Fibrinogenolysis in Venom-Induced Consumption Coagulopathy after Viperidae Snakebites: A Pilot Study
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36006200
PubMed Central
PMC9415103
DOI
10.3390/toxins14080538
PII: toxins14080538
Knihovny.cz E-resources
- Keywords
- Viperidae, fibrinogen, snakebite, venom-induced consumption coagulopathy, western blot,
- MeSH
- Antivenins MeSH
- Disseminated Intravascular Coagulation * MeSH
- Fibrinogen MeSH
- Humans MeSH
- Pilot Projects MeSH
- Snake Bites * complications MeSH
- Viperidae * MeSH
- Venoms MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antivenins MeSH
- Fibrinogen MeSH
- Venoms MeSH
Envenomations that are caused by Viperidae snakebites are mostly accompanied by venom-induced consumption coagulopathy (VICC) with defibrination. The clinical course of VICC is well described; however, reports about its detailed effects in the hemocoagulation systems of patients are sparse. In this pilot study, we prospectively analyzed the changes in plasma fibrinogen that were caused by the envenomation of six patients by five non-European Viperidae snakes. Western blot analysis was employed and fibrinogen fragments were visualized with the use of specific anti-human fibrinogen antibodies. All of the studied subjects experienced hypo- or afibrinogenemia. The western blot analysis demonstrated fibrinogenolysis of the fibrinogen chains in all of the cases. Fibrinogenolysis was considered to be a predominant cause of defibrination in Crotalus, Echis, and Macrovipera envenomation; while, in the cases of VICC that were caused by Atheris and Calloselasma envenomation, the splitting of the fibrinogen chains was present less significantly.
See more in PubMed
White J. Snake venom and coagulopathy. Toxicon. 2005;45:951–967. doi: 10.1016/j.toxicon.2005.02.030. PubMed DOI
Al-Sadawi M., Mohamadpour M., Zhyvotovska A., Ahmad T., Schechter J., Soliman Y., McFarlane S.I. Cerebrovascular accident and snake envenomation: A scoping study. Int. J. Clin. Res. Trials. 2019;4:133. doi: 10.15344/2456-8007/2019/133. PubMed DOI
Noutsos T., Currie B.J., Wijewickrama E.S., Isbister G.K. Snakebite associated thrombotic microangiopathy and recommendations for clinical practice. Toxins. 2022;14:57. doi: 10.3390/toxins14010057. PubMed DOI PMC
Lu Q., Clemetson J.M., Clemetson K.J. Snake venoms and hemostasis. J. Thromb. Haemost. 2005;3:1791–1799. doi: 10.1111/j.1538-7836.2005.01358.x. PubMed DOI
Berling I., Isbister G.K. Hematologic effect and complications of snake envenoming. Transfus. Med. Rev. 2015;29:82–89. doi: 10.1016/j.tmrv.2014.09.005. PubMed DOI
Mosesson M.W., Siebenlist K.R., Meh D.A. The structure and biological features of fibrinogen and fibrin. Ann. N. Y. Acad. Sci. 2001;936:11–30. doi: 10.1111/j.1749-6632.2001.tb03491.x. PubMed DOI
Valenta J., Stach Z., Porizka M., Michalek P. Analysis of hemocoagulation tests for prediction of venom-induced consumption coagulopathy development after Viperidae bite. Bratisl. Med. J. 2019;120:566–568. doi: 10.4149/BLL_2019_092. PubMed DOI
Slagboom J., Kool J., Harrison R.A., Casewell N.R. Haemotoxic snake venoms: Their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 2017;177:947–959. doi: 10.1111/bjh.14591. PubMed DOI PMC
Kini R.M., Rao V.S., Joseph J.S. Procoagulant proteins from snake venoms. Haemostasis. 2001;31:218–224. doi: 10.1159/000048066. PubMed DOI
Swenson S., Markland F.S., Jr. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 2005;45:1021–1039. doi: 10.1016/j.toxicon.2005.02.027. PubMed DOI
