• This record comes from PubMed

iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine

. 2022 Sep 10 ; 12 (9) : . [epub] 20220910

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
NU-20-90-00437 Ministry of Health, Czech Republic.

In the past, several animal disease models were developed to study the molecular mechanism of neurological diseases and discover new therapies, but the lack of equivalent animal models has minimized the success rate. A number of critical issues remain unresolved, such as high costs for developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of the human clinical trial. To overcome these limitations, a new approach has been developed based on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for clinical translation research and regeneration therapy. In this article, we discuss the potential role of patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research for developing disease models and for developing a roadmap for future medicine. The contribution of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson's disease and Alzheimer's disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked as per their published literature on PUBMED. We have observed that Parkinson's disease scored highest, followed by Alzheimer's disease. Furthermore, we also explored recent advancements in the field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on 3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.

See more in PubMed

Moradi S., Mahdizadeh H., Šarić T., Kim J., Harati J., Shahsavarani H., Greber B., Moore J.B. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem Cell Res. Ther. 2019;10:341. doi: 10.1186/s13287-019-1455-y. PubMed DOI PMC

Lin X., Tang J., Lou Y.R. Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals. 2021;14:525. doi: 10.3390/ph14060525. PubMed DOI PMC

Omole A.E., Fakoya A.O.J. Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. doi: 10.7717/peerj.4370. PubMed DOI PMC

Cummings J.L., Goldman D.P., Simmons-Stern N.R., Ponton E. The costs of developing treatments for Alzheimer’s disease: A retrospective exploration. Alzheimers Dement. 2021;18:469–477. doi: 10.1002/alz.12450. PubMed DOI PMC

Till J.E., Mc C.E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 1961;14:213–222. doi: 10.2307/3570892. PubMed DOI

Gurdon J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962;10:622–640. doi: 10.1242/dev.10.4.622. PubMed DOI

Wilmut I., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–813. doi: 10.1038/385810a0. PubMed DOI

Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. PubMed DOI

Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–156. doi: 10.1038/292154a0. PubMed DOI

Tada M., Takahama Y., Abe K., Nakatsuji N., Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 2001;11:1553–1558. doi: 10.1016/S0960-9822(01)00459-6. PubMed DOI

Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI

Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI

Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. PubMed DOI

Nakagawa M., Koyanagi M., Tanabe K., Takahashi K., Ichisaka T., Aoi T., Okita K., Mochiduki Y., Takizawa N., Yamanaka S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008;26:101–106. doi: 10.1038/nbt1374. PubMed DOI

Arjmand B., Goodarzi P., Mohamadi-Jahani F., Falahzadeh K., Larijani B. Personalized Regenerative Medicine. Acta Med. Iran. 2017;55:144–149. PubMed

Chang E.A., Jin S.W., Nam M.H., Kim S.D. Human Induced Pluripotent Stem Cells: Clinical Significance and Applications in Neurologic Diseases. J. Korean Neurosurg. Soc. 2019;62:493–501. doi: 10.3340/jkns.2018.0222. PubMed DOI PMC

Shi Y., Desponts C., Do J.T., Hahm H.S., Schöler H.R., Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3:568–574. doi: 10.1016/j.stem.2008.10.004. PubMed DOI

Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 2008;26:795–797. doi: 10.1038/nbt1418. PubMed DOI PMC

Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S., Muhlestein W., Melton D.A. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 2008;26:1269–1275. doi: 10.1038/nbt.1502. PubMed DOI

Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature. 1998;394:369–374. doi: 10.1038/28615. PubMed DOI

Kato Y., Tani T., Sotomaru Y., Kurokawa K., Kato J., Doguchi H., Yasue H., Tsunoda Y. Eight calves cloned from somatic cells of a single adult. Science. 1998;282:2095–2098. doi: 10.1126/science.282.5396.2095. PubMed DOI

Polejaeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000;407:86–90. doi: 10.1038/35024082. PubMed DOI

Shin T., Kraemer D., Pryor J., Liu L., Rugila J., Howe L., Buck S., Murphy K., Lyons L., Westhusin M. A cat cloned by nuclear transplantation. Nature. 2002;415:859. doi: 10.1038/nature723. PubMed DOI

