Functionalized Metallic 2D Transition Metal Dichalcogenide-Based Solid-State Electrolyte for Flexible All-Solid-State Supercapacitors
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36194759
PubMed Central
PMC9620411
DOI
10.1021/acsnano.2c05640
Knihovny.cz E-resources
- Keywords
- flexibility, functionalization, niobium disulfide, solid-state supercapacitors, transition metal dichalcogenides,
- Publication type
- Journal Article MeSH
Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.
BeDimensional SpA Lungotorrente Secca 30R 16163 Genoa Italy
Graphene Labs Istituto Italiano di Tecnologia via Morego 30 16163 Genoa Italy
Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
Smart Materials Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
See more in PubMed
Zheng Y.; Ni D.; Li N.; Chen W.; Lu W. Nano-Channel Carbon Fiber Film with Enhanced Mechanical and Electrochemical Properties by Centrifuged Electrospinning for All-Solid-State Flexible Symmetric Supercapacitors. Microporous Mesoporous Mater. 2021, 316, 110972.10.1016/j.micromeso.2021.110972. DOI
Beknalkar S. A.; Teli A. M.; Harale N. S.; Patil D. S.; Pawar S. A.; Shin J. C.; Patil P. S. Fabrication of High Energy Density Supercapacitor Device Based on Hollow Iridium Oxide Nanofibers by Single Nozzle Electrospinning. Appl. Surf. Sci. 2021, 546, 149102.10.1016/j.apsusc.2021.149102. DOI
Ong A. C. W.; Shamsuri N. A.; Zaine S. N. A.; Panuh D.; Shukur M. F. Nanocomposite Polymer Electrolytes Comprising Starch-Lithium Acetate and Titania for All-Solid-State Supercapacitor. Ionics 2021, 27 (2), 853–865. 10.1007/s11581-020-03856-3. DOI
Yan C.; Jin M.; Pan X.; Ma L.; Ma X. A Flexible Polyelectrolyte-Based Gel Polymer Electrolyte for High-Performance All-Solid-State Supercapacitor Application. RSC Adv. 2020, 10 (16), 9299–9308. 10.1039/C9RA10701K. PubMed DOI PMC
Yadav N. N.; Yadav N. N.; Hashmi S. A. Ionic Liquid Incorporated, Redox-Active Blend Polymer Electrolyte for High Energy Density Quasi-Solid-State Carbon Supercapacitor. J. Power Sources 2020, 451, 227771.10.1016/j.jpowsour.2020.227771. DOI
Najafi L.; Bellani S.; Gabatel L.; Zappia M. I.; Di Carlo A.; Bonaccorso F. Reverse-Bias and Temperature Behaviors of Perovskite Solar Cells at Extended Voltage Range. ACS Appl. Energy Mater. 2022, 5 (2), 1378–1384. 10.1021/acsaem.1c03206. PubMed DOI PMC
Pescetelli S.; Agresti A.; Viskadouros G.; Razza S.; Rogdakis K.; Kalogerakis I.; Spiliarotis E.; Leonardi E.; Mariani P.; Sorbello L.; Pierro M.; Cornaro C.; Bellani S.; Najafi L.; Martín-García B.; Del Rio Castillo A. E.; Oropesa-Nuñez R.; Prato M.; Maranghi S.; Parisi M. L.; Sinicropi A.; Basosi R.; Bonaccorso F.; Kymakis E.; Di Carlo A. Integration of Two-Dimensional Materials-Based Perovskite Solar Panels into a Stand-Alone Solar Farm. Nat. Energy 2022, 7 (7), 597–607. 10.1038/s41560-022-01035-4. DOI
Sepulveda N. A.; Jenkins J. D.; Edington A.; Mallapragada D. S.; Lester R. K. The Design Space for Long-Duration Energy Storage in Decarbonized Power Systems. Nat. Energy 2021, 6 (5), 506–516. 10.1038/s41560-021-00796-8. DOI
Guerra O. J.; Zhang J.; Eichman J.; Denholm P.; Kurtz J.; Hodge B. M. The Value of Seasonal Energy Storage Technologies for the Integration of Wind and Solar Power. Energy Environ. Sci. 2020, 13 (7), 1909–1922. 10.1039/D0EE00771D. DOI
Ngabesong R.; McLauchlan L.. System Planning and Modeling of a Renewable Energy Self-Sufficient Community. In IEEE Green Technologies Conference; IEEE Computer Society: Austin, TX, April 04–06, 2018; pp 21–26.
Graça Gomes J.; Xu H. J.; Yang Q.; Zhao C. Y. An Optimization Study on a Typical Renewable Microgrid Energy System with Energy Storage. Energy 2021, 234, 121210.10.1016/j.energy.2021.121210. DOI
Yoon C.; Ippili S.; Jella V.; Thomas A. M.; Jung J. S.; Han Y.; Yang T. Y.; Yoon S. G.; Yoon G. Synergistic Contribution of Flexoelectricity and Piezoelectricity towards a Stretchable Robust Nanogenerator for Wearable Electronics. Nano Energy 2022, 91, 106691.10.1016/j.nanoen.2021.106691. DOI
Kim T.; Park C.; Samuel E. P.; Kim Y. Il; An S.; Yoon S. S. Wearable Sensors and Supercapacitors Using Electroplated-Ni/ZnO Antibacterial Fabric. J. Mater. Sci. Technol. 2022, 100, 254–264. 10.1016/j.jmst.2021.05.044. DOI
Jia Y.; Zhang L.; Qin M.; Li Y.; Gu S.; Guan Q.; You Z. Highly Efficient Self-Healable and Robust Fluorinated Polyurethane Elastomer for Wearable Electronics. Chem. Eng. J. 2022, 430, 133081.10.1016/j.cej.2021.133081. DOI
Dousti B.; Babu S.; Geramifard N.; Choi M. Y.; Lee J. B.; Cogan S. F.; Lee G. S. Highly Flexible All-Solid-State Microsupercapacitors for on Chip Applications Using a Transfer-Free Fabrication Process. J. Power Sources 2022, 520, 230779.10.1016/j.jpowsour.2021.230779. DOI
Zhong C.; Deng Y.; Hu W.; Qiao J.; Zhang L.; Zhang J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44 (21), 7484–7539. 10.1039/C5CS00303B. PubMed DOI
