• This record comes from PubMed

Theoretical Investigation of Repurposed Drugs Potentially Capable of Binding to the Catalytic Site and the Secondary Binding Pocket of Subunit A of Ricin

. 2022 Sep 13 ; 7 (36) : 32805-32815. [epub] 20220826

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Recently, we reported a library of 82 compounds, selected from different databanks through virtual screening and docking studies, and pointed to 6 among them as potential repurposed dual binders to both the catalytic site and the secondary binding pockets of subunit A of ricin (RTA). Here, we report additional molecular modeling studies of an extended list of compounds from the original library. Rounds of flexible docking followed by molecular dynamics simulations and further rounds of MM-PBSA calculations using a more robust protocol, enabled a better investigation of the interactions of these compounds inside RTA, the elucidation of their dynamical behaviors, and updating the list of the most important residues for the ligand binding. Four compounds were pointed as potential repurposed ricin inhibitors that are worth being experimentally investigated.

See more in PubMed

Doan L. G. Ricin: Mechanism of toxicity, clinical manifestations, and vaccine development. A review. J. Toxicol., Clin. Toxicol. 2004, 42, 201–208. 10.1081/CLT-120030945. PubMed DOI

Sousa R. B.; Lima K. S. C.; Santos C. G. M.; França T. C. C.; Nepovimova E.; Kuca K.; Dornelas M. R.; Lima A. L. S. A New Method for Extraction and Analysis of Ricin Samples through MALDI-TOF-MS/MS. Toxins 2019, 11, 201.10.3390/toxins11040201. PubMed DOI PMC

Audi J.; Belson M.; Patel M.; Schier J.; Osterloh J. Ricin Poisoning - A comprehensive review. JAMA 2005, 294, 2342.10.1001/jama.294.18.2342. PubMed DOI

Janik E.; Ceremuga M.; Saluk-Bijak J.; Bijak M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181.10.3390/ijms20051181. PubMed DOI PMC

Knight B. Ricin - a potent homicidal poison. Br. Med. J. 1979, 1, 350–351. PubMed PMC

Pita R.; Romero A. Toxins as Weapons: A Historical Review. Forensic Sci. Rev. 2014, 26, 85–96. PubMed

Musshoff F.; Madea B. Ricin poisoning and forensic toxicology. Drug Test. Anal. 2009, 1, 184–191. 10.1002/dta.27. PubMed DOI

Zhou K.; Fu Z.; Chen M.; Lin Y.; Pan K. Structure of trichosanthin at 1.88 Å resolution. Proteins: Struct., Funct., Bioinf. 1994, 19, 4–13. 10.1002/prot.340190103. PubMed DOI

Funatsu G.; Islam M. R.; Minami Y.; Sung-Sil K.; Kimura M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991, 73, 1157–1161. 10.1016/0300-9084(91)90160-3. PubMed DOI

Endo Y.; Tsurugi K.; Yutsudo T.; Takeda Y.; Ogasawara T.; Igarashi K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. Eur. J. Biochem. 1988, 171, 45–50. 10.1111/j.1432-1033.1988.tb13756.x. PubMed DOI

May M. J.; Hartley M. R.; Roberts L. M.; Krieg P. A.; Osborn R. W.; Lord J. M. Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild-type and mutant polypeptides. EMBO J. 1989, 8, 301–308. 10.1002/j.1460-2075.1989.tb03377.x. PubMed DOI PMC

Lord J. M.; Roberts L. M.; Robertus J. D. Ricin: structure, mode of action, and some current applications. FASEB J. 1994, 8, 201–208. 10.1096/fasebj.8.2.8119491. PubMed DOI

Olson M. A.; Carra J. H.; Roxas-Duncan V.; Wannemacher R. W.; Smith L. A.; Millard C. B. Finding a new vaccine in the ricin protein fold. Protein Eng., Des. Sel. 2004, 17, 391–397. 10.1093/protein/gzh043. PubMed DOI

Gal Y.; Alcalay R.; Sabo T.; Noy-Porat T.; Epstein E.; Kronman C.; Mazor O. Rapid assessment of antibody-induced ricin neutralization by employing a novel functional cell-based assay. J. Immunol. Methods 2015, 424, 136–139. 10.1016/j.jim.2015.05.005. PubMed DOI

Hu W.-g.; Yin J.; Chau D.; Hu C. C.; Lillico D.; Yu J.; Negrych L. M.; Cherwonogrodzky J. W. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies. BioMed Res. Int. 2013, 2013, 471346.10.1155/2013/471346. PubMed DOI PMC

Legler P. M.; Brey R. N.; Smallshaw J. E.; Vitetta E. S.; Millard C. B. Structure of RiVax: a recombinant ricin vaccine. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 826–830. 10.1107/s0907444911026771. PubMed DOI PMC

Roy C. J.; Brey R. N.; Mantis N. J.; Mapes K.; Pop I. V.; Pop L. M.; Ruback S.; Killeen S. Z.; Doyle-Meyers L.; Vinet-Oliphant H. S.; et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3782.10.1073/pnas.1502585112. PubMed DOI PMC

Pruet J. M.; Saito R.; Manzano L. A.; Jasheway K. R.; Wiget P. A.; Kamat I.; Anslyn E. V.; Robertus J. D. Optimized 5-membered heterocycle-linked pterins for the inhibition of Ricin Toxin A. ACS Med. Chem. Lett. 2012, 3, 588–591. 10.1021/ml300099t. PubMed DOI PMC