Senis Y.A., Kim P.Y., Fuller G.L.J., García A., Prabhakar S., Wilkinson M.C., Brittan H., Zitzmann N., Wait R., Warrell D.A., et al. Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara. Biochim. Biophys. Acta. 2006;1764:863–871. doi: 10.1016/j.bbapap.2006.03.004. PubMed DOI
Wang H., Chen X., Zhou M., Wang L., Chen T., Shaw C. Molecular characterization of three novel phospholipase A2 proteins from the venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera. Toxins. 2016;8:168. doi: 10.3390/toxins8060168. PubMed DOI PMC
McCleary R.J.R., Kini R.M. Snake bites and hemostasis/thrombosis. Thromb. Res. 2013;132:642–646. doi: 10.1016/j.thromres.2013.09.031. PubMed DOI
Rojnuckarin P. Snake Venom and Hemostasis. In: Gopalakrishnakone P., Faiz A., Fernando R., Gnanathasan C., Habib A., Yang C.C., editors. Clinical Toxinology in Asia Pacific and Africa. Toxinology. Volume 2. Springer; Dordrecht, The Netherlands: 2015. pp. 415–435. DOI
Isbister G.K. Procoagulant snake toxins: Laboratory studies, diagnosis, and understanding snakebite coagulopathy. Semin. Thromb. Hemost. 2009;35:93–103. doi: 10.1055/s-0029-1214152. PubMed DOI
Markland F.S. Snake venom and the hemostatic system. Toxicon. 1998;36:1749–1800. doi: 10.1016/S0041-0101(98)00126-3. PubMed DOI
Budzynski A.Z., Pandya V.B., Rubin R.N., Brizuela B.S., Soszka T., Steward G.J. Fibrinogenolytic fibrinogenemia after envenomation by Western diamondback rattlesnake (Crotalus atrox) Blood. 1984;63:1–14. doi: 10.1182/blood.V63.1.1.1. PubMed DOI
Paes Leme A.F., Prezoto B.C., Yamashiro E.T., Bertholm L.A., Tashima K., Klitzke C.F., Camargo A.C.M., Serrano S.M.T. Bothrops protease A, a unique highly glycosylated serine proteinase, is a potent, specific fibrinogenolytic agent. J. Thromb. Haemost. 2008;6:1363–1372. doi: 10.1111/j.1538-7836.2008.02995.x. PubMed DOI
Lancellotti S., Rutella S., De Filippis V., Pozzi N., Rocca B., De Cristofaro R. Fibrinogen-elongated chain inhibits thrombin-induced platelet response, hindering the interaction with different receptors. J. Biol. Chem. 2008;283:30193–30204. doi: 10.1074/jbc.M803659200. PubMed DOI PMC
Maruñak S.L., Acosta O.C., Leiva L.C., Ruiz R.M., Aguirre M.V., Teibler P. Mice plasma fibrinogen consumption by thrombin-like enzyme present in rattlesnake venom from the north-east region of Argentina. Medicina. 2004;64:509–517. PubMed
Pizzo S.V., Schwartz M.L., Hill R.L., McKee P.A. The effect of plasmin on the subunit structure of human fibrinogen. J. Biol. Chem. 1972;247:636–645. doi: 10.1016/S0021-9258(19)45656-1. PubMed DOI
Mosesson M.W., Holyst T., Hernandez I., Siebenlist K.R. Evidence for covalent linkage between some plasma a2-antiplasmin molecules and Aa chains of circulating fibrinogen. J. Thromb. Haemost. 2013;11:995–998. doi: 10.1111/jth.12193. PubMed DOI
Rodrigues C.R., Molina Molina D.A., de Souza D.L.N., Cardenas J., Costal-Oliveira F., Guerra-Duarte C., Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon. 2022;207:31–42. doi: 10.1016/j.toxicon.2021.12.008. PubMed DOI
Walker J.B., Nesheim M.E. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J. Biol. Chem. 1999;274:5201–5212. doi: 10.1074/jbc.274.8.5201. PubMed DOI
Greenberg C.S., Enghild J.J., Mary A., Dobson J.V., Achyuthan K.E. Isolation of a fibrin-binding fragment from blood coagulation factor XIII capable of cross-linking fibrin(ogen) Biochem. J. 1988;256:1013–1019. doi: 10.1042/bj2561013. PubMed DOI PMC
Mebs D., Holada K., Kornalik F., Simak J., Vankova H., Müller D., Schoenemann H., Lange H., Herrmann H.W. Severe coagulopathy after a bite of a green bush viper (Atheris squamiger): Case report and biochemical analysis of the venom. Toxicon. 1998;36:1333–1340. doi: 10.1016/S0041-0101(98)00008-7. PubMed DOI