Deng Y.; Wang H.; Zhang K.; Shao J.; Qiu J.; Wu J.; Wu Y.; Yan L. A High-Voltage Quasi-Solid-State Flexible Supercapacitor with a Wide Operational Temperature Range Based on a Low-Cost “Water-in-Salt” Hydrogel Electrolyte. Nanoscale 2021, 13 (5), 3010–3018. 10.1039/D0NR08437A. PubMed DOI
Lee H. U.; Jin J. H.; Kim S. W. Effect of Gel Electrolytes on the Performance of a Minimized Flexible Micro-Supercapacitor Based on Graphene/PEDOT Composite Using Pen Lithography. J. Ind. Eng. Chem. 2019, 71, 184–190. 10.1016/j.jiec.2018.11.021. DOI
Luo X.; Liang Y.; Weng W.; Hu Z.; Zhang Y.; Yang J.; Yang L.; Zhu M. Polypyrrole-Coated Carbon Nanotube/Cotton Hybrid Fabric with High Areal Capacitance for Flexible Quasi-Solid-State Supercapacitors. Energy Storage Mater. 2020, 33, 11–17. 10.1016/j.ensm.2020.07.036. DOI
Ghafarian-Zahmatkesh H.; Javanbakht M.; Ghaemi M. Ethylene Glycol-Assisted Hydrothermal Synthesis and Characterization of Bow-Tie-like Lithium Iron Phosphate Nanocrystals for Lithium-Ion Batteries. J. Power Sources 2015, 284, 339–348. 10.1016/j.jpowsour.2015.02.157. DOI
Beydaghi H.; Abouali S.; Thorat S. B.; Del Rio Castillo A. E.; Bellani S.; Lauciello S.; Gentiluomo S.; Pellegrini V.; Bonaccorso F. 3D Printed Silicon-Few Layer Graphene Anode for Advanced Li-Ion Batteries. RSC Adv. 2021, 11 (56), 35051–35060. 10.1039/D1RA06643A. PubMed DOI PMC
Bellani S.; Najafi L.; Prato M.; Oropesa-Nuñez R.; Martín-Garciá B.; Gagliani L.; Mantero E.; Marasco L.; Bianca G.; Zappia M. I.; Demirci C.; Olivotto S.; Mariucci G.; Pellegrini V.; Schiavetti M.; Bonaccorso F. Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments. Chem. Mater. 2021, 33 (11), 4106–4121. 10.1021/acs.chemmater.1c00763. PubMed DOI PMC
Najafi M.; Bellani S.; Galli V.; Zappia M. I.; Bagheri A.; Safarpour M.; Beydaghi H.; Eredia M.; Pasquale L.; Carzino R.; Lauciello S.; Panda J. K.; Brescia R.; Gabatel L.; Pellegrini V.; Bonaccorso F. Carbon-α-Fe2O3 Composite Active Material for High - Capacity Electrodes with High Mass Loading and Flat Current Collector for Quasi - Symmetric Supercapacitors. Electrochem 2022, 3 (3), 463–478. 10.3390/electrochem3030032. DOI
Blanco H.; Faaij A. A Review at the Role of Storage in Energy Systems with a Focus on Power to Gas and Long-Term Storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. 10.1016/j.rser.2017.07.062. DOI
Ma L.; Zhang C.; Wu Y.; Lu Y. Effect of Flow Rate and SiO2 Nanoparticle on Dynamic Corrosion Behavior of Stainless Steels in Molten Salt for Thermal Energy Storage. Corros. Sci. 2022, 194, 109952.10.1016/j.corsci.2021.109952. DOI
Haas J.; Prieto-Miranda L.; Ghorbani N.; Breyer C. Revisiting the Potential of Pumped-Hydro Energy Storage: A Method to Detect Economically Attractive Sites. Renew. Energy 2022, 181, 182–193. 10.1016/j.renene.2021.09.009. DOI
Forse A. C.; Merlet C.; Griffin J. M.; Grey C. P. New Perspectives on the Charging Mechanisms of Supercapacitors. J. Am. Chem. Soc. 2016, 138 (18), 5731–5744. 10.1021/jacs.6b02115. PubMed DOI PMC
Da Silva-Neto M. L.; Barbosa-Silva R.; De Araújo C. B.; De Matos C. J. S.; Jawaid A. M.; Ritter A. J.; Vaia R. A.; Gomes A. S. L. Hyper-Rayleigh Scattering in 2D Redox Exfoliated Semi-Metallic ZrTe2 Transition Metal Dichalcogenide. Phys. Chem. Chem. Phys. 2020, 22 (47), 27845–27849. 10.1039/D0CP04821F. PubMed DOI
Wu W.; Zhao C.; Niu D.; Zhu J.; Wei D.; Wang C.; Wang L.; Yang L. Ultrathin N-Doped Ti3C2-MXene Decorated with NiCo2S4 Nanosheets as Advanced Electrodes for Supercapacitors. Appl. Surf. Sci. 2021, 539, 148272.10.1016/j.apsusc.2020.148272. DOI
Song Y. H.; Kim T.; Choi U. H. Tuning Morphology and Properties of Epoxy-Based Solid-State Polymer Electrolytes by Molecular Interaction for Flexible All-Solid-State Supercapacitors. Chem. Mater. 2020, 32 (9), 3879–3892. 10.1021/acs.chemmater.0c00041. DOI
Zang L.; Liu Q.; Qiu J.; Yang C.; Wei C.; Liu C.; Lao L. Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel. ACS Appl. Mater. Interfaces 2017, 9 (39), 33941–33947. 10.1021/acsami.7b10321. PubMed DOI
Giannakopoulou T.; Todorova N.; Erotokritaki A.; Plakantonaki N.; Tsetsekou A.; Trapalis C. Electrochemically Deposited Graphene Oxide Thin Film Supercapacitors: Comparing Liquid and Solid Electrolytes. Appl. Surf. Sci. 2020, 528, 146801.10.1016/j.apsusc.2020.146801. DOI
Alipoori S.; Mazinani S.; Aboutalebi S. H.; Sharif F. Review of PVA-Based Gel Polymer Electrolytes in Flexible Solid-State Supercapacitors: Opportunities and Challenges. J. Energy Storage 2020, 27, 101072.10.1016/j.est.2019.101072. DOI
Amaral M. M.; Venâncio R.; Peterlevitz A. C.; Zanin H. Recent Advances on Quasi-Solid-State Electrolytes for Supercapacitors. J. Energy Chem. 2022, 67, 697–717. 10.1016/j.jechem.2021.11.010. DOI
Ye T.; Li L.; Zhang Y. Recent Progress in Solid Electrolytes for Energy Storage Devices. Adv. Funct. Mater. 2020, 30 (29), 2000077.10.1002/adfm.202000077. DOI
Hong S. H.; Shi H. H.; Naguib H. E. Polypyrrole Nanofoam/Carbon Nanotube Multilayered Electrode for Flexible Electrochemical Capacitors. ACS Appl. Energy Mater. 2022, 5 (4), 4059–4069. 10.1021/acsaem.1c02333. DOI
Xu Y.; Pei S.; Yan Y.; Wang L.; Xu G.; Yarlagadda S.; Chou T. W. High-Performance Structural Supercapacitors Based on Aligned Discontinuous Carbon Fiber Electrodes and Solid Polymer Electrolytes. ACS Appl. Mater. Interfaces 2021, 13 (10), 11774–11782. 10.1021/acsami.0c19550. PubMed DOI
Zhou D.; Wang F.; Yang J.; Fan L. z. Flexible Solid-State Self-Charging Supercapacitor Based on Symmetric Electrodes and Piezo-Electrolyte. Chem. Eng. J. 2021, 406, 126825.10.1016/j.cej.2020.126825. DOI
Lee S.; An G.-H. Reversible Faradaic Reactions Involving Redox Mediators and Oxygen-Containing Groups on Carbon Fiber Electrode for High-Performance Flexible Fibrous Supercapacitors. J. Energy Chem. 2022, 68, 1–11. 10.1016/j.jechem.2021.11.008. DOI
Jia S.; Wei J.; Gong B.; Shao Z. Self-Templating Construction of NiCo2S4/CoO Multi-Shelled Hollow Spheres as Electrodes for Hybrid Supercapacitors. J. Alloys Compd. 2022, 901, 163569.10.1016/j.jallcom.2021.163569. DOI
Nasrin K.; Gokulnath S.; Karnan M.; Subramani K.; Sathish M. Redox-Additives in Aqueous, Non-Aqueous, and All-Solid-State Electrolytes for Carbon-Based Supercapacitor: A Mini-Review. Energy Fuels 2021, 35 (8), 6465–6482. 10.1021/acs.energyfuels.1c00341. DOI
Kumaravel V.; Bartlett J.; Pillai S. C. Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors. Adv. Energy Mater. 2021, 11 (3), 2002869.10.1002/aenm.202002869. DOI
Dang A.; Sun Y.; Fang C.; Li T.; Liu X.; Xia Y.; Ye F.; Zada A.; Khan M. Rational Design of Ti3C2/Carbon Nanotubes/MnCo2S4 Electrodes for Symmetric Supercapacitors with High Energy Storage. Appl. Surf. Sci. 2022, 581, 152432.10.1016/j.apsusc.2022.152432. DOI
Fan J.; Chen A.; Xie X.; Gu L. Co3O4-Induced Area-Selective Growth of Ni(OH)2 Cellular Arrays for High-Capacity Supercapacitor Electrode. J. Energy Storage 2022, 48, 103964.10.1016/j.est.2022.103964. DOI
Lamba P.; Singh P.; Singh P.; Singh P.; Bharti; Kumar A.; Gupta M.; Kumar Y. Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. J. Energy Storage 2022, 48, 103871.10.1016/j.est.2021.103871. DOI
Zhang M.; Zheng H.; Zhu H.; Zhang M.; Liu R.; Zhu X.; Li X.; Cui H. Boosting Energy and Power of Cu-Doped NiCo2S4/Graphite Electrode for High Performance Supercapacitors. J. Alloys Compd. 2022, 901, 163633.10.1016/j.jallcom.2022.163633. DOI
Alexandre S. A.; Silva G. G.; Santamaría R.; Trigueiro J. P. C.; Lavall R. L. A Highly Adhesive PIL/IL Gel Polymer Electrolyte for Use in Flexible Solid State Supercapacitors. Electrochim. Acta 2019, 299, 789–799. 10.1016/j.electacta.2019.01.029. DOI
Asbani B.; Douard C.; Brousse T.; Le Bideau J. High Temperature Solid-State Supercapacitor Designed with Ionogel Electrolyte. Energy Storage Mater. 2019, 21, 439–445. 10.1016/j.ensm.2019.06.004. DOI
Gao H.; Lian K. Proton-Conducting Polymer Electrolytes and Their Applications in Solid Supercapacitors: A Review. RSC Adv. 2014, 4 (62), 33091–33113. 10.1039/C4RA05151C. DOI
Mao T.; Chen H.; Li J.; Liu F.; Wang X.; Wang S. Hydroxypolybenzimidazole Electrolyte with Excellent Stability for High Power Density All-Solid-State Supercapacitors. ACS Appl. Energy Mater. 2020, 3 (6), 5163–5172. 10.1021/acsaem.9b02421. DOI
Wei Y.; Wang M.; Xu N.; Peng L.; Mao J.; Gong Q.; Qiao J. Alkaline Exchange Polymer Membrane Electrolyte for High Performance of All-Solid-State Electrochemical Devices. ACS Appl. Mater. Interfaces 2018, 10 (35), 29593–29598. 10.1021/acsami.8b09545. PubMed DOI
Cole D. P.; Reddy A. L. M.; Hahm M. G.; McCotter R.; Hart A. H. C.; Vajtai R.; Ajayan P. M.; Karna S. P.; Bundy M. L. Electromechanical Properties of Polymer Electrolyte-Based Stretchable Supercapacitors. Adv. Energy Mater. 2014, 4 (3), 1300844.10.1002/aenm.201300844. DOI
Wu H.; Cai H.; Xu Y.; Wu Q.; Yan W. Hybrid Electrolyte SiW9MoV2/RGO/SPEEK for Solid Supercapacitors with Enhanced Conductive Performance. Mater. Chem. Phys. 2018, 215, 163–167. 10.1016/j.matchemphys.2018.05.020. DOI
Liang N.; Ji Y.; Zuo D.; Zhang H.; Xu J. Improved Performance of Carbon-Based Supercapacitors with Sulfonated Poly(Ether Ether Ketone)/Poly(Vinyl Alcohol) Composite Membranes as Separators. Polym. Int. 2019, 68 (1), 120–124. 10.1002/pi.5704. DOI
Najafi L.; Bellani S.; Zappia M. I.; Serri M.; Oropesa-Nuñez R.; Bagheri A.; Beydaghi H.; Brescia R.; Pasquale L.; Shinde D. V.; Zuo Y.; Drago F.; Mosina K.; Sofer Z.; Manna L.; Bonaccorso F. Transition Metal Dichalcogenides as Catalysts for the Hydrogen Evolution Reaction: The Emblematic Case of “Inert” ZrSe2 as Catalyst for Electrolyzers. Nano Sel. 2022, 3 (6), 1069–1081. 10.1002/nano.202100364. DOI
Najafi L.; Oropesa-Nunez R.; Bellani S.; Martin-Garcia B.; Pasquale L.; Serri M.; Drago F.; Luxa J.; Sofer Z.; Sedmidubsky D.; Brescia R.; Lauciello S.; Zappia M. I.; Shinde D. V.; Manna L.; Bonaccorso F. Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano 2022, 16 (1), 351–367. 10.1021/acsnano.1c06662. PubMed DOI
Beydaghi H.; Javanbakht M.; Bagheri A.; Ghafarian-zahmatkesh H.; Hooshyari K. Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-d-Glucose as a Protection Agent. Iran. J. Hydrog. Fuel Cell 2017, 1, 1–11.
