Immunogenicity and safety of the booster BNT162b2 vaccine in patients with axial spondyloarthritis treated with biological disease-modifying drugs
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
36211417
PubMed Central
PMC9538326
DOI
10.3389/fimmu.2022.1010808
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, axial spondyloarthritis, immunogenicity, safety, vaccination,
- MeSH
- axiální spondyloartritida * MeSH
- biologické přípravky * MeSH
- COVID-19 * prevence a kontrola MeSH
- interleukin-17 MeSH
- lidé MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- SARS-CoV-2 MeSH
- TNF-alfa MeSH
- vakcína BNT162 MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické přípravky * MeSH
- interleukin-17 MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- TNF-alfa MeSH
- vakcína BNT162 MeSH
BACKGROUND: Vaccination confers relatively short-term protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), indicating the need for booster doses. Immunocompromised individuals, including those with immune-mediated inflammatory diseases (IMIDs), may have pronounced immune response waning. Vaccine-boosted humoral and T-cell responses minimize poor coronavirus disease 19 (COVID-19) outcome without increasing adverse events (AE). There is limited evidence of third-dose vaccination in axial spondyloarthritis (AxSpA) patients. We investigated immune-response persistence after primary vaccination and immunogenicity and safety after the BNT162b2 booster vaccination. METHODS: This prospective observational study enrolled an AxSpA cohort treated with interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNFα) inhibitors. Serum SARS-CoV-2-specific and virus-neutralizing antibodies for humoral response and flow cytometric detection of intracellular cytokines following SARS-CoV-2-specific peptide-based stimulation for T-cell immune responses were assessed, and safety was evaluated via a clinical questionnaire. RESULTS: Fifteen male AxSpA patients treated with TNFα (73·3%) or IL-17 (26·7%) inhibitors were enrolled and had humoral response persistence at 6 months: 905·6 ( ± 186·1 SD) and 409·1 ( ± 335·7) U/mL. Specific antibody concentrations further increased after booster vaccination to 989·7 ( ± 12·62) and 1000 U/mL and T-cell responders from 53·3% to 80%, with no differences between AxSpA (including "vaccination only" and "hybrid immunity" subgroups) and healthy control (HC) cohorts. No severe AE occurred; the AE spectrum was comparable to that of the general population. CONCLUSION: Immune-response persistence after primary vaccination and immunogenicity after booster vaccination were unaffected by anti-IL17 or anti-TNFα therapy with similar AE as in the general population.
Department of Paediatric and Adult Rheumatology Motol University Hospital Prague Czechia
Department of Virology Public Health Institute Ostrava Czechia
Zobrazit více v PubMed
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. . Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis (2020) 94:91–5. doi: 10.1016/j.ijid.2020.03.017 PubMed DOI PMC
Gianfrancesco M, Yazdany J, Robinson PC. Epidemiology and outcomes of novel coronavirus 2019 in patients with immune-mediated inflammatory diseases. Curr Opin Rheumatol (2020) 32(5):434–40. doi: 10.1097/BOR.0000000000000725 PubMed DOI
Talic S, Shah S, Wild H, Gasevic D, Maharaj A, