Effect of Human Platelet Lysate as Cultivation Nutrient Supplement on Human Natal Dental Pulp Stem Cell In Vitro Expansion

. 2022 Aug 08 ; 12 (8) : . [epub] 20220808

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36008985

Despite several scientific or ethical issues, fetal bovine serum (FBS) remains the standard nutrient supplement in the mesenchymal stem cell cultivation medium. Cell amplification plays an important role in human stem cell therapies. Increasing interest in this field has supported attempts to find suitable human alternatives to FBS for in vitro cell propagation. Human platelet lysate (hPL) has recently been determined as one of them. Our study aimed to evaluate the influence of 2% hPL in the growth medium for in vitro expansion of human natal dental pulp stem cells (hNDP-SCs). The effect was determined on proliferation rate, viability, phenotype profile, expression of several markers, relative telomere length change, and differentiation potential of four lineages of hNDP-SCs. As a control, hNDP-SCs were simultaneously cultivated in 2% FBS. hNDP-SCs cultivated in hPL showed a statistically significantly higher proliferation rate in initial passages. We did not observe a statistically significant effect on mesenchymal stem cell marker (CD29, CD44, CD73, CD90) or stromal-associated marker (CD13, CD166) expression. The cell viability, relative telomere length, or multipotency remained unaffected in hNDP-SCs cultivated in hPL-medium. In conclusion, hPL produced under controlled and standardized conditions is an efficient serum supplement for in vitro expansion of hNDP-SCs.

Zobrazit více v PubMed

Mhaske S., Yuwanati M.B., Mhaske A., Ragavendra R., Kamath K., Saawarn S. Natal and neonatal teeth: An overview of the literature. ISRN Pediatr. 2013;2013:956269. doi: 10.1155/2013/956269. PubMed DOI PMC

Leung A.K., Robson W.L. Natal teeth: A review. J. Natl. Med. Assoc. 2006;98:226–228. PubMed PMC

Leung A.K. Natal teeth. Am. J. Dis. Child. 1986;140:249–251. doi: 10.1001/archpedi.1986.02140170075033. PubMed DOI

Seminario A.L., Ivancaková R. Natal and neonatal teeth. Acta Med. 2004;47:229–233. doi: 10.14712/18059694.2018.96. PubMed DOI

Kates G.A., Needleman H.L., Holmes L.B. Natal and neonatal teeth: A clinical study. J. Am. Dent. Assoc. 1984;109:441–443. doi: 10.14219/jada.archive.1984.0415. PubMed DOI

Sureshkumar R., McAulay A.H. Natal and neonatal teeth. Arch. Dis. Child. Fetal Neonatal Ed. 2002;87:F227. doi: 10.1136/fn.87.3.F227. PubMed DOI PMC

Karaöz E., Doğan B.N., Aksoy A., Gacar G., Akyüz S., Ayhan S., Genç Z.S., Yürüker S., Duruksu G., Demircan P.C., et al. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem. Cell Biol. 2010;133:95–112. doi: 10.1007/s00418-009-0646-5. PubMed DOI

Akpinar G., Kasap M., Aksoy A., Duruksu G., Gacar G., Karaoz E. Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int. 2014;2014:457059. doi: 10.1155/2014/457059. PubMed DOI PMC

van der Valk J., Bieback K., Buta C., Cochrane B., Dirks W.G., Fu J., Hickman J.J., Hohensee C., Kolar R., Liebsch M., et al. Fetal Bovine Serum (FBS): Past—Present—Future. Altex. 2018;35:99–118. doi: 10.14573/altex.1705101. PubMed DOI

Heiskanen A., Satomaa T., Tiitinen S., Laitinen A., Mannelin S., Impola U., Mikkola M., Olsson C., Miller-Podraza H., Blomqvist M., et al. N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells. 2007;25:197–202. doi: 10.1634/stemcells.2006-0444. PubMed DOI

Sundin M., Ringdén O., Sundberg B., Nava S., Götherström C., Le Blanc K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica. 2007;92:1208–1215. doi: 10.3324/haematol.11446. PubMed DOI

Lang S., Loibl M., Herrmann M. Platelet-Rich Plasma in Tissue Engineering: Hype and Hope. Eur. Surg. Res. 2018;59:265–275. doi: 10.1159/000492415. PubMed DOI

Hawkes P.W. Fetal bovine serum: Geographic origin and regulatory relevance of viral contamination. Bioresour. Bioprocess. 2015;2:34. doi: 10.1186/s40643-015-0063-7. DOI

Bieback K. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus. Med. HemoTher. 2013;40:326–335. doi: 10.1159/000354061. PubMed DOI PMC

Burnouf T., Strunk D., Koh M.B., Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016;76:371–387. doi: 10.1016/j.biomaterials.2015.10.065. PubMed DOI

Doucet C., Ernou I., Zhang Y., Llense J.R., Begot L., Holy X., Lataillade J.J. Platelet lysates promote mesenchymal stem cell expansion: A safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol. 2005;205:228–236. doi: 10.1002/jcp.20391. PubMed DOI

Schallmoser K., Bartmann C., Rohde E., Reinisch A., Kashofer K., Stadelmeyer E., Drexler C., Lanzer G., Linkesch W., Strunk D. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion. 2007;47:1436–1446. doi: 10.1111/j.1537-2995.2007.01220.x. PubMed DOI

Marx R.E., Carlson E.R., Eichstaedt R.M., Schimmele S.R., Strauss J.E., Georgeff K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998;85:638–646. doi: 10.1016/S1079-2104(98)90029-4. PubMed DOI

Blair P., Flaumenhaft R. Platelet alpha-granules: Basic biology and clinical correlates. Blood Rev. 2009;23:177–189. doi: 10.1016/j.blre.2009.04.001. PubMed DOI PMC

Kettunen P., Karavanova I., Thesleff I. Responsiveness of developing dental tissues to fibroblast growth factors: Expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev. Genet. 1998;22:374–385. doi: 10.1002/(SICI)1520-6408(1998)22:4<374::AID-DVG7>3.0.CO;2-3. PubMed DOI

Shiba H., Fujita T., Doi N., Nakamura S., Nakanishi K., Takemoto T., Hino T., Noshiro M., Kawamoto T., Kurihara H., et al. Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. J. Cell. Physiol. 1998;174:194–205. doi: 10.1002/(SICI)1097-4652(199802)174:2<194::AID-JCP7>3.0.CO;2-J. PubMed DOI

Onishi T., Kinoshita S., Shintani S., Sobue S., Ooshima T. Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch. Oral Biol. 1999;44:361–371. doi: 10.1016/S0003-9969(99)00007-2. PubMed DOI

Marcopoulou C.E., Vavouraki H.N., Dereka X.E., Vrotsos I.A. Proliferative effect of growth factors TGF-beta1, PDGF-BB and rhBMP-2 on human gingival fibroblasts and periodontal ligament cells. J. Int. Acad. Periodontol. 2003;5:63–70. PubMed

Fekete N., Gadelorge M., Fürst D., Maurer C., Dausend J., Fleury-Cappellesso S., Mailänder V., Lotfi R., Ignatius A., Sensebé L., et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: Production process, content and identification of active components. Cytotherapy. 2012;14:540–554. doi: 10.3109/14653249.2012.655420. PubMed DOI PMC

Griffiths S., Baraniak P.R., Copland I.B., Nerem R.M., McDevitt T.C. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy. 2013;15:1469–1483. doi: 10.1016/j.jcyt.2013.05.020. PubMed DOI

Hemeda H., Giebel B., Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014;16:170–180. doi: 10.1016/j.jcyt.2013.11.004. PubMed DOI

Pilbauerova N., Soukup T., Suchankova Kleplova T., Suchanek J. Enzymatic Isolation, Amplification and Characterization of Dental Pulp Stem Cells. Folia Biol. 2019;65:124–133. PubMed

Mokry J., Soukup T., Micuda S., Karbanova J., Visek B., Brcakova E., Suchanek J., Bouchal J., Vokurkova D., Ivancakova R. Telomere attrition occurs during ex vivo expansion of human dental pulp stem cells. J. Biomed. Biotechnol. 2010;2010:673513. doi: 10.1155/2010/673513. PubMed DOI PMC

Pilbauerova N., Soukup T., Suchankova Kleplova T., Schmidt J., Suchanek J. The Effect of Cultivation Passaging on the Relative Telomere Length and Proliferation Capacity of Dental Pulp Stem Cells. Biomolecules. 2021;11:464. doi: 10.3390/biom11030464. PubMed DOI PMC

Foudah D., Monfrini M., Donzelli E., Niada S., Brini A.T., Orciani M., Tredici G., Miloso M. Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J. Immunol. Res. 2014;2014:987678. doi: 10.1155/2014/987678. PubMed DOI PMC

Pan G., Thomson J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–49. doi: 10.1038/sj.cr.7310125. PubMed DOI

Jeon B.G., Kang E.J., Kumar B.M., Maeng G.H., Ock S.A., Kwack D.O., Park B.W., Rho G.J. Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplant. 2011;20:1693–1705. doi: 10.3727/096368911X565001. PubMed DOI

Serakinci N., Graakjaer J., Kolvraa S. Telomere stability and telomerase in mesenchymal stem cells. Biochimie. 2008;90:33–40. doi: 10.1016/j.biochi.2007.09.005. PubMed DOI

Guiotto M., Raffoul W., Hart A.M., Riehle M.O., di Summa P.G. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. J. Transl. Med. 2020;18:351. doi: 10.1186/s12967-020-02489-4. PubMed DOI PMC

Bieback K., Hecker A., Kocaömer A., Lannert H., Schallmoser K., Strunk D., Klüter H. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27:2331–2341. doi: 10.1002/stem.139. PubMed DOI

Li J., Xiang L., Guan C., Yang X., Hu X., Zhang X., Zhang W. Effects of Platelet-Rich Plasma on Proliferation, Viability, and Odontogenic Differentiation of Neural Crest Stem-like Cells Derived from Human Dental Apical Papilla. Biomed. Res. Int. 2020;2020:4671989. doi: 10.1155/2020/4671989. PubMed DOI PMC

Lee U.L., Jeon S.H., Park J.Y., Choung P.H. Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars. Regen. Med. 2011;6:67–79. doi: 10.2217/rme.10.96. PubMed DOI

Stute N., Holtz K., Bubenheim M., Lange C., Blake F., Zander A.R. Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp. Hematol. 2004;32:1212–1225. doi: 10.1016/j.exphem.2004.09.003. PubMed DOI

Suchanek J., Browne K.Z., Nasry S.A., Kleplova T.S., Pilbauerova N., Schmidt J., Soukup T. Characteristics of Human Natal Stem Cells Cultured in Allogeneic Medium. Braz. Dent. J. 2018;29:427–434. doi: 10.1590/0103-6440201802388. PubMed DOI

Ballesteros O.R., Brooks P.T., Haastrup E.K., Fischer-Nielsen A., Munthe-Fog L., Svalgaard J.D. Adipose-Derived Stromal/Stem Cell Culture: Effects of Different Concentrations of Human Platelet Lysate in Media. Cells Tissues Organs. 2020;209:257–265. doi: 10.1159/000513604. PubMed DOI

Chen B., Sun H.H., Wang H.G., Kong H., Chen F.M., Yu Q. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars. Biomaterials. 2012;33:5023–5035. doi: 10.1016/j.biomaterials.2012.03.057. PubMed DOI

Suchánková Kleplová T., Soukup T., Řeháček V., Suchánek J. Human plasma and human platelet-rich plasma as a substitute for fetal calf serum during long-term cultivation of mesenchymal dental pulp stem cells. Acta Med. (Hradec Kralove) 2014;57:119–126. doi: 10.14712/18059694.2014.50. PubMed DOI

Karadjian M., Senger A.S., Essers C., Wilkesmann S., Heller R., Fellenberg J., Simon R., Westhauser F. Human Platelet Lysate Can Replace Fetal Calf Serum as a Protein Source to Promote Expansion and Osteogenic Differentiation of Human Bone-Marrow-Derived Mesenchymal Stromal Cells. Cells. 2020;9:918. doi: 10.3390/cells9040918. PubMed DOI PMC

Vennila R., Raja Sundari M.S., Selvaraj S., Srinivasan P., Pathak S., Rupert S., Rajagopal S. Effect of Human Platelet Lysate in Differentiation of Wharton’s Jelly Derived Mesenchymal Stem Cells. Endocr. Metab. Immune Disord. Drug Targets. 2019;19:1177–1191. doi: 10.2174/1871530319666190226165910. PubMed DOI

Muraglia A., Todeschi M.R., Papait A., Poggi A., Spanò R., Strada P., Cancedda R., Mastrogiacomo M. Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy. 2015;17:1793–1806. doi: 10.1016/j.jcyt.2015.09.004. PubMed DOI

Mohammadi S., Nikbakht M., Malek Mohammadi A., Zahed Panah M., Ostadali M.R., Nasiri H., Ghavamzadeh A. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells. Int. J. Hematol. Oncol. Stem Cell Res. 2016;10:161–171. PubMed PMC

Ding L., Vezzani B., Khan N., Su J., Xu L., Yan G., Liu Y., Li R., Gaur A., Diao Z., et al. CD10 expression identifies a subset of human perivascular progenitor cells with high proliferation and calcification potentials. Stem Cells. 2020;38:261–275. doi: 10.1002/stem.3112. PubMed DOI

Lin C.S., Ning H., Lin G., Lue T.F. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy. 2012;14:1159–1163. doi: 10.3109/14653249.2012.729817. PubMed DOI PMC

Lin C.S., Xin Z.C., Dai J., Lue T.F. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013;28:1109–1116. doi: 10.14670/hh-28.1109. PubMed DOI PMC

Yeh S.P., Chang J.G., Lo W.J., Liaw Y.C., Lin C.L., Lee C.C., Chiu C.F. Induction of CD45 expression on bone marrow-derived mesenchymal stem cells. Leukemia. 2006;20:894–896. doi: 10.1038/sj.leu.2404181. PubMed DOI

Ma L., Huang Z., Wu D., Kou X., Mao X., Shi S. CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell. Res. Ther. 2021;12:488. doi: 10.1186/s13287-021-02559-4. PubMed DOI PMC

Kulikova B., Kovac M., Bauer M., Tomkova M., Olexikova L., Vasicek J., Balazi A., Makarevich A.V., Chrenek P. Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Acta Histochem. 2019;121:491–499. doi: 10.1016/j.acthis.2019.03.008. PubMed DOI

Stanko P., Altanerova U., Jakubechova J., Repiska V., Altaner C. Dental Mesenchymal Stem/Stromal Cells and Their Exosomes. Stem Cells Int. 2018;2018:8973613. doi: 10.1155/2018/8973613. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...