Yee R. S. L.; Rozendal R. A.; Zhang K.; Ladewig B. P. Cost Effective Cation Exchange Membranes: A Review. Chem. Eng. Res. Des. 2012, 90 (7), 950–959. 10.1016/j.cherd.2011.10.015. DOI
Qian P.; Wang H.; Zhang L.; Zhou Y.; Shi H. An Enhanced Stability and Efficiency of SPEEK-Based Composite Membrane Influenced by Amphoteric Side-Chain Polymer for Vanadium Redox Flow Battery. J. Membr. Sci. 2022, 643, 120011.10.1016/j.memsci.2021.120011. DOI
Raja K.; Raja Pugalenthi M.; Ramesh Prabhu M. Investigation on SPEEK/PAI/SrTiO3-Based Nanocomposite Membrane for High-Temperature Proton Exchange Membrane Fuel Cells. Ionics 2019, 25 (11), 5177–5188. 10.1007/s11581-019-03100-7. DOI
Salarizadeh P.; Bagheri A.; Beydaghi H.; Hooshyari K. Enhanced Properties of SPEEK with Incorporating of PFSA and Barium Strontium Titanate Nanoparticles for Application in DMFCs. Int. J. Energy Res. 2019, 43 (9), 4840–4853. 10.1002/er.4635. DOI
Ahankari S.; Lasrado D.; Subramaniam R. Advances in Materials and Fabrication of Separators in Supercapacitors. Mater. Adv. 2022, 3 (3), 1472–1496. 10.1039/D1MA00599E. DOI
Li G.; Yang H.; Zuo D.; Zhang H. Performance Enhancement of Gel Polymer Electrolytes Using Sulfonated Poly(Ether Ether Ketone) for Supercapacitors. Polym. Int. 2021, 70 (8), 1146–1152. 10.1002/pi.6182. DOI
Raja Pugalenthi M.; Ramesh Prabhu M. The Pore Filled SPEEK Nanofibers Matrix Combined with Ethylene Diamine Modified SrFeO3 Nanoneedles for the Cation Exchange Membrane Fuel Cells. J. Taiwan Inst. Chem. Eng. 2021, 122, 136–147. 10.1016/j.jtice.2021.04.054. DOI
Ranjani M.; Al-Sehemi A. G.; Pannipara M.; Aziz M. A.; Phang S. M.; Ng F. L.; kumar G. G. SnO2 Nanocubes/Bentonite Modified SPEEK Nanocomposite Composite Membrane for High Performance and Durable Direct Methanol Fuel Cells. Solid State Ionics 2020, 353, 115318.10.1016/j.ssi.2020.115318. DOI
Beydaghi H.; Najafi L.; Bellani S.; Bagheri A.; Martín-García B.; Salarizadeh P.; Hooshyari K.; Naderizadeh S.; Serri M.; Pasquale L.; Wu B.; Oropesa-Nuñez R.; Sofer Z.; Pellegrini V.; Bonaccorso F. Functionalized Metallic Transition Metal Dichalcogenide (TaS2) for Nanocomposite Membranes in Direct Methanol Fuel Cells. J. Mater. Chem. A 2021, 9 (10), 6368–6381. 10.1039/D0TA11137F. DOI
Carmo M.; Fritz D. L.; Mergel J.; Stolten D. A Comprehensive Review on PEM Water Electrolysis. Int. J. Hydrogen Energy 2013, 38 (12), 4901–4934. 10.1016/j.ijhydene.2013.01.151. DOI
Shabani M.; Younesi H.; Pontié M.; Rahimpour A.; Rahimnejad M.; Zinatizadeh A. A. A Critical Review on Recent Proton Exchange Membranes Applied in Microbial Fuel Cells for Renewable Energy Recovery. J. Clean. Prod. 2020, 264, 121446.10.1016/j.jclepro.2020.121446. DOI
Amiri H.; Khosravi M.; Ejeian M.; Razmjou A. Designing Ion-Selective Membranes for Vanadium Redox Flow Batteries. Adv. Mater. Technol. 2021, 6 (10), 2001308.10.1002/admt.202001308. DOI
Thiam B. G.; Vaudreuil S. Review—Recent Membranes for Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2021, 168 (7), 070553.10.1149/1945-7111/ac163c. DOI
Xiong P.; Zhang L.; Chen Y.; Peng S.; Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew. Chemie - Int. Ed. 2021, 60 (47), 24770–24798. 10.1002/anie.202105619. PubMed DOI
Beydaghi H.; Bellani S.; Najafi L.; Oropesa-Nuñez R.; Bianca G.; Bagheri A.; Conticello I.; Martín-García B.; Kashefi S.; Serri M.; Liao L.; Sofer Z.; Pellegrini V.; Bonaccorso F. Sulfonated NbS2 -Based Proton-Exchange Membranes for Vanadium Redox Flow Batteries. Nanoscale 2022, 14 (16), 6152–6161. 10.1039/D1NR07872K. PubMed DOI
Kim A. R.; Vinothkannan M.; Song M. H.; Lee J. Y.; Lee H. K.; Yoo D. J. Amine Functionalized Carbon Nanotube (ACNT) Filled in Sulfonated Poly(Ether Ether Ketone) Membrane: Effects of ACNT in Improving Polymer Electrolyte Fuel Cell Performance under Reduced Relative Humidity. Compos. Part B Eng. 2020, 188, 107890.10.1016/j.compositesb.2020.107890. DOI
Harun N. A. M.; Shaari N.; Nik Zaiman N. F. H. A Review of Alternative Polymer Electrolyte Membrane for Fuel Cell Application Based on Sulfonated Poly(Ether Ether Ketone). Int. J. Energy Res. 2021, 45 (14), 19671–19708. 10.1002/er.7048. DOI
Bagheri A.; Javanbakht M.; Beydaghi H.; Salarizadeh P.; Shabanikia A.; Salar Amoli H. Sulfonated Poly(Etheretherketone) and Sulfonated Polyvinylidene Fluoride-Co-Hexafluoropropylene Based Blend Proton Exchange Membranes for Direct Methanol Fuel Cell Applications. RSC Adv. 2016, 6 (45), 39500–39510. 10.1039/C6RA00038J. DOI
Zhu Y. E.; Yang L.; Sheng J.; Chen Y.; Gu H.; Wei J.; Zhou Z. Fast Sodium Storage in TiO2@CNT@C Nanorods for High-Performance Na-Ion Capacitors. Adv. Energy Mater. 2017, 7 (22), 1701222.10.1002/aenm.201701222. DOI
Popoola I.; Gondal M.; Oloore L.; Popoola A. J.; AlGhamdi J. Fabrication of Organometallic Halide Perovskite Electrochemical Supercapacitors Utilizing Quasi-Solid-State Electrolytes for Energy Storage Devices. Electrochim. Acta 2020, 332, 135536.10.1016/j.electacta.2019.135536. DOI
Awang N.; Yajid M. A. M.; Jaafar J. Impact of Exfoliated Structure on the Performance of Electrospun SPEEK/Cloisite Nanocomposite Membranes as Proton Exchange Membranes for Direct Methanol Fuel Cell Application. J. Environ. Chem. Eng. 2021, 9 (4), 105319.10.1016/j.jece.2021.105319. DOI
Ata K. C.; Kadıoğlu T.; Türkmen A. C.; Çelik C.; Akay R. G. Investigation of the Effects of SPEEK and Its Clay Composite Membranes on the Performance of Direct Borohydride Fuel Cell. Int. J. Hydrogen Energy 2020, 45 (8), 5430–5437. 10.1016/j.ijhydene.2019.09.203. DOI