Zhou Q., Renard J.P., Le Friec G., Brochard V., Beaujean N., Cherifi Y., Fraichard A., Cozzi J. Generation of fertile cloned rats by regulating oocyte activation. Science. 2003;302:1179. doi: 10.1126/science.1088313. PubMed DOI

Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J., Hossein M.S., Kim J.J., Kang S.K., Schatten G., et al. Dogs cloned from adult somatic cells. Nature. 2005;436:641. doi: 10.1038/436641a. PubMed DOI

Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. Reprogramming mammalian somatic cells. Theriogenology. 2012;78:1869–1886. doi: 10.1016/j.theriogenology.2012.05.030. PubMed DOI

Pandey S., Chottova Dvorakova M. Future Perspective of Diabetic Animal Models. Endocr. Metab. Immune Disord. Drug Targets. 2019;20:25–38. doi: 10.2174/1871530319666190626143832. PubMed DOI PMC

Pandey S., Malviya G., Chottova Dvorakova M. Role of Peptides in Diagnostics. Int. J. Mol. Sci. 2021;22:8828. doi: 10.3390/ijms22168828. PubMed DOI PMC

Dawson T.M., Golde T.E., Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat. Neurosci. 2018;21:1370–1379. doi: 10.1038/s41593-018-0236-8. PubMed DOI PMC

Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 2010;16:1210–1214. doi: 10.1038/nm.2224. PubMed DOI

Ribeiro F.M., Camargos E.R., de Souza L.C., Teixeira A.L. Animal models of neurodegenerative diseases. Braz. J. Psychiatry. 2013;35((Suppl. 2)):S82–S91. doi: 10.1590/1516-4446-2013-1157. PubMed DOI

Cummings J.L., Morstorf T., Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther. 2014;6:37. doi: 10.1186/alzrt269. PubMed DOI PMC

Bonifati V. Genetics of Parkinson’s disease--state of the art, 2013. Park. Relat. Disord. 2014;20((Suppl. 1)):S23–S28. doi: 10.1016/S1353-8020(13)70009-9. PubMed DOI

Shi C.H., Mao C.Y., Zhang S.Y., Yang J., Song B., Wu P., Zuo C.T., Liu Y.T., Ji Y., Yang Z.H., et al. CHCHD2 gene mutations in familial and sporadic Parkinson’s disease. Neurobiol. Aging. 2016;38:217.e9–217.e13. doi: 10.1016/j.neurobiolaging.2015.10.040. PubMed DOI

Wang Y., Wang Z., Sun H., Mao C., Yang J., Liu Y., Liu H., Zhang S., Zhang J., Xu Y., et al. Generation of induced pluripotent stem cell line (ZZUi007-A) from a 52-year-old patient with a novel CHCHD2 gene mutation in Parkinson’s disease. Stem Cell Res. 2018;32:87–90. doi: 10.1016/j.scr.2018.08.011. PubMed DOI

Tabata Y., Imaizumi Y., Sugawara M., Andoh-Noda T., Banno S., Chai M., Sone T., Yamazaki K., Ito M., Tsukahara K., et al. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Rep. 2018;11:1171–1184. doi: 10.1016/j.stemcr.2018.09.006. PubMed DOI PMC

Imaizumi Y., Okada Y., Akamatsu W., Koike M., Kuzumaki N., Hayakawa H., Nihira T., Kobayashi T., Ohyama M., Sato S., et al. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Mol. Brain. 2012;5:35. doi: 10.1186/1756-6606-5-35. PubMed DOI PMC

Suda Y., Kuzumaki N., Sone T., Narita M., Tanaka K., Hamada Y., Iwasawa C., Shibasaki M., Maekawa A., Matsuo M., et al. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction. Mol. Brain. 2018;11:6. doi: 10.1186/s13041-018-0349-8. PubMed DOI PMC

Shiba-Fukushima K., Ishikawa K.I., Inoshita T., Izawa N., Takanashi M., Sato S., Onodera O., Akamatsu W., Okano H., Imai Y., et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson’s disease. Hum. Mol. Genet. 2017;26:3172–3185. doi: 10.1093/hmg/ddx201. PubMed DOI

