iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
NU-20-90-00437
Ministry of Health, Czech Republic.
PubMed
36143270
PubMed Central
PMC9500601
DOI
10.3390/jpm12091485
PII: jpm12091485
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, Parkinson’s disease, diabetic neuropathy, induced pluripotent stem cells (iPSCs), personalized medicine, spinal cord injury,
- Publication type
- Journal Article MeSH
- Review MeSH
In the past, several animal disease models were developed to study the molecular mechanism of neurological diseases and discover new therapies, but the lack of equivalent animal models has minimized the success rate. A number of critical issues remain unresolved, such as high costs for developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of the human clinical trial. To overcome these limitations, a new approach has been developed based on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for clinical translation research and regeneration therapy. In this article, we discuss the potential role of patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research for developing disease models and for developing a roadmap for future medicine. The contribution of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson's disease and Alzheimer's disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked as per their published literature on PUBMED. We have observed that Parkinson's disease scored highest, followed by Alzheimer's disease. Furthermore, we also explored recent advancements in the field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on 3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.
See more in PubMed
Moradi S., Mahdizadeh H., Šarić T., Kim J., Harati J., Shahsavarani H., Greber B., Moore J.B. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019;10:341. doi: 10.1186/s13287-019-1455-y. PubMed DOI PMC
Lin X., Tang J., Lou Y.R. Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals. 2021;14:525. doi: 10.3390/ph14060525. PubMed DOI PMC
Omole A.E., Fakoya A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. doi: 10.7717/peerj.4370. PubMed DOI PMC
Cummings J.L., Goldman D.P., Simmons-Stern N.R., Ponton E. The costs of developing treatments for Alzheimer’s disease: A retrospective exploration. Alzheimers Dement. 2021;18:469–477. doi: 10.1002/alz.12450. PubMed DOI PMC
Till J.E., Mc C.E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 1961;14:213–222. doi: 10.2307/3570892. PubMed DOI
Gurdon J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962;10:622–640. doi: 10.1242/dev.10.4.622. PubMed DOI
Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–813. doi: 10.1038/385810a0. PubMed DOI
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI
Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156. doi: 10.1038/292154a0. PubMed DOI
Tada M., Takahama Y., Abe K., Nakatsuji N., Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 2001;11:1553–1558. doi: 10.1016/S0960-9822(01)00459-6. PubMed DOI
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. PubMed DOI
Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008;26:101–106. doi: 10.1038/nbt1374. PubMed DOI
Arjmand B., Goodarzi P., Mohamadi-Jahani F., Falahzadeh K., Larijani B. Personalized Regenerative Medicine. Acta Med. Iran. 2017;55:144–149. PubMed
Chang E.A., Jin S.W., Nam M.H., Kim S.D. Human Induced Pluripotent Stem Cells: Clinical Significance and Applications in Neurologic Diseases. J. Korean Neurosurg. Soc. 2019;62:493–501. doi: 10.3340/jkns.2018.0222. PubMed DOI PMC
Shi Y., Desponts C., Do J.T., Hahm H.S., Schöler H.R., Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–574. doi: 10.1016/j.stem.2008.10.004. PubMed DOI
Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 2008;26:795–797. doi: 10.1038/nbt1418. PubMed DOI PMC
Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S., Muhlestein W., Melton D.A. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 2008;26:1269–1275. doi: 10.1038/nbt.1502. PubMed DOI
Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–374. doi: 10.1038/28615. PubMed DOI
Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J., Doguchi H., Yasue H., Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science. 1998;282:2095–2098. doi: 10.1126/science.282.5396.2095. PubMed DOI
Polejaeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000;407:86–90. doi: 10.1038/35024082. PubMed DOI
Shin T., Kraemer D., Pryor J., Liu L., Rugila J., Howe L., Buck S., Murphy K., Lyons L., Westhusin M. A cat cloned by nuclear transplantation. Nature. 2002;415:859. doi: 10.1038/nature723. PubMed DOI
Zhou Q., Renard J.P., Le Friec G., Brochard V., Beaujean N., Cherifi Y., Fraichard A., Cozzi J. Generation of fertile cloned rats by regulating oocyte activation. Science. 2003;302:1179. doi: 10.1126/science.1088313. PubMed DOI
Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Hossein M.S., Kim J.J., Kang S.K., Schatten G., et al. Dogs cloned from adult somatic cells. Nature. 2005;436:641. doi: 10.1038/436641a. PubMed DOI
Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. Reprogramming mammalian somatic cells. Theriogenology. 2012;78:1869–1886. doi: 10.1016/j.theriogenology.2012.05.030. PubMed DOI
Pandey S., Chottova Dvorakova M. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets. 2019;20:25–38. doi: 10.2174/1871530319666190626143832. PubMed DOI PMC
Pandey S., Malviya G., Chottova Dvorakova M. Role of Peptides in Diagnostics. Int. J. Mol. Sci. 2021;22:8828. doi: 10.3390/ijms22168828. PubMed DOI PMC
Dawson T.M., Golde T.E., Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat. Neurosci. 2018;21:1370–1379. doi: 10.1038/s41593-018-0236-8. PubMed DOI PMC
Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 2010;16:1210–1214. doi: 10.1038/nm.2224. PubMed DOI
Ribeiro F.M., Camargos E.R., de Souza L.C., Teixeira A.L. Animal models of neurodegenerative diseases. Braz. J. Psychiatry. 2013;35((Suppl. 2)):S82–S91. doi: 10.1590/1516-4446-2013-1157. PubMed DOI
Cummings J.L., Morstorf T., Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther. 2014;6:37. doi: 10.1186/alzrt269. PubMed DOI PMC
Bonifati V. Genetics of Parkinson’s disease--state of the art, 2013. Park. Relat. Disord. 2014;20((Suppl. 1)):S23–S28. doi: 10.1016/S1353-8020(13)70009-9. PubMed DOI
Shi C.H., Mao C.Y., Zhang S.Y., Yang J., Song B., Wu P., Zuo C.T., Liu Y.T., Ji Y., Yang Z.H., et al. CHCHD2 gene mutations in familial and sporadic Parkinson’s disease. Neurobiol. Aging. 2016;38:217.e9–217.e13. doi: 10.1016/j.neurobiolaging.2015.10.040. PubMed DOI
Wang Y., Wang Z., Sun H., Mao C., Yang J., Liu Y., Liu H., Zhang S., Zhang J., Xu Y., et al. Generation of induced pluripotent stem cell line (ZZUi007-A) from a 52-year-old patient with a novel CHCHD2 gene mutation in Parkinson’s disease. Stem Cell Res. 2018;32:87–90. doi: 10.1016/j.scr.2018.08.011. PubMed DOI
Tabata Y., Imaizumi Y., Sugawara M., Andoh-Noda T., Banno S., Chai M., Sone T., Yamazaki K., Ito M., Tsukahara K., et al. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Rep. 2018;11:1171–1184. doi: 10.1016/j.stemcr.2018.09.006. PubMed DOI PMC
Imaizumi Y., Okada Y., Akamatsu W., Koike M., Kuzumaki N., Hayakawa H., Nihira T., Kobayashi T., Ohyama M., Sato S., et al. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain. 2012;5:35. doi: 10.1186/1756-6606-5-35. PubMed DOI PMC
Suda Y., Kuzumaki N., Sone T., Narita M., Tanaka K., Hamada Y., Iwasawa C., Shibasaki M., Maekawa A., Matsuo M., et al. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction. Mol. Brain. 2018;11:6. doi: 10.1186/s13041-018-0349-8. PubMed DOI PMC
Shiba-Fukushima K., Ishikawa K.I., Inoshita T., Izawa N., Takanashi M., Sato S., Onodera O., Akamatsu W., Okano H., Imai Y., et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson’s disease. Hum. Mol. Genet. 2017;26:3172–3185. doi: 10.1093/hmg/ddx201. PubMed DOI
Benkert J., Hess S., Roy S., Beccano-Kelly D., Wiederspohn N., Duda J., Simons C., Patil K., Gaifullina A., Mannal N., et al. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat. Commun. 2019;10:5094. doi: 10.1038/s41467-019-12834-x. PubMed DOI PMC
Grigor’eva E.V., Drozdova E.S., Sorogina D.A., Malakhova A.A., Pavlova S.V., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation of induced pluripotent stem cell line, ICGi034-A, by reprogramming peripheral blood mononuclear cells from a patient with Parkinson’s disease associated with GBA mutation. Stem Cell Res. 2021;59:102651. doi: 10.1016/j.scr.2021.102651. PubMed DOI
Schweitzer J.S., Song B., Herrington T.M., Park T.Y., Lee N., Ko S., Jeon J., Cha Y., Kim K., Li Q., et al. Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson’s Disease. N. Engl. J. Med. 2020;382:1926–1932. doi: 10.1056/NEJMoa1915872. PubMed DOI PMC
Chen Z.T., Zhao Z.H., Chen L.N., Fan F., Cai G.E., Weng H.D., Wang Y.Q., Liao L.M., Chen X.C., Huang E., et al. Generation of an induced pluripotent stem cell line, FJMUUHi001-A, from a hereditary Parkinson’s disease patient with homozygous mutation of c.189dupA in PARK7. Stem Cell Res. 2021;51:102175. doi: 10.1016/j.scr.2021.102175. PubMed DOI
Peitz M., Bechler T., Thiele C.C., Veltel M., Bloschies M., Fliessbach K., Ramirez A., Brüstle O. Blood-derived integration-free iPS cell line UKBi011-A from a diagnosed male Alzheimer’s disease patient with APOE ε4/ε4 genotype. Stem Cell Res. 2018;29:250–253. doi: 10.1016/j.scr.2018.04.011. PubMed DOI
Michaelson D.M. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10:861–868. doi: 10.1016/j.jalz.2014.06.015. PubMed DOI
Yu J.T., Tan L., Hardy J. Apolipoprotein E in Alzheimer’s disease: An update. Annu. Rev. Neurosci. 2014;37:79–100. doi: 10.1146/annurev-neuro-071013-014300. PubMed DOI
Zhang W., Di W., Zhao J., Zhang B., Wang Y. Generation of a SIAISi004-A hiPSC line from PBMCs of a 74 year-old Alzheimer’s disease woman by non-integrating sendai virus mediated reprogramming. Stem Cell Res. 2021;55:102501. doi: 10.1016/j.scr.2021.102501. PubMed DOI
Liu S., Zhao Y., Su X., Zhou C., Yang P., Lin Q., Li S., Tan H., Wang Q., Wang C., et al. Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells Int. 2020;2020:8897494. doi: 10.1155/2020/8897494. PubMed DOI PMC
Cusulin C., Wells I., Badillo S., Duran-Pacheco G.C., Baumann K., Patsch C. Gamma secretase modulators and BACE inhibitors reduce Aβ production without altering gene expression in Alzheimer’s disease iPSC-derived neurons and mice. Mol. Cell Neurosci. 2019;100:103392. doi: 10.1016/j.mcn.2019.103392. PubMed DOI
Kondo T., Imamura K., Funayama M., Tsukita K., Miyake M., Ohta A., Woltjen K., Nakagawa M., Asada T., Arai T., et al. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Rep. 2017;21:2304–2312. doi: 10.1016/j.celrep.2017.10.109. PubMed DOI
Chang K.H., Lee-Chen G.J., Huang C.C., Lin J.L., Chen Y.J., Wei P.C., Lo Y.S., Yao C.F., Kuo M.W., Chen C.M. Modeling Alzheimer’s Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. Mol. Neurobiol. 2019;56:3972–3983. doi: 10.1007/s12035-018-1336-x. PubMed DOI PMC
Wang J., Liu X., Du X., Ma Z., Liu B., Guo R., Feng B., Ma J., Cui H. Induced pluripotent stem cells derived from one 70-years-old male donor with the APOE-ε4/ε4 alleles. Stem Cell Res. 2021;53:102395. doi: 10.1016/j.scr.2021.102395. PubMed DOI
Zhang L., Ren Q., Liu X., Liu G., Meng S., Xiahou K., Zhang Y., Jiang N., Zhou W. Generation of induced pluripotent stem cell line (IPTi002-A) from an 87-year old sporadic Alzheimer’s disease patient with APOE3 (ε3/ε3) genotype. Stem Cell Res. 2021;53:102282. doi: 10.1016/j.scr.2021.102282. PubMed DOI
Fujita Y., Murakami T., Nakamura A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. Int. J. Mol. Sci. 2021;22:2301. doi: 10.3390/ijms22052301. PubMed DOI PMC
Mittal K., Schrenk-Siemens K. Lessons from iPSC research: Insights on peripheral nerve disease. Neurosci. Lett. 2020;738:135358. doi: 10.1016/j.neulet.2020.135358. PubMed DOI
Xu J., Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front. Mol. Biosci. 2021;8:745035. doi: 10.3389/fmolb.2021.745035. PubMed DOI PMC
Kanada S., Makino E., Nakamura N., Miyabe M., Ito M., Hata M., Yamauchi T., Sawada N., Kondo S., Saiki T., et al. Direct Comparison of Therapeutic Effects on Diabetic Polyneuropathy between Transplantation of Dental Pulp Stem Cells and Administration of Dental Pulp Stem Cell-Secreted Factors. Int. J. Mol. Sci. 2020;21:6064. doi: 10.3390/ijms21176064. PubMed DOI PMC
Wang Q., Chen F.Y., Ling Z.M., Su W.F., Zhao Y.Y., Chen G., Wei Z.Y. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front. Cell. Neurosci. 2022;16:836931. doi: 10.3389/fncel.2022.836931. PubMed DOI PMC
Himeno T., Kamiya H., Naruse K., Cheng Z., Ito S., Kondo M., Okawa T., Fujiya A., Kato J., Suzuki H., et al. Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. Biomed. Res. Int. 2013;2013:259187. doi: 10.1155/2013/259187. PubMed DOI PMC
Levi A.D., Guénard V., Aebischer P., Bunge R.P. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J. Neurosci. 1994;14:1309–1319. doi: 10.1523/JNEUROSCI.14-03-01309.1994. PubMed DOI PMC
Gersey Z.C., Burks S.S., Anderson K.D., Dididze M., Khan A., Dietrich W.D., Levi A.D. First human experience with autologous Schwann cells to supplement sciatic nerve repair: Report of 2 cases with long-term follow-up. Neurosurg. Focus. 2017;42:E2. doi: 10.3171/2016.12.FOCUS16474. PubMed DOI
Levi A.D., Burks S.S., Anderson K.D., Dididze M., Khan A., Dietrich W.D. The Use of Autologous Schwann Cells to Supplement Sciatic Nerve Repair With a Large Gap: First in Human Experience. Cell Transplant. 2016;25:1395–1403. doi: 10.3727/096368915X690198. PubMed DOI