Wiget P. A.; Manzano L. A.; Pruet J. M.; Gao G.; Saito R.; Monzingo A. F.; Jasheway K. R.; Robertus J. D.; Anslyn E. V. Sulfur incorporation generally improves Ricin inhibition in pterin-appended glycine-phenylalanine dipeptide mimics. Bioorg. Med. Chem. Lett. 2013, 23, 6799–6804. 10.1016/j.bmcl.2013.10.017. PubMed DOI

Saito R.; Pruet J. M.; Manzano L. A.; Jasheway K.; Monzingo A. F.; Wiget P. A.; Kamat I.; Anslyn E. V.; Robertus J. D. Peptide-Conjugated Pterins as Inhibitors of Ricin Toxin A. J. Med. Chem. 2013, 56, 320–329. 10.1021/jm3016393. PubMed DOI PMC

Ho M.-c.; Sturm M. B.; Almo S. C.; Schramm V. L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20276–20281. 10.1073/pnas.0911606106. PubMed DOI PMC

Botelho F. D.; dos Santos M. C.; Gonçalves A. D.; Kuca K.; Valis M.; LaPlante S. R.; França T. C. C.; de Almeida J. S. F. D. Ligand-Based Virtual Screening, Molecular Docking, Molecular Dynamics, and MM-PBSA Calculations towards the Identification of Potential Novel Ricin Inhibitors. Toxins 2020, 12, 746.10.3390/toxins12120746. PubMed DOI PMC

Botelho F. D.; Santos M. C.; Gonçalves A. S.; França T. C.; LaPlante S. R.; de Almeida J. S. Identification of novel potential ricin inhibitors by virtual screening, molecular docking, molecular dynamics and MM-PBSA calculations: a drug repurposing approach. J. Biomol. Struct. Dyn. 2020, 40, 5309.10.1080/07391102.2020.1870154. PubMed DOI

Nelson M. T.; Humphrey W.; Gursoy A.; Dalke A.; Kalé L. V.; Skeel R. D.; Schulten K. NAMD: a parallel, object-oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 1996, 10, 251–268. 10.1177/109434209601000401. DOI

Case D. A.; Darden T.; Cheatham T.; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Crowley M.; Walker R. C.; Zhang W.. Amber 10; University of California, 2008.

Lipparini F.; Mennucci B. Hybrid QM/classical models: Methodological advances and new applications. Chem. Phys. Rev. 2021, 2, 041303.10.1063/5.0064075. DOI

Gonçalves M. A.; Santos L. S.; Prata D. M.; Peixoto F. C.; da Cunha E. F.; Ramalho T. C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017, 136, 15.10.1007/s00214-016-2037-z. DOI

Kumari R.; Kumar R.; Lynn O. S. D. D.; Lynn A. g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J. Chem. Inf. Model. 2014, 54, 1951.10.1021/ci500020m. PubMed DOI

Homeyer N.; Gohlke H. Free energy calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area method. Mol. Inf. 2012, 31, 114.10.1002/minf.201100135. PubMed DOI

Kontoyianni M.; McClellan L. M.; Sokol G. S. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem. 2004, 47, 558.10.1021/jm0302997. PubMed DOI

da Cunha E. F. F.; Ramalho T. C.; Reynolds R. C. Binding Mode Analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted Pteridines with Mycobacterium tuberculosis and Human Dihydrofolate Reductases. J. Biomol. Struct. Dyn. 2008, 25, 377–385. 10.1080/07391102.2008.10507186. PubMed DOI

Farahani M. D.; França T. C. C.; Alapour S.; Shahout F.; Boulon R.; Iddir M.; Maddalena M.; Ayotte Y.; LaPlante S. R. Jumping from Fragment to Drug via Smart Scaffolds. ChemMedChem 2022, 17, e20220009210.1002/cmdc.202200092. PubMed DOI

França T. C. C.; Pascutti P. G.; Ramalho T. C.; Figueroa-Villar J. D. A three-dimensional structure of Plasmodium falciparum serine hydroxymethyltransferase in complex with glycine and 5-formyl-tetrahydrofolate. Homology modeling and molecular dynamics. Biophys. Chem. 2005, 115, 1–10. 10.1016/j.bpc.2004.12.002. PubMed DOI

Santos M. C.; Botelho F. D.; Gonçalves A. S.; Kuca K.; Nepovimova E.; Cavalcante S. F. A.; Lima A. L. S.; França T. C. C. Theoretical assessment of the performances of commercial oximes on the reactivation of acetylcholinesterase inhibited by the nerve agent A-242 (novichok). Food Chem. Toxicol. 2022, 165, 113084.10.1016/j.fct.2022.113084. PubMed DOI

Guimarães A. P.; Oliveira A. A.; da Cunha E. F. F.; Ramalho T. C.; França T. C. C. Design of New Chemotherapeutics Against the Deadly Anthrax Disease. Docking and Molecular Dynamics Studies of Inhibitors Containing Pyrrolidine and Riboamidrazone Rings on Nucleoside Hydrolase from Bacillus anthracis. J. Biomol. Struct. Dyn. 2011, 28, 455–469. 10.1080/07391102.2011.10508588. PubMed DOI

França T. C. C.; Wilter A.; Ramalho T. C.; Pascutti P. G.; Figueroa-Villar J. D. Molecular dynamics of the interaction of Plasmodium falciparum and human Serine Hydroxymethyltransferase with 5-formyl-6-hydrofolic acid analogues: Design of new potential antimalarials. J. Braz. Chem. Soc. 2006, 17, 1383–1392. 10.1590/S0103-50532006000700028. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...