• This record comes from PubMed

Fibrinogenolysis in Venom-Induced Consumption Coagulopathy after Viperidae Snakebites: A Pilot Study

. 2022 Aug 06 ; 14 (8) : . [epub] 20220806

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Envenomations that are caused by Viperidae snakebites are mostly accompanied by venom-induced consumption coagulopathy (VICC) with defibrination. The clinical course of VICC is well described; however, reports about its detailed effects in the hemocoagulation systems of patients are sparse. In this pilot study, we prospectively analyzed the changes in plasma fibrinogen that were caused by the envenomation of six patients by five non-European Viperidae snakes. Western blot analysis was employed and fibrinogen fragments were visualized with the use of specific anti-human fibrinogen antibodies. All of the studied subjects experienced hypo- or afibrinogenemia. The western blot analysis demonstrated fibrinogenolysis of the fibrinogen chains in all of the cases. Fibrinogenolysis was considered to be a predominant cause of defibrination in Crotalus, Echis, and Macrovipera envenomation; while, in the cases of VICC that were caused by Atheris and Calloselasma envenomation, the splitting of the fibrinogen chains was present less significantly.

See more in PubMed

White J. Snake venom and coagulopathy. Toxicon. 2005;45:951–967. doi: 10.1016/j.toxicon.2005.02.030. PubMed DOI

Al-Sadawi M., Mohamadpour M., Zhyvotovska A., Ahmad T., Schechter J., Soliman Y., McFarlane S.I. Cerebrovascular accident and snake envenomation: A scoping study. Int. J. Clin. Res. Trials. 2019;4:133. doi: 10.15344/2456-8007/2019/133. PubMed DOI

Noutsos T., Currie B.J., Wijewickrama E.S., Isbister G.K. Snakebite associated thrombotic microangiopathy and recommendations for clinical practice. Toxins. 2022;14:57. doi: 10.3390/toxins14010057. PubMed DOI PMC

Lu Q., Clemetson J.M., Clemetson K.J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005;3:1791–1799. doi: 10.1111/j.1538-7836.2005.01358.x. PubMed DOI

Berling I., Isbister G.K. Hematologic effect and complications of snake envenoming. Transfus. Med. Rev. 2015;29:82–89. doi: 10.1016/j.tmrv.2014.09.005. PubMed DOI

Mosesson M.W., Siebenlist K.R., Meh D.A. The structure and biological features of fibrinogen and fibrin. Ann. N. Y. Acad. Sci. 2001;936:11–30. doi: 10.1111/j.1749-6632.2001.tb03491.x. PubMed DOI

Valenta J., Stach Z., Porizka M., Michalek P. Analysis of hemocoagulation tests for prediction of venom-induced consumption coagulopathy development after Viperidae bite. Bratisl. Med. J. 2019;120:566–568. doi: 10.4149/BLL_2019_092. PubMed DOI

Slagboom J., Kool J., Harrison R.A., Casewell N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017;177:947–959. doi: 10.1111/bjh.14591. PubMed DOI PMC

Kini R.M., Rao V.S., Joseph J.S. Procoagulant proteins from snake venoms. Haemostasis. 2001;31:218–224. doi: 10.1159/000048066. PubMed DOI

Swenson S., Markland F.S., Jr. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 2005;45:1021–1039. doi: 10.1016/j.toxicon.2005.02.027. PubMed DOI

Senis Y.A., Kim P.Y., Fuller G.L.J., García A., Prabhakar S., Wilkinson M.C., Brittan H., Zitzmann N., Wait R., Warrell D.A., et al. Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara. Biochim. Biophys. Acta. 2006;1764:863–871. doi: 10.1016/j.bbapap.2006.03.004. PubMed DOI

Wang H., Chen X., Zhou M., Wang L., Chen T., Shaw C. Molecular characterization of three novel phospholipase A2 proteins from the venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxins. 2016;8:168. doi: 10.3390/toxins8060168. PubMed DOI PMC