Stratton J.A., Kumar R., Sinha S., Shah P., Stykel M., Shapira Y., Midha R., Biernaskie J. Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve. eNeuro. 2017;4:ENEURO.0307-16.2017. doi: 10.1523/ENEURO.0307-16.2017. PubMed DOI PMC
Namer B., Schmidt D., Eberhardt E., Maroni M., Dorfmeister E., Kleggetveit I.P., Kaluza L., Meents J., Gerlach A., Lin Z., et al. Pain relief in a neuropathy patient by lacosamide: Proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine. 2019;39:401–408. doi: 10.1016/j.ebiom.2018.11.042. PubMed DOI PMC
Berlet R., Galang Cabantan D.A., Gonzales-Portillo D., Borlongan C.V. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front. Cell Dev. Biol. 2022;10:798826. doi: 10.3389/fcell.2022.798826. PubMed DOI PMC
Duan R., Gao Y., He R., Jing L., Li Y., Gong Z., Yao Y., Luan T., Zhang C., Li L., et al. Induced Pluripotent Stem Cells for Ischemic Stroke Treatment. Front. Neurosci. 2021;15:628663. doi: 10.3389/fnins.2021.628663. PubMed DOI PMC
Eckert A., Huang L., Gonzalez R., Kim H.S., Hamblin M.H., Lee J.P. Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke. Stem Cells Transl. Med. 2015;4:841–851. doi: 10.5966/sctm.2014-0184. PubMed DOI PMC
Chen Y., Song F., Tu M., Wu S., He X., Liu H., Xu C., Zhang K., Zhu Y., Zhou R., et al. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke. Front. Med. 2022;16:429–441. doi: 10.1007/s11684-021-0842-9. PubMed DOI
Kirabali T., Rust R. iPS-derived pericytes for neurovascular regeneration. Eur. J. Clin. Investig. 2021;51:e13601. doi: 10.1111/eci.13601. PubMed DOI PMC
Sun J., Huang Y., Gong J., Wang J., Fan Y., Cai J., Wang Y., Qiu Y., Wei Y., Xiong C., et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat. Commun. 2020;11:5196. doi: 10.1038/s41467-020-19042-y. PubMed DOI PMC
Salikhova D., Bukharova T., Cherkashova E., Namestnikova D., Leonov G., Nikitina M., Gubskiy I., Akopyan G., Elchaninov A., Midiber K., et al. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int. J. Mol. Sci. 2021;22:4694. doi: 10.3390/ijms22094694. PubMed DOI PMC
Li X., Sundström E. Stem Cell Therapies for Central Nervous System Trauma: The 4 Ws-What, When, Where, and Why. Stem Cells Transl. Med. 2022;11:14–25. doi: 10.1093/stcltm/szab006. PubMed DOI PMC
Huang L., Fu C., Xiong F., He C., Wei Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021;30:963689721989266. doi: 10.1177/0963689721989266. PubMed DOI PMC
Kajikawa K., Imaizumi K., Shinozaki M., Shibata S., Shindo T., Kitagawa T., Shibata R., Kamata Y., Kojima K., Nagoshi N., et al. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol. Brain. 2020;13:120. doi: 10.1186/s13041-020-00662-w. PubMed DOI PMC
Imaizumi K., Sone T., Ibata K., Fujimori K., Yuzaki M., Akamatsu W., Okano H. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Rep. 2015;5:1010–1022. doi: 10.1016/j.stemcr.2015.10.005. PubMed DOI PMC
Gu J., Cromer B., Sumer H. Forward Programming of Pluripotent Stem Cells to Neurons. Curr. Mol. Med. 2021;21:5–14. doi: 10.2174/1566524020666200421115251. PubMed DOI
Burkhardt M.F., Martinez F.J., Wright S., Ramos C., Volfson D., Mason M., Garnes J., Dang V., Lievers J., Shoukat-Mumtaz U., et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 2013;56:355–364. doi: 10.1016/j.mcn.2013.07.007. PubMed DOI PMC
Capuz A., Karnoub M.A., Osien S., Rose M., Mériaux C., Fournier I., Devos D., Vanden Abeele F., Rodet F., Cizkova D., et al. The Antibody Dependant Neurite Outgrowth Modulation Response Involvement in Spinal Cord Injury. Front. Immunol. 2022;13:882830. doi: 10.3389/fimmu.2022.882830. PubMed DOI PMC
