19(4),3851-3868 PubMed DOI

Vosátka R.; Krátký M.; Švarcová M.; Janoušek J.; Stolaříková, J.; Madacki, J.; Huszár, S.; Mikušová, K.; Korduláková, J.; Trejtnar, F.; Vinšová, J. New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. Eur J Med Chem 2018,151,824-835 PubMed DOI

Rodrigues M.O.; Cantos J.B.; D’Oca C.R.M.; Soares K.L.; Coelho T.S.; Piovesan L.A.; Russowsky D.; da Silva P.A.; D’Oca M.G.M.; Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids. Bioorg Med Chem 2013,21(22),6910-6914 PubMed DOI

Pflégr V.; Horváth L.; Stolaříková J.; Pál A.; Korduláková J.; Bősze S.; Vinšová J.; Krátký M.; Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. Eur J Med Chem 2021,223,113668 PubMed DOI

Pflégr V.; Maixnerová J.; Stolaříková J.; Pál A.; Korduláková J.; Trejtnar F.; Vinšová J.; Krátký M.; Design and synthesis of highly active antimycobacterial mutual esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid. Pharmaceuticals (Basel) 2021,14(12),1302 PubMed DOI

Sacksteder K.A.; Protopopova M.; Barry C.E.; Andries K.; Nacy C.A.; Discovery and development of SQ109: A new antitubercular drug with a novel mechanism of action. Future Microbiol 2012,7(7),823-837 PubMed DOI

Kryukova L.M.; Zelenin K.N.; Értevtsian L.N.; Dobrego V.A.; Synthesis and bacteriostatic activity of thiosemicarbazones and isonicotinoylhydrazones of pyruvic acid. Pharm Chem J 1977,11,1609-1611 DOI

Vila-Viçosa D.; Victor B.L.; Ramos J.; Machado D.; Viveiros M.; Switala J.; Loewen P.C.; Leitão R.; Martins F.; Machuqueiro M.; Insights on the mechanism of action of INH-C10 as an antitubercular prodrug. Mol Pharm 2017,14(12),4597-4605 PubMed DOI

Ventura C.; Latino D.A.R.S.; Martins F.; Comparison of multiple linear regressions and neural networks based QSAR models for the design of new antitubercular compounds. Eur J Med Chem 2013,70,831-845 PubMed DOI

Martins F.; Santos S.; Ventura C.; Elvas-Leitão R.; Santos L.; Vitorino S.; Reis M.; Miranda V.; Correia H.F.; Aires-de-Sousa J.; Kovalishyn V.; Latino D.A.R.S.; Ramos J.; Viveiros M.; Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Eur J Med Chem 2014,81,119-138 PubMed DOI

Baldi A.; Computational approaches for drug design and discovery: An overview. Sys Rev Pharm 2010,1,99-105 DOI

Mohan S.B.; Dinda S.C.; Kumar R.B.; Panda J.R.; Computational approaches for drug design and discovery process. J Curr Pharm Res 2012,2,600-611 DOI

Hung C.L.; Chen C.C.; Computational approaches for drug discovery. Drug Dev Res 2014,75(6),412-418 PubMed DOI

Brogi S.; Computational approaches for drug discovery. Molecules 2019,24(17),3061 PubMed DOI

Daina A.; Michielin O.; Zoete V.; SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017,7,42717 PubMed DOI

Delaney J.S.; ESOL: Estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci 2004,44(3),1000-1005 PubMed DOI

Daina A.; Zoete V.; A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016,11(11),1117-1121 PubMed DOI

Lipinski C.A.; Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004,1(4),337-341 PubMed DOI

Ghose A.K.; Viswanadhan V.N.; Wendoloski J.J.; A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1999,1(1),55-68 PubMed DOI

Baell J.B.; Holloway G.A.; New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010,53(7),2719-2740 PubMed DOI

Baell J.B.; Nissink J.W.M.; Seven year itch: Pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chem Biol 2018,13(1),36-44 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...