Zhao S.; Hotta T.; Koretsune T.; Watanabe K.; Taniguchi T.; Sugawara K.; Takahashi T.; Shinohara H.; Kitaura R. Two-Dimensional Metallic NbS2: Growth, Optical Identification and Transport Properties. 2D Mater. 2016, 3 (2), 025027.10.1088/2053-1583/3/2/025027. DOI
Bellani S.; Bartolotta A.; Agresti A.; Calogero G.; Grancini G.; Di Carlo A.; Kymakis E.; Bonaccorso F. Solution-Processed Two-Dimensional Materials for next-Generation Photovoltaics. Chem. Soc. Rev. 2021, 50 (21), 11870–11965. 10.1039/D1CS00106J. PubMed DOI PMC
Mariani P.; Najafi L.; Bianca G.; Zappia M. I.; Gabatel L.; Agresti A.; Pescetelli S.; Di Carlo A.; Bellani S.; Bonaccorso F. Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13 (19), 22368–22380. 10.1021/acsami.1c02626. PubMed DOI PMC
Salarizadeh P.; Javanbakht M.; Askari M. B.; Hooshyari K.; Moradi M.; Beydaghi H.; Rastgoo-Deylami M.; Enhessari M. Novel Proton Conducting Core-Shell PAMPS-PVBS@Fe2TiO5 Nanoparticles as a Reinforcement for SPEEK Based Membranes. Sci. Rep. 2021, 11 (1), 4926.10.1038/s41598-021-84321-7. PubMed DOI PMC
Feng K.; Tang B.; Wu P. Selective Growth of MoS2 for Proton Exchange Membranes with Extremely High Selectivity. ACS Appl. Mater. Interfaces 2013, 5 (24), 13042–13049. 10.1021/am403946z. PubMed DOI
Ataca C.; Ciraci S. Functionalization of Single-Layer MoS2 Honeycomb Structures. J. Phys. Chem. C 2011, 115 (27), 13303–13311. 10.1021/jp2000442. DOI
Divya K.; Rana D.; Sri Abirami Saraswathi M. S.; Bhat S. D.; Shukla A.; Nagendran A. Investigation of the Versatility of SPES Membranes Customized with Sulfonated Molybdenum Disulfide Nanosheets for DMFC Applications. Int. J. Hydrogen Energy 2020, 45 (31), 15507–15520. 10.1016/j.ijhydene.2020.04.019. DOI
Voiry D.; Goswami A.; Kappera R.; Silva C. D. C. C. E.; Kaplan D.; Fujita T.; Chen M.; Asefa T.; Chhowalla M. Covalent Functionalization of Monolayered Transition Metal Dichalcogenides by Phase Engineering. Nat. Chem. 2015, 7 (1), 45–49. 10.1038/nchem.2108. PubMed DOI
Beydaghi H.; Javanbakht M. Aligned Nanocomposite Membranes Containing Sulfonated Graphene Oxide with Superior Ionic Conductivity for Direct Methanol Fuel Cell Application. Ind. Eng. Chem. Res. 2015, 54 (28), 7028–7037. 10.1021/acs.iecr.5b01450. DOI
Beydaghi H.; Javanbakht M.; Badiei A. Cross-Linked Poly(Vinyl Alcohol)/Sulfonated Nanoporous Silica Hybrid Membranes for Proton Exchange Membrane Fuel Cell. J. Nanostructure Chem. 2014, 4, 1–9. 10.1007/s40097-014-0097-y. DOI
Muzaffar A.; Ahamed M. B.; Deshmukh K.; Thirumalai J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. 10.1016/j.rser.2018.10.026. DOI
Wang J. A.; Lin S. C.; Wang Y. S.; Ma C. C. M.; Hu C. C. Bi-Functional Water-Born Polyurethane-Potassium Poly(Acrylate) Designed for Carbon-Based Electrodes of Quasi Solid-State Supercapacitors: Establishing Ionic Tunnels and Acting as a Binder. J. Power Sources 2019, 413, 77–85. 10.1016/j.jpowsour.2018.12.028. DOI
Cetinkaya T.; Dryfe R. A. W. Electrical Double Layer Supercapacitors Based on Graphene Nanoplatelets Electrodes in Organic and Aqueous Electrolytes: Effect of Binders and Scalable Performance. J. Power Sources 2018, 408, 91–104. 10.1016/j.jpowsour.2018.10.072. DOI
Zhu Z.; Tang S.; Yuan J.; Qin X.; Deng Y.; Qu R.; Haarberg G. M. Effects of Various Binders on Supercapacitor Performances. Int. J. Electrochem. Sci. 2016, 11 (10), 8270–8279. 10.20964/2016.10.04. DOI
Song B.; Wu F.; Zhu Y.; Hou Z.; Moon K. s.; Wong C. P. Effect of Polymer Binders on Graphene-Based Free-Standing Electrodes for Supercapacitors. Electrochim. Acta 2018, 267, 213–221. 10.1016/j.electacta.2018.02.072. DOI
Chen Y. R.; Chiu K. F.; Lin H. C.; Chen C. L.; Hsieh C. Y.; Tsai C. B.; Chu B. T. T. Graphene/Activated Carbon Supercapacitors with Sulfonated-Polyetheretherketone as Solid-State Electrolyte and Multifunctional Binder. Solid State Sci. 2014, 37, 80–85. 10.1016/j.solidstatesciences.2014.08.016. DOI
Kouchachvili L.; Maffei N.; Entchev E. Novel Binding Material for Supercapacitor Electrodes. J. Solid State Electrochem. 2014, 18 (9), 2539–2547. 10.1007/s10008-014-2500-5. DOI
Abbas Q.; Pajak D.; Fra̧ckowiak E.; Béguin F. Effect of Binder on the Performance of Carbon/Carbon Symmetric Capacitors in Salt Aqueous Electrolyte. Electrochim. Acta 2014, 140, 132–138. 10.1016/j.electacta.2014.04.096. DOI
Paul S.; Choi K. S.; Lee D. J.; Sudhagar P.; Kang Y. S. Factors Affecting the Performance of Supercapacitors Assembled with Polypyrrole/Multi-Walled Carbon Nanotube Composite Electrodes. Electrochim. Acta 2012, 78, 649–655. 10.1016/j.electacta.2012.06.088. DOI
Nsude H. E.; Nsude K. U.; Whyte G. M.; Obodo R. M.; Iroegbu C.; Maaza M.; Ezema F. I. Green Synthesis of CuFeS2 Nanoparticles Using Mimosa Leaves Extract for Photocatalysis and Supercapacitor Applications. J. Nanoparticle Res. 2020, 22 (11), 1–13. 10.1007/s11051-020-05071-7. DOI
Sajedi-Moghaddam A.; Rahmanian E.; Naseri N. Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives. ACS Appl. Mater. Interfaces 2020, 12 (31), 34487–34504. 10.1021/acsami.0c07689. PubMed DOI
Bellani S.; Martín-Garciá B.; Oropesa-Nuñez R.; Romano V.; Najafi L.; Demirci C.; Prato M.; Del Rio Castillo A. E.; Marasco L.; Mantero E.; D’Angelo G.; Bonaccorso F. ion Sliding” on Graphene: A Novel Concept to Boost Supercapacitor Performance. Nanoscale Horizons 2019, 4 (5), 1077–1091. 10.1039/C8NH00446C. DOI