Benkert J., Hess S., Roy S., Beccano-Kelly D., Wiederspohn N., Duda J., Simons C., Patil K., Gaifullina A., Mannal N., et al. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat. Commun. 2019;10:5094. doi: 10.1038/s41467-019-12834-x. PubMed DOI PMC

Grigor’eva E.V., Drozdova E.S., Sorogina D.A., Malakhova A.A., Pavlova S.V., Vyatkin Y.V., Khabarova E.A., Rzaev J.A., Medvedev S.P., Zakian S.M. Generation of induced pluripotent stem cell line, ICGi034-A, by reprogramming peripheral blood mononuclear cells from a patient with Parkinson’s disease associated with GBA mutation. Stem Cell Res. 2021;59:102651. doi: 10.1016/j.scr.2021.102651. PubMed DOI

Schweitzer J.S., Song B., Herrington T.M., Park T.Y., Lee N., Ko S., Jeon J., Cha Y., Kim K., Li Q., et al. Personalized iPSC-Derived Dopamine Progenitor Cells for Parkinson’s Disease. N. Engl. J. Med. 2020;382:1926–1932. doi: 10.1056/NEJMoa1915872. PubMed DOI PMC

Chen Z.T., Zhao Z.H., Chen L.N., Fan F., Cai G.E., Weng H.D., Wang Y.Q., Liao L.M., Chen X.C., Huang E., et al. Generation of an induced pluripotent stem cell line, FJMUUHi001-A, from a hereditary Parkinson’s disease patient with homozygous mutation of c.189dupA in PARK7. Stem Cell Res. 2021;51:102175. doi: 10.1016/j.scr.2021.102175. PubMed DOI

Peitz M., Bechler T., Thiele C.C., Veltel M., Bloschies M., Fliessbach K., Ramirez A., Brüstle O. Blood-derived integration-free iPS cell line UKBi011-A from a diagnosed male Alzheimer’s disease patient with APOE ε4/ε4 genotype. Stem Cell Res. 2018;29:250–253. doi: 10.1016/j.scr.2018.04.011. PubMed DOI

Michaelson D.M. APOE ε4: The most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10:861–868. doi: 10.1016/j.jalz.2014.06.015. PubMed DOI

Yu J.T., Tan L., Hardy J. Apolipoprotein E in Alzheimer’s disease: An update. Annu. Rev. Neurosci. 2014;37:79–100. doi: 10.1146/annurev-neuro-071013-014300. PubMed DOI

Zhang W., Di W., Zhao J., Zhang B., Wang Y. Generation of a SIAISi004-A hiPSC line from PBMCs of a 74 year-old Alzheimer’s disease woman by non-integrating sendai virus mediated reprogramming. Stem Cell Res. 2021;55:102501. doi: 10.1016/j.scr.2021.102501. PubMed DOI

Liu S., Zhao Y., Su X., Zhou C., Yang P., Lin Q., Li S., Tan H., Wang Q., Wang C., et al. Reconstruction of Alzheimer’s Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells Int. 2020;2020:8897494. doi: 10.1155/2020/8897494. PubMed DOI PMC

Cusulin C., Wells I., Badillo S., Duran-Pacheco G.C., Baumann K., Patsch C. Gamma secretase modulators and BACE inhibitors reduce Aβ production without altering gene expression in Alzheimer’s disease iPSC-derived neurons and mice. Mol. Cell Neurosci. 2019;100:103392. doi: 10.1016/j.mcn.2019.103392. PubMed DOI

Kondo T., Imamura K., Funayama M., Tsukita K., Miyake M., Ohta A., Woltjen K., Nakagawa M., Asada T., Arai T., et al. iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Rep. 2017;21:2304–2312. doi: 10.1016/j.celrep.2017.10.109. PubMed DOI

Chang K.H., Lee-Chen G.J., Huang C.C., Lin J.L., Chen Y.J., Wei P.C., Lo Y.S., Yao C.F., Kuo M.W., Chen C.M. Modeling Alzheimer’s Disease by Induced Pluripotent Stem Cells Carrying APP D678H Mutation. Mol. Neurobiol. 2019;56:3972–3983. doi: 10.1007/s12035-018-1336-x. PubMed DOI PMC