Kong D., Feng B., Amponsah A.E., He J., Guo R., Liu B., Du X., Liu X., Zhang S., Lv F., et al. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice. Stem Cell Res. Ther. 2021;12:172. doi: 10.1186/s13287-021-02217-9. PubMed DOI PMC
Csobonyeiova M., Polak S., Zamborsky R., Danisovic L. Recent Progress in the Regeneration of Spinal Cord Injuries by Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2019;20:3838. doi: 10.3390/ijms20153838. PubMed DOI PMC
Hamazaki T., El Rouby N., Fredette N.C., Santostefano K.E., Terada N. Concise Review: Induced Pluripotent Stem Cell Research in the Era of Precision Medicine. Stem Cells. 2017;35:545–550. doi: 10.1002/stem.2570. PubMed DOI PMC
Hankowski K.E., Hamazaki T., Umezawa A., Terada N. Induced pluripotent stem cells as a next-generation biomedical interface. Lab. Investig. 2011;91:972–977. doi: 10.1038/labinvest.2011.85. PubMed DOI PMC
Gowing G., Svendsen S., Svendsen C.N. Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 2017;230:99–132. doi: 10.1016/bs.pbr.2016.11.003. PubMed DOI
Savić N., Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 2016;168:15–21. doi: 10.1016/j.trsl.2015.09.008. PubMed DOI
Mingozzi F., High K.A. Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges. Nat. Rev. Genet. 2011;12:341–355. doi: 10.1038/nrg2988. PubMed DOI
Liu Y., Wang D.A. Viral vector-mediated transgenic cell therapy in regenerative medicine: Safety of the process. Expert Opin. Biol. Ther. 2015;15:559–567. doi: 10.1517/14712598.2015.995086. PubMed DOI
Barrett R., Ornelas L., Yeager N., Mandefro B., Sahabian A., Lenaeus L., Targan S.R., Svendsen C.N., Sareen D. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl. Med. 2014;3:1429–1434. doi: 10.5966/sctm.2014-0121. PubMed DOI PMC
Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Südhof T.C., Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–1041. doi: 10.1038/nature08797. PubMed DOI PMC
Mandai M., Watanabe A., Kurimoto Y., Hirami Y., Morinaga C., Daimon T., Fujihara M., Akimaru H., Sakai N., Shibata Y., et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017;376:1038–1046. doi: 10.1056/NEJMoa1608368. PubMed DOI
Madrid M., Sumen C., Aivio S., Saklayen N. Autologous Induced Pluripotent Stem Cell-Based Cell Therapies: Promise, Progress, and Challenges. Curr. Protoc. 2021;1:e88. doi: 10.1002/cpz1.88. PubMed DOI
Karagiannis P., Nakauchi A., Yamanaka S. Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA J. 2018;1:6–14. doi: 10.31662/jmaj.2018-0005. PubMed DOI PMC
Perestrelo A.R., Águas A.C., Rainer A., Forte G. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. Sensors. 2015;15:31142–31170. doi: 10.3390/s151229848. PubMed DOI PMC
Imamura Y., Mukohara T., Shimono Y., Funakoshi Y., Chayahara N., Toyoda M., Kiyota N., Takao S., Kono S., Nakatsura T., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 2015;33:1837–1843. doi: 10.3892/or.2015.3767. PubMed DOI
Workman M.J., Gleeson J.P., Troisi E.J., Estrada H.Q., Kerns S.J., Hinojosa C.D., Hamilton G.A., Targan S.R., Svendsen C.N., Barrett R.J. Enhanced Utilization of Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids Using Microengineered Chips. Cell Mol. Gastroenterol. Hepatol. 2018;5:669–677.e662. doi: 10.1016/j.jcmgh.2017.12.008. PubMed DOI PMC