Garakani M. A.; Bellani S.; Pellegrini V.; Oropesa-Nuñez R.; Castillo A. E. D. R.; Abouali S.; Najafi L.; Martín-García B.; Ansaldo A.; Bondavalli P.; Demirci C.; Romano V.; Mantero E.; Marasco L.; Prato M.; Bracciale G.; Bonaccorso F. Scalable Spray-Coated Graphene-Based Electrodes for High-Power Electrochemical Double-Layer Capacitors Operating over a Wide Range of Temperature. Energy Storage Mater. 2021, 34, 1–11. 10.1016/j.ensm.2020.08.036. DOI
Wang X.; Lin J.; Zhu Y.; Luo C.; Suenaga K.; Cai C.; Xie L. Chemical Vapor Deposition of Trigonal Prismatic NbS2 Monolayers and 3R-Polytype Few-Layers. Nanoscale 2017, 9 (43), 16607–16611. 10.1039/C7NR05572B. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Martín-García B.; Prato M.; Mazánek V.; Debellis D.; Lauciello S.; Brescia R.; Sofer Z.; Bonaccorso F. Niobium Disulphide (NbS2)-Based (Heterogeneous) Electrocatalysts for an Efficient Hydrogen Evolution Reaction. J. Mater. Chem. A 2019, 7 (44), 25593–25608. 10.1039/C9TA07210A. DOI
Liao Y.; Park K. S.; Singh P.; Li W.; Goodenough J. B. Reinvestigation of the Electrochemical Lithium Intercalation in 2H- and 3R-NbS2. J. Power Sources 2014, 245, 27–32. 10.1016/j.jpowsour.2013.06.048. DOI
Liao Y.; Park K.-S.; Xiao P.; Henkelman G.; Li W.; Goodenough J. B. Sodium Intercalation Behavior of Layered NaxNbS2 (0 ≤ x ≤ 1). Chem. Mater. 2013, 25 (9), 1699–1705. 10.1021/cm400150u. DOI
Ge W.; Kawahara K.; Tsuji M.; Ago H. Large-Scale Synthesis of NbS2 Nanosheets with Controlled Orientation on Graphene by Ambient Pressure CVD. Nanoscale 2013, 5 (13), 5773–5778. 10.1039/c3nr00723e. PubMed DOI
McMullan W. G.; Irwin J. C. Raman Scattering from 2H and 3R-NbS2. Solid State Commun. 1983, 45 (7), 557–560. 10.1016/0038-1098(83)90426-X. DOI
Nakashima S.; Tokuda Y.; Mitsuishi A.; Aoki R.; Hamaue Y. Raman Scattering from 2H-NbS2 and Intercalated NbS2. Solid State Commun. 1982, 42 (8), 601–604. 10.1016/0038-1098(82)90617-2. DOI
Onari S.; Arai T.; Aoki R.; Nakamura S. Raman Scattering in 3R-NbS2. Solid State Commun. 1979, 31 (8), 577–579. 10.1016/0038-1098(79)90256-4. DOI
Gopalakrishnan D.; Lee A.; Thangavel N. K.; Reddy Arava L. M. Facile Synthesis of Electrocatalytically Active NbS2 Nanoflakes for an Enhanced Hydrogen Evolution Reaction (HER). Sustain. Energy Fuels 2018, 2 (1), 96–102. 10.1039/C7SE00376E. DOI
Ge W.; Kawahara K.; Tsuji M.; Ago H. Large-Scale Synthesis of NbS2 Nanosheets with Controlled Orientation on Graphene by Ambient Pressure CVD. Nanoscale 2013, 5 (13), 5773–5778. 10.1039/c3nr00723e. PubMed DOI
Dash J. K.; Chen L.; Dinolfo P. H.; Lu T.-M.; Wang G.-C. A Method Toward Fabricating Semiconducting 3R-NbS2 Ultrathin Films. J. Phys. Chem. C 2015, 119 (34), 19763–19771. 10.1021/acs.jpcc.5b04057. DOI
Jiang Z.; Zhao X.; Manthiram A. Sulfonated Poly(Ether Ether Ketone) Membranes with Sulfonated Graphene Oxide Fillers for Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2013, 38 (14), 5875–5884. 10.1016/j.ijhydene.2013.02.129. DOI
Zhang Y.; Wang H.; Liu B.; Shi J.; Zhang J.; Shi H. An Ultra-High Ion Selective Hybrid Proton Exchange Membrane Incorporated with Zwitterion-Decorated Graphene Oxide for Vanadium Redox Flow Batteries. J. Mater. Chem. A 2019, 7 (20), 12669–12680. 10.1039/C9TA01891C. DOI
Altaf F.; Gill R.; Batool R.; Drexler M.; Alamgir F.; Abbas G.; Jacob K. Proton Conductivity and Methanol Permeability Study of Polymer Electrolyte Membranes with Range of Functionalized Clay Content for Fuel Cell Application. Eur. Polym. J. 2019, 110, 155–167. 10.1016/j.eurpolymj.2018.11.027. DOI
Gao H.; Dong C.; Wang Q.; Zhu H.; Meng X.; Cong C.; Zhou Q. Improving the Proton Conductivity of Proton Exchange Membranes via Incorporation of HPW-Functionalized Mesoporous Silica Nanospheres into SPEEK. Int. J. Hydrogen Energy 2018, 43 (48), 21940–21948. 10.1016/j.ijhydene.2018.08.214. DOI
Yan E.; Wang J.; Jiang Z.; Feng H.; Nie L.; Xu T.; Yang X.; Zhang X. Enhanced Water Retention and Stable Dynamic Water Behavior of Sulfonated Poly(Ether Ether Ketone) Membranes under Low Humidity by Incorporating Humidity Responsive Double-Shelled Hollow Spheres. J. Mater. Chem. A 2013, 1 (38), 11762–11777. 10.1039/c3ta11620d. DOI
Khilari S.; Pandit S.; Ghangrekar M. M.; Pradhan D.; Das D. Graphene Oxide-Impregnated PVA-STA Composite Polymer Electrolyte Membrane Separator for Power Generation in a Single-Chambered Microbial Fuel Cell. Ind. Eng. Chem. Res. 2013, 52 (33), 11597–11606. 10.1021/ie4016045. DOI
Lennard-Jones J. E. Cohesion. Proc. Phys. Soc. 1931, 43 (5), 461–482. 10.1088/0959-5309/43/5/301. DOI
Sedin D. L.; Rowlen K. L. Adhesion Forces Measured by Atomic Force Microscopy in Humid Air. Anal. Chem. 2000, 72 (10), 2183–2189. 10.1021/ac991198c. PubMed DOI
Van Der Vegte E. W.; Hadziioannou G. Scanning Force Microscopy with Chemical Specificity: An Extensive Study of Chemically Specific Tip-Surface Interactions and the Chemical Imaging of Surface Functional Groups. Langmuir 1997, 13 (16), 4357–4368. 10.1021/la970025k. DOI
Farshchi-Tabrizia M.; Kappl M.; Butt H. J. Influence of Humidity on Adhesion: An Atomic Force Microscope Study. J. Adhes. Sci. Technol. 2008, 22 (2), 181–203. 10.1163/156856108X306948. DOI
Najafi L.; Oropesa-Nuñez R.; Martín-García B.; Drago F.; Prato M.; Pellegrini V.; Bonaccorso F.; Bellani S. Water-Dispersible Few-Layer Graphene Flakes for Selective and Rapid Ion Mercury (Hg2+)-Rejecting Membranes. Mater. Adv. 2020, 1 (3), 387–402. 10.1039/D0MA00060D. DOI