McCleary R.J.R., Kini R.M. Snake bites and hemostasis/thrombosis. Thromb. Res. 2013;132:642–646. doi: 10.1016/j.thromres.2013.09.031. PubMed DOI

Rojnuckarin P. Snake Venom and Hemostasis. In: Gopalakrishnakone P., Faiz A., Fernando R., Gnanathasan C., Habib A., Yang C.C., editors. Clinical Toxinology in Asia Pacific and Africa. Toxinology. Volume 2. Springer; Dordrecht, The Netherlands: 2015. pp. 415–435. DOI

Isbister G.K. Procoagulant snake toxins: Laboratory studies, diagnosis, and understanding snakebite coagulopathy. Semin. Thromb. Hemost. 2009;35:93–103. doi: 10.1055/s-0029-1214152. PubMed DOI

Markland F.S. Snake venom and the hemostatic system. Toxicon. 1998;36:1749–1800. doi: 10.1016/S0041-0101(98)00126-3. PubMed DOI

Budzynski A.Z., Pandya V.B., Rubin R.N., Brizuela B.S., Soszka T., Steward G.J. Fibrinogenolytic fibrinogenemia after envenomation by Western diamondback rattlesnake (Crotalus atrox) Blood. 1984;63:1–14. doi: 10.1182/blood.V63.1.1.1. PubMed DOI

Paes Leme A.F., Prezoto B.C., Yamashiro E.T., Bertholm L.A., Tashima K., Klitzke C.F., Camargo A.C.M., Serrano S.M.T. Bothrops protease A, a unique highly glycosylated serine proteinase, is a potent, specific fibrinogenolytic agent. J. Thromb. Haemost. 2008;6:1363–1372. doi: 10.1111/j.1538-7836.2008.02995.x. PubMed DOI

Lancellotti S., Rutella S., De Filippis V., Pozzi N., Rocca B., De Cristofaro R. Fibrinogen-elongated chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. J. Biol. Chem. 2008;283:30193–30204. doi: 10.1074/jbc.M803659200. PubMed DOI PMC

Maruñak S.L., Acosta O.C., Leiva L.C., Ruiz R.M., Aguirre M.V., Teibler P. Mice plasma fibrinogen consumption by thrombin-like enzyme present in rattlesnake venom from the north-east region of Argentina. Medicina. 2004;64:509–517. PubMed

Pizzo S.V., Schwartz M.L., Hill R.L., McKee P.A. The effect of plasmin on the subunit structure of human fibrinogen. J. Biol. Chem. 1972;247:636–645. doi: 10.1016/S0021-9258(19)45656-1. PubMed DOI

Mosesson M.W., Holyst T., Hernandez I., Siebenlist K.R. Evidence for covalent linkage between some plasma a2-antiplasmin molecules and Aa chains of circulating fibrinogen. J. Thromb. Haemost. 2013;11:995–998. doi: 10.1111/jth.12193. PubMed DOI

Rodrigues C.R., Molina Molina D.A., de Souza D.L.N., Cardenas J., Costal-Oliveira F., Guerra-Duarte C., Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon. 2022;207:31–42. doi: 10.1016/j.toxicon.2021.12.008. PubMed DOI

Walker J.B., Nesheim M.E. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J. Biol. Chem. 1999;274:5201–5212. doi: 10.1074/jbc.274.8.5201. PubMed DOI

Greenberg C.S., Enghild J.J., Mary A., Dobson J.V., Achyuthan K.E. Isolation of a fibrin-binding fragment from blood coagulation factor XIII capable of cross-linking fibrin(ogen) Biochem. J. 1988;256:1013–1019. doi: 10.1042/bj2561013. PubMed DOI PMC

Mebs D., Holada K., Kornalik F., Simak J., Vankova H., Müller D., Schoenemann H., Lange H., Herrmann H.W. Severe coagulopathy after a bite of a green bush viper (Atheris squamiger): Case report and biochemical analysis of the venom. Toxicon. 1998;36:1333–1340. doi: 10.1016/S0041-0101(98)00008-7. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...