Bircsak K.M., DeBiasio R., Miedel M., Alsebahi A., Reddinger R., Saleh A., Shun T., Vernetti L.A., Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667. doi: 10.1016/j.tox.2020.152667. PubMed DOI
Wang Y., Wang H., Deng P., Chen W., Guo Y., Tao T., Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip. 2018;18:3606–3616. doi: 10.1039/C8LC00869H. PubMed DOI
Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., Roberts K., Chung S., Novak R., Ingram M., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 2017;1:0069. doi: 10.1038/s41551-017-0069. PubMed DOI PMC
Kujala V.J., Pasqualini F.S., Goss J.A., Nawroth J.C., Parker K.K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B. 2016;4:3534–3543. doi: 10.1039/C6TB00324A. PubMed DOI
Zhang Y.S., Arneri A., Bersini S., Shin S.R., Zhu K., Goli-Malekabadi Z., Aleman J., Colosi C., Busignani F., Dell’Erba V., et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. doi: 10.1016/j.biomaterials.2016.09.003. PubMed DOI PMC
Marsano A., Conficconi C., Lemme M., Occhetta P., Gaudiello E., Votta E., Cerino G., Redaelli A., Rasponi M. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16:599–610. doi: 10.1039/C5LC01356A. PubMed DOI
Schneider O., Zeifang L., Fuchs S., Sailer C., Loskill P. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip. Tissue Eng. Part A. 2019;25:786–798. doi: 10.1089/ten.tea.2019.0002. PubMed DOI PMC
Brown J.A., Codreanu S.G., Shi M., Sherrod S.D., Markov D.A., Neely M.D., Britt C.M., Hoilett O.S., Reiserer R.S., Samson P.C., et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflamm. 2016;13:306. doi: 10.1186/s12974-016-0760-y. PubMed DOI PMC
Brown J.A., Pensabene V., Markov D.A., Allwardt V., Neely M.D., Shi M., Britt C.M., Hoilett O.S., Yang Q., Brewer B.M., et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9:054124. doi: 10.1063/1.4934713. PubMed DOI PMC
Wang Y., Wang L., Guo Y., Zhu Y., Qin J. Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv. 2018;8:1677–1685. doi: 10.1039/C7RA11714K. PubMed DOI PMC
Sakolish C., Reese C.E., Luo Y.S., Valdiviezo A., Schurdak M.E., Gough A., Taylor D.L., Chiu W.A., Vernetti L.A., Rusyn I. Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS) Toxicology. 2021;448:152651. doi: 10.1016/j.tox.2020.152651. PubMed DOI PMC
Fanizza F., Campanile M., Forloni G., Giordano C., Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J. Tissue Eng. 2022;13:20417314221095339. doi: 10.1177/20417314221095339. PubMed DOI PMC
Baghbaderani B.A., Tian X., Neo B.H., Burkall A., Dimezzo T., Sierra G., Zeng X., Warren K., Kovarcik D.P., Fellner T., et al. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Rep. 2015;5:647–659. doi: 10.1016/j.stemcr.2015.08.015. PubMed DOI PMC
Rivera T., Zhao Y., Ni Y., Wang J. Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions. Curr. Protoc. Stem Cell Biol. 2020;54:e117. doi: 10.1002/cpsc.117. PubMed DOI PMC
Denker H.W. Ethical concerns over use of new cloning technique in humans. Nature. 2009;461:341. doi: 10.1038/461341b. PubMed DOI
Denker H.W. Induced pluripotent stem cells: How to deal with the developmental potential. Reprod. Biomed. Online. 2009;19((Suppl. 1)):34–37. doi: 10.1016/S1472-6483(10)60062-4. PubMed DOI
Lo B., Parham L., Alvarez-Buylla A., Cedars M., Conklin B., Fisher S., Gates E., Giudice L., Halme D.G., Hershon W., et al. Cloning mice and men: Prohibiting the use of iPS cells for human reproductive cloning. Cell Stem Cell. 2010;6:16–20. doi: 10.1016/j.stem.2009.12.004. PubMed DOI PMC