Yu N.; Polycarpou A. A. Adhesive Contact Based on the Lennard-Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential. J. Colloid Interface Sci. 2004, 278 (2), 428–435. 10.1016/j.jcis.2004.06.029. PubMed DOI
Vinothkannan M.; Kim A. R.; Kumar G. G.; Yoon J.-M.; Yoo D. J. Toward Improved Mechanical Strength, Oxidative Stability and Proton Conductivity of an Aligned Quadratic Hybrid (SPEEK/FPAPB/Fe3O4-FGO) Membrane for Application in High Temperature and Low Humidity Fuel Cells. RSC Adv. 2017, 7 (62), 39034–39048. 10.1039/C7RA07063B. DOI
Maab H.; Schieda M.; Yave W.; Shishatskiy S.; Nunes S. P. SPEEK/Polyimide Blends for Proton Conductive MembranesPresented at the 1st CARISMA Conference, Progress MEA 2008, La Grande Motte, 21st-24th September 2008. Fuel Cells 2009, 9 (4), 401–409. 10.1002/fuce.200800121. DOI
Mayahi A.; Ismail A. F.; Ilbeygi H.; Othman M. H. D.; Ghasemi M.; Norddin M. N. A. M.; Matsuura T. Effect of Operating Temperature on the Behavior of Promising SPEEK/CSMM Electrolyte Membrane for DMFCs. Sep. Purif. Technol. 2013, 106, 72–81. 10.1016/j.seppur.2012.12.027. DOI
Inan T. Y.; Dogan H.; Unveren E. E.; Eker E. Sulfonated PEEK and Fluorinated Polymer Based Blends for Fuel Cell Applications: Investigation of the Effect of Type and Molecular Weight of the Fluorinated Polymers on the Membrane’s Properties. Int. J. Hydrogen Energy 2010, 35 (21), 12038–12053. 10.1016/j.ijhydene.2010.07.084. DOI
Beydaghi H.; Javanbakht M.; Bagheri A.; Salarizadeh P.; Ghafarian Zahmatkesh H.; Kashefi S.; Kowsari E. Novel Nanocomposite Membranes Based on Blended Sulfonated Poly(Ether Ether Ketone)/Poly(Vinyl Alcohol) Containing Sulfonated Graphene Oxide/Fe3O4 Nanosheets for DMFC Applications. RSC Adv. 2015, 5 (90), 74054–74064. 10.1039/C5RA12941A. DOI
Bagheri A.; Salarizadeh P.; Sabooni Asre Hazer M.; Hosseinabadi P.; Kashefi S.; Beydaghi H. The Effect of Adding Sulfonated SiO2 Nanoparticles and Polymer Blending on Properties and Performance of Sulfonated Poly Ether Sulfone Membrane: Fabrication and Optimization. Electrochim. Acta 2019, 295, 875–890. 10.1016/j.electacta.2018.10.197. DOI
Duan Y.; Ru C.; Li J.; Sun Y. n.; Pu X.; Liu B.; Pang B.; Zhao C. Enhancing Proton Conductivity and Methanol Resistance of SPAEK Membrane by Incorporating MOF with Flexible Alkyl Sulfonic Acid for DMFC. J. Membr. Sci. 2022, 641, 119906.10.1016/j.memsci.2021.119906. DOI
Beydaghi H.; Bagheri A.; Salarizadeh P.; Kashefi S.; Hooshyari K.; Amoozadeh A.; Shamsi T.; Bonaccorso F.; Pellegrini V. Enhancing the Performance of Poly(Phthalazinone Ether Ketone)-Based Membranes Using a New Type of Functionalized TiO2 with Superior Proton Conductivity. Ind. Eng. Chem. Res. 2020, 59 (14), 6589–6599. 10.1021/acs.iecr.9b06813. DOI
Salarizadeh P.; Javanbakht M.; Pourmahdian S.; Bagheri A.; Beydaghi H.; Enhessari M. Surface Modification of Fe2TiO5 Nanoparticles by Silane Coupling Agent: Synthesis and Application in Proton Exchange Composite Membranes. J. Colloid Interface Sci. 2016, 472, 135–144. 10.1016/j.jcis.2016.03.036. PubMed DOI
Hren M.; Božič M.; Fakin D.; Kleinschek K. S.; Gorgieva S. Alkaline Membrane Fuel Cells: Anion Exchange Membranes and Fuels. Sustain. Energy Fuels 2021, 5 (3), 604–637. 10.1039/D0SE01373K. DOI
Yuan X. Z.; Nayoze-Coynel C.; Shaigan N.; Fisher D.; Zhao N.; Zamel N.; Gazdzicki P.; Ulsh M.; Friedrich K. A.; Girard F.; Groos U. A Review of Functions, Attributes, Properties and Measurements for the Quality Control of Proton Exchange Membrane Fuel Cell Components. J. Power Sources 2021, 491, 229540.10.1016/j.jpowsour.2021.229540. DOI
Zore U. K.; Yedire S. G.; Pandi N.; Manickam S.; Sonawane S. H. A Review on Recent Advances in Hydrogen Energy, Fuel Cell, Biofuel and Fuel Refining via Ultrasound Process Intensification. Ultrason. Sonochem. 2021, 73, 105536.10.1016/j.ultsonch.2021.105536. PubMed DOI PMC
Fan L.; Tu Z.; Chan S. H. Recent Development of Hydrogen and Fuel Cell Technologies: A Review. Energy Reports 2021, 7, 8421–8446. 10.1016/j.egyr.2021.08.003. DOI
Beydaghi H.; Javanbakht M.; Salarizadeh P.; Bagheri A.; Amoozadeh A. Novel Proton Exchange Membrane Nanocomposites Based on Sulfonated Tungsten Trioxide for Application in Direct Methanol Fuel Cells. Polymer 2017, 119, 253–262. 10.1016/j.polymer.2017.05.026. DOI
Parnian M. J.; Rowshanzamir S.; Gashoul F. Comprehensive Investigation of Physicochemical and Electrochemical Properties of Sulfonated Poly (Ether Ether Ketone) Membranes with Different Degrees of Sulfonation for Proton Exchange Membrane Fuel Cell Applications. Energy 2017, 125, 614–628. 10.1016/j.energy.2017.02.143. DOI
Hooshyari K.; Javanbakht M.; Salarizadeh P.; Bageri A. Advanced Nanocomposite Membranes Based on Sulfonated Polyethersulfone: Influence of Nanoparticles on PEMFC Performance. J. Iran. Chem. Soc. 2019, 16 (8), 1617–1629. 10.1007/s13738-019-01638-x. DOI
Bagheri A.; Javanbakht M.; Hosseinabadi P.; Beydaghi H.; Shabanikia A. Preparation and Characterization of SPEEK/SPVDF-Co-HFP/LaCrO3 nanocomposite Blend Membranes for Direct Methanol Fuel Cells. Polymer 2018, 138, 275–287. 10.1016/j.polymer.2018.01.049. DOI
Xiao Z.; Yang Z.; Zhang L.; Pan H.; Wang R. Sandwich-Type NbS2@S@I-Doped Graphene for High-Sulfur-Loaded, Ultrahigh-Rate, and Long-Life Lithium-Sulfur Batteries. ACS Nano 2017, 11 (8), 8488–8498. 10.1021/acsnano.7b04442. PubMed DOI