Wang J., Liu X., Du X., Ma Z., Liu B., Guo R., Feng B., Ma J., Cui H. Induced pluripotent stem cells derived from one 70-years-old male donor with the APOE-ε4/ε4 alleles. Stem Cell Res. 2021;53:102395. doi: 10.1016/j.scr.2021.102395. PubMed DOI

Zhang L., Ren Q., Liu X., Liu G., Meng S., Xiahou K., Zhang Y., Jiang N., Zhou W. Generation of induced pluripotent stem cell line (IPTi002-A) from an 87-year old sporadic Alzheimer’s disease patient with APOE3 (ε3/ε3) genotype. Stem Cell Res. 2021;53:102282. doi: 10.1016/j.scr.2021.102282. PubMed DOI

Fujita Y., Murakami T., Nakamura A. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy. Int. J. Mol. Sci. 2021;22:2301. doi: 10.3390/ijms22052301. PubMed DOI PMC

Mittal K., Schrenk-Siemens K. Lessons from iPSC research: Insights on peripheral nerve disease. Neurosci. Lett. 2020;738:135358. doi: 10.1016/j.neulet.2020.135358. PubMed DOI

Xu J., Zuo C. The Fate Status of Stem Cells in Diabetes and its Role in the Occurrence of Diabetic Complications. Front. Mol. Biosci. 2021;8:745035. doi: 10.3389/fmolb.2021.745035. PubMed DOI PMC

Kanada S., Makino E., Nakamura N., Miyabe M., Ito M., Hata M., Yamauchi T., Sawada N., Kondo S., Saiki T., et al. Direct Comparison of Therapeutic Effects on Diabetic Polyneuropathy between Transplantation of Dental Pulp Stem Cells and Administration of Dental Pulp Stem Cell-Secreted Factors. Int. J. Mol. Sci. 2020;21:6064. doi: 10.3390/ijms21176064. PubMed DOI PMC

Wang Q., Chen F.Y., Ling Z.M., Su W.F., Zhao Y.Y., Chen G., Wei Z.Y. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front. Cell. Neurosci. 2022;16:836931. doi: 10.3389/fncel.2022.836931. PubMed DOI PMC

Himeno T., Kamiya H., Naruse K., Cheng Z., Ito S., Kondo M., Okawa T., Fujiya A., Kato J., Suzuki H., et al. Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice. Biomed. Res. Int. 2013;2013:259187. doi: 10.1155/2013/259187. PubMed DOI PMC

Levi A.D., Guénard V., Aebischer P., Bunge R.P. The functional characteristics of Schwann cells cultured from human peripheral nerve after transplantation into a gap within the rat sciatic nerve. J. Neurosci. 1994;14:1309–1319. doi: 10.1523/JNEUROSCI.14-03-01309.1994. PubMed DOI PMC

Gersey Z.C., Burks S.S., Anderson K.D., Dididze M., Khan A., Dietrich W.D., Levi A.D. First human experience with autologous Schwann cells to supplement sciatic nerve repair: Report of 2 cases with long-term follow-up. Neurosurg. Focus. 2017;42:E2. doi: 10.3171/2016.12.FOCUS16474. PubMed DOI

Levi A.D., Burks S.S., Anderson K.D., Dididze M., Khan A., Dietrich W.D. The Use of Autologous Schwann Cells to Supplement Sciatic Nerve Repair With a Large Gap: First in Human Experience. Cell Transplant. 2016;25:1395–1403. doi: 10.3727/096368915X690198. PubMed DOI

Stratton J.A., Kumar R., Sinha S., Shah P., Stykel M., Shapira Y., Midha R., Biernaskie J. Purification and Characterization of Schwann Cells from Adult Human Skin and Nerve. eNeuro. 2017;4:ENEURO.0307-16.2017. doi: 10.1523/ENEURO.0307-16.2017. PubMed DOI PMC

Namer B., Schmidt D., Eberhardt E., Maroni M., Dorfmeister E., Kleggetveit I.P., Kaluza L., Meents J., Gerlach A., Lin Z., et al. Pain relief in a neuropathy patient by lacosamide: Proof of principle of clinical translation from patient-specific iPS cell-derived nociceptors. EBioMedicine. 2019;39:401–408. doi: 10.1016/j.ebiom.2018.11.042. PubMed DOI PMC

Berlet R., Galang Cabantan D.A., Gonzales-Portillo D., Borlongan C.V. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front. Cell Dev. Biol. 2022;10:798826. doi: 10.3389/fcell.2022.798826. PubMed DOI PMC

Duan R., Gao Y., He R., Jing L., Li Y., Gong Z., Yao Y., Luan T., Zhang C., Li L., et al. Induced Pluripotent Stem Cells for Ischemic Stroke Treatment. Front. Neurosci. 2021;15:628663. doi: 10.3389/fnins.2021.628663. PubMed DOI PMC

Eckert A., Huang L., Gonzalez R., Kim H.S., Hamblin M.H., Lee J.P. Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke. Stem Cells Transl. Med. 2015;4:841–851. doi: 10.5966/sctm.2014-0184. PubMed DOI PMC

Chen Y., Song F., Tu M., Wu S., He X., Liu H., Xu C., Zhang K., Zhu Y., Zhou R., et al. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke. Front. Med. 2022;16:429–441. doi: 10.1007/s11684-021-0842-9. PubMed DOI

Kirabali T., Rust R. iPS-derived pericytes for neurovascular regeneration. Eur. J. Clin. Investig. 2021;51:e13601. doi: 10.1111/eci.13601. PubMed DOI PMC

Sun J., Huang Y., Gong J., Wang J., Fan Y., Cai J., Wang Y., Qiu Y., Wei Y., Xiong C., et al. Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nat. Commun. 2020;11:5196. doi: 10.1038/s41467-020-19042-y. PubMed DOI PMC

Salikhova D., Bukharova T., Cherkashova E., Namestnikova D., Leonov G., Nikitina M., Gubskiy I., Akopyan G., Elchaninov A., Midiber K., et al. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int. J. Mol. Sci. 2021;22:4694. doi: 10.3390/ijms22094694. PubMed DOI PMC

Li X., Sundström E. Stem Cell Therapies for Central Nervous System Trauma: The 4 Ws-What, When, Where, and Why. Stem Cells Transl. Med. 2022;11:14–25. doi: 10.1093/stcltm/szab006. PubMed DOI PMC

Huang L., Fu C., Xiong F., He C., Wei Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021;30:963689721989266. doi: 10.1177/0963689721989266. PubMed DOI PMC

Kajikawa K., Imaizumi K., Shinozaki M., Shibata S., Shindo T., Kitagawa T., Shibata R., Kamata Y., Kojima K., Nagoshi N., et al. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol. Brain. 2020;13:120. doi: 10.1186/s13041-020-00662-w. PubMed DOI PMC

Imaizumi K., Sone T., Ibata K., Fujimori K., Yuzaki M., Akamatsu W., Okano H. Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes. Stem Cell Rep. 2015;5:1010–1022. doi: 10.1016/j.stemcr.2015.10.005. PubMed DOI PMC

Gu J., Cromer B., Sumer H. Forward Programming of Pluripotent Stem Cells to Neurons. Curr. Mol. Med. 2021;21:5–14. doi: 10.2174/1566524020666200421115251. PubMed DOI

Burkhardt M.F., Martinez F.J., Wright S., Ramos C., Volfson D., Mason M., Garnes J., Dang V., Lievers J., Shoukat-Mumtaz U., et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 2013;56:355–364. doi: 10.1016/j.mcn.2013.07.007. PubMed DOI PMC

Capuz A., Karnoub M.A., Osien S., Rose M., Mériaux C., Fournier I., Devos D., Vanden Abeele F., Rodet F., Cizkova D., et al. The Antibody Dependant Neurite Outgrowth Modulation Response Involvement in Spinal Cord Injury. Front. Immunol. 2022;13:882830. doi: 10.3389/fimmu.2022.882830. PubMed DOI PMC

Kong D., Feng B., Amponsah A.E., He J., Guo R., Liu B., Du X., Liu X., Zhang S., Lv F., et al. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice. Stem Cell Res. Ther. 2021;12:172. doi: 10.1186/s13287-021-02217-9. PubMed DOI PMC

Csobonyeiova M., Polak S., Zamborsky R., Danisovic L. Recent Progress in the Regeneration of Spinal Cord Injuries by Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2019;20:3838. doi: 10.3390/ijms20153838. PubMed DOI PMC

Hamazaki T., El Rouby N., Fredette N.C., Santostefano K.E., Terada N. Concise Review: Induced Pluripotent Stem Cell Research in the Era of Precision Medicine. Stem Cells. 2017;35:545–550. doi: 10.1002/stem.2570. PubMed DOI PMC

Hankowski K.E., Hamazaki T., Umezawa A., Terada N. Induced pluripotent stem cells as a next-generation biomedical interface. Lab. Investig. 2011;91:972–977. doi: 10.1038/labinvest.2011.85. PubMed DOI PMC

Gowing G., Svendsen S., Svendsen C.N. Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 2017;230:99–132. doi: 10.1016/bs.pbr.2016.11.003. PubMed DOI

Savić N., Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 2016;168:15–21. doi: 10.1016/j.trsl.2015.09.008. PubMed DOI

Mingozzi F., High K.A. Therapeutic in vivo gene transfer for genetic disease using AAV: Progress and challenges. Nat. Rev. Genet. 2011;12:341–355. doi: 10.1038/nrg2988. PubMed DOI

Liu Y., Wang D.A. Viral vector-mediated transgenic cell therapy in regenerative medicine: Safety of the process. Expert Opin. Biol. Ther. 2015;15:559–567. doi: 10.1517/14712598.2015.995086. PubMed DOI

Barrett R., Ornelas L., Yeager N., Mandefro B., Sahabian A., Lenaeus L., Targan S.R., Svendsen C.N., Sareen D. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl. Med. 2014;3:1429–1434. doi: 10.5966/sctm.2014-0121. PubMed DOI PMC

Vierbuchen T., Ostermeier A., Pang Z.P., Kokubu Y., Südhof T.C., Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–1041. doi: 10.1038/nature08797. PubMed DOI PMC

Mandai M., Watanabe A., Kurimoto Y., Hirami Y., Morinaga C., Daimon T., Fujihara M., Akimaru H., Sakai N., Shibata Y., et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017;376:1038–1046. doi: 10.1056/NEJMoa1608368. PubMed DOI

Madrid M., Sumen C., Aivio S., Saklayen N. Autologous Induced Pluripotent Stem Cell-Based Cell Therapies: Promise, Progress, and Challenges. Curr. Protoc. 2021;1:e88. doi: 10.1002/cpz1.88. PubMed DOI

Karagiannis P., Nakauchi A., Yamanaka S. Bringing Induced Pluripotent Stem Cell Technology to the Bedside. JMA J. 2018;1:6–14. doi: 10.31662/jmaj.2018-0005. PubMed DOI PMC

Perestrelo A.R., Águas A.C., Rainer A., Forte G. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. Sensors. 2015;15:31142–31170. doi: 10.3390/s151229848. PubMed DOI PMC

Imamura Y., Mukohara T., Shimono Y., Funakoshi Y., Chayahara N., Toyoda M., Kiyota N., Takao S., Kono S., Nakatsura T., et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 2015;33:1837–1843. doi: 10.3892/or.2015.3767. PubMed DOI

Workman M.J., Gleeson J.P., Troisi E.J., Estrada H.Q., Kerns S.J., Hinojosa C.D., Hamilton G.A., Targan S.R., Svendsen C.N., Barrett R.J. Enhanced Utilization of Induced Pluripotent Stem Cell-Derived Human Intestinal Organoids Using Microengineered Chips. Cell Mol. Gastroenterol. Hepatol. 2018;5:669–677.e662. doi: 10.1016/j.jcmgh.2017.12.008. PubMed DOI PMC

Bircsak K.M., DeBiasio R., Miedel M., Alsebahi A., Reddinger R., Saleh A., Shun T., Vernetti L.A., Gough A. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667. doi: 10.1016/j.tox.2020.152667. PubMed DOI

Wang Y., Wang H., Deng P., Chen W., Guo Y., Tao T., Qin J. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system. Lab Chip. 2018;18:3606–3616. doi: 10.1039/C8LC00869H. PubMed DOI

Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto T., Roberts K., Chung S., Novak R., Ingram M., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 2017;1:0069. doi: 10.1038/s41551-017-0069. PubMed DOI PMC

Kujala V.J., Pasqualini F.S., Goss J.A., Nawroth J.C., Parker K.K. Laminar ventricular myocardium on a microelectrode array-based chip. J. Mater. Chem. B. 2016;4:3534–3543. doi: 10.1039/C6TB00324A. PubMed DOI

Zhang Y.S., Arneri A., Bersini S., Shin S.R., Zhu K., Goli-Malekabadi Z., Aleman J., Colosi C., Busignani F., Dell’Erba V., et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. doi: 10.1016/j.biomaterials.2016.09.003. PubMed DOI PMC

Marsano A., Conficconi C., Lemme M., Occhetta P., Gaudiello E., Votta E., Cerino G., Redaelli A., Rasponi M. Beating heart on a chip: A novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016;16:599–610. doi: 10.1039/C5LC01356A. PubMed DOI

Schneider O., Zeifang L., Fuchs S., Sailer C., Loskill P. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip. Tissue Eng. Part A. 2019;25:786–798. doi: 10.1089/ten.tea.2019.0002. PubMed DOI PMC

Brown J.A., Codreanu S.G., Shi M., Sherrod S.D., Markov D.A., Neely M.D., Britt C.M., Hoilett O.S., Reiserer R.S., Samson P.C., et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflamm. 2016;13:306. doi: 10.1186/s12974-016-0760-y. PubMed DOI PMC

Brown J.A., Pensabene V., Markov D.A., Allwardt V., Neely M.D., Shi M., Britt C.M., Hoilett O.S., Yang Q., Brewer B.M., et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9:054124. doi: 10.1063/1.4934713. PubMed DOI PMC

Wang Y., Wang L., Guo Y., Zhu Y., Qin J. Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv. 2018;8:1677–1685. doi: 10.1039/C7RA11714K. PubMed DOI PMC

Sakolish C., Reese C.E., Luo Y.S., Valdiviezo A., Schurdak M.E., Gough A., Taylor D.L., Chiu W.A., Vernetti L.A., Rusyn I. Analysis of reproducibility and robustness of a human microfluidic four-cell liver acinus microphysiology system (LAMPS) Toxicology. 2021;448:152651. doi: 10.1016/j.tox.2020.152651. PubMed DOI PMC

Fanizza F., Campanile M., Forloni G., Giordano C., Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J. Tissue Eng. 2022;13:20417314221095339. doi: 10.1177/20417314221095339. PubMed DOI PMC

Baghbaderani B.A., Tian X., Neo B.H., Burkall A., Dimezzo T., Sierra G., Zeng X., Warren K., Kovarcik D.P., Fellner T., et al. cGMP-Manufactured Human Induced Pluripotent Stem Cells Are Available for Pre-clinical and Clinical Applications. Stem Cell Rep. 2015;5:647–659. doi: 10.1016/j.stemcr.2015.08.015. PubMed DOI PMC

Rivera T., Zhao Y., Ni Y., Wang J. Human-Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions. Curr. Protoc. Stem Cell Biol. 2020;54:e117. doi: 10.1002/cpsc.117. PubMed DOI PMC

Denker H.W. Ethical concerns over use of new cloning technique in humans. Nature. 2009;461:341. doi: 10.1038/461341b. PubMed DOI

Denker H.W. Induced pluripotent stem cells: How to deal with the developmental potential. Reprod. Biomed. Online. 2009;19((Suppl. 1)):34–37. doi: 10.1016/S1472-6483(10)60062-4. PubMed DOI

Lo B., Parham L., Alvarez-Buylla A., Cedars M., Conklin B., Fisher S., Gates E., Giudice L., Halme D.G., Hershon W., et al. Cloning mice and men: Prohibiting the use of iPS cells for human reproductive cloning. Cell Stem Cell. 2010;6:16–20. doi: 10.1016/j.stem.2009.12.004. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Animal Models in Diabetic Research-History, Presence, and Future Perspectives

. 2023 Oct 20 ; 11 (10) : . [epub] 20231020

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...