Lim J. Y.; Kang D. A.; Kim N. U.; Lee J. M.; Kim J. H. Bicontinuously Crosslinked Polymer Electrolyte Membranes with High Ion Conductivity and Mechanical Strength. J. Membr. Sci. 2019, 589 (July), 117250.10.1016/j.memsci.2019.117250. DOI
Seong Y. H.; Choi N. S.; Kim D. W. Quasi-Solid-State Electric Double Layer Capacitors Assembled with Sulfonated Poly(Fluorenyl Ether Nitrile Oxynaphthalate) Membranes. Electrochim. Acta 2011, 58 (1), 285–289. 10.1016/j.electacta.2011.09.061. DOI
Shar S. S.; Cevik E.; Bozkurt A.; Yaman C.; Almutari Z.; Kayed T. S. Molybdate Incorporated Poly(Acrylic Acid) Electrolytes for Use in Quasi-Solid State Carbon Based Supercapacitors: Redox-Active Polychelates. Electrochim. Acta 2020, 354, 136770.10.1016/j.electacta.2020.136770. DOI
Yadav N.; Mishra K.; Hashmi S. A. Nanozirconia Polymer Composite Porous Membrane Prepared by Sustainable Immersion Precipitation Method for Use as Electrolyte in Flexible Supercapacitors. Mater. Today Commun. 2020, 25, 101506.10.1016/j.mtcomm.2020.101506. DOI
Poochai C.; Sriprachuabwong C.; Sodtipinta J.; Lohitkarn J.; Pasakon P.; Primpray V.; Maeboonruan N.; Lomas T.; Wisitsoraat A.; Tuantranont A. Alpha-MnO2 Nanofibers/Nitrogen and Sulfur-Co-Doped Reduced Graphene Oxide for 4.5 V Quasi-Solid State Supercapacitors Using Ionic Liquid-Based Polymer Electrolyte. J. Colloid Interface Sci. 2021, 583, 734–745. 10.1016/j.jcis.2020.09.045. PubMed DOI
Yang J.; Li G.; Pan Z.; Liu M.; Hou Y.; Xu Y.; Deng H.; Sheng L.; Zhao X.; Qiu Y.; Zhang Y. All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes. ACS Appl. Mater. Interfaces 2015, 7 (40), 22172–22180. 10.1021/acsami.5b07849. PubMed DOI
Portet C.; Taberna P. L.; Simon P.; Laberty-Robert C. Modification of Al Current Collector Surface by Sol-Gel Deposit for Carbon-Carbon Supercapacitor Applications. Electrochim. Acta 2004, 49 (6), 905–912. 10.1016/j.electacta.2003.09.043. DOI
Du H.; Wu Z.; Xu Y.; Liu S.; Yang H. Poly(3,4-Ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Polymers 2020, 12 (2), 297.10.3390/polym12020297. PubMed DOI PMC
Ye T.; Zou Y.; Xu W.; Zhan T.; Sun J.; Xia Y.; Zhang X.; Yang D. Poorly-Crystallized Poly(Vinyl Alcohol)/Carrageenan Matrix: Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolytes for Safe and Flexible Solid-State Supercapacitors. J. Power Sources 2020, 475, 228688.10.1016/j.jpowsour.2020.228688. DOI
Zhou Z.; Li Q.; Yuan L.; Tang L.; Wang X.; He B.; Man P.; Li C.; Xie L.; Lu W.; Wei L.; Zhang Q.; Yao Y. Achieving Ultrahigh-Energy-Density in Flexible and Lightweight All-Solid-State Internal Asymmetric Tandem 6.6 V All-in-One Supercapacitors. Energy Storage Mater. 2020, 25, 893–902. 10.1016/j.ensm.2019.09.002. DOI
Mao T.; Wang S.; Wang X.; Liu F.; Li J.; Chen H.; Wang D.; Liu G.; Xu J.; Wang Z. Higherature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Appl. Mater. Interfaces 2019, 11 (19), 17742–17750. 10.1021/acsami.9b00452. PubMed DOI
Lei C.; Ji C.; Mi H.; Yang C.; Zhang Q.; He S.; Bai Z.; Qiu J. Engineering Kinetics-Favorable Carbon Sheets with an Intrinsic Network for a Superior Supercapacitor Containing a Dual Cross-Linked Hydrogel Electrolyte. ACS Appl. Mater. Interfaces 2020, 12 (47), 53164–53173. 10.1021/acsami.0c16985. PubMed DOI
Castro-gutiérrez J.; Díez N.; Sevilla M.; Izquierdo M. T.; Ghanbaja J.; Celzard A.; Fierro V. High-Rate Capability of Supercapacitors Based on Tannin-Derived Ordered Mesoporous Carbons. ACS Sustain. Chem. Eng. 2019, 7 (21), 17627–17635. 10.1021/acssuschemeng.9b03407. DOI
Ray A.; Korkut D.; Saruhan B. Efficient Flexible All-Solid Supercapacitors with Direct Sputter-Grown Needle-like Mn/Mnox @graphite-Foil Electrodes and Ppc-Embedded Ionic Electrolytes. Nanomaterials 2020, 10 (9), 1–13. 10.3390/nano10091768. PubMed DOI PMC
Lee D.; Song Y. H.; Choi U. H.; Kim J. Highly Flexible and Stable Solid-State Supercapacitors Based on a Homogeneous Thin Ion Gel Polymer Electrolyte Using a Poly(Dimethylsiloxane) Stamp. ACS Appl. Mater. Interfaces 2019, 11 (45), 42221–42232. 10.1021/acsami.9b14990. PubMed DOI
Liu S.; Kang L.; Zhang J.; Jung E.; Lee S.; Jun S. C. Structural Engineering and Surface Modification of MOF-Derived Cobalt-Based Hybrid Nanosheets for Flexible Solid-State Supercapacitors. Energy Storage Mater. 2020, 32, 167–177. 10.1016/j.ensm.2020.07.017. DOI
Guo M.; Geng W. C.; Liu C.; Gu J.; Zhang Z.; Tang Y. Ultrahigh Areal Capacitance of Flexible MXene Electrodes: Electrostatic and Steric Effects of Terminations. Chem. Mater. 2020, 32 (19), 8257–8265. 10.1021/acs.chemmater.0c02026. DOI
Azadian F.; Asif O.; Rastogi A. C. Flexible, Thin-Layer Solid-State Supercapacitor Based on V2O5 -Graphene Composite Electrode and Ionic Liquid Gel Polymer Electrolyte for Portable Electronic Systems. ECS Trans. 2020, 97 (1), 35–43. 10.1149/09707.0035ecst. DOI
Bellani S.; Petroni E.; Del Rio Castillo A. E.; Curreli N.; Martín-García B.; Oropesa-Nuñez R.; Prato M.; Bonaccorso F. Scalable Production of Graphene Inks via Wet-Jet Milling Exfoliation for Screen-Printed Micro-Supercapacitors. Adv. Funct. Mater. 2019, 29 (14), 1–14. 10.1002/adfm.201807659. DOI
Purkait T.; Singh G.; Kamboj N.; Das M.; Dey R. S. All-Porous Heterostructure of Reduced Graphene Oxide-Polypyrrole-Nanoporous Gold for a Planar Flexible Supercapacitor Showing Outstanding Volumetric Capacitance and Energy Density. J. Mater. Chem. A 2018, 6 (45), 22858–22869. 10.1039/C8TA07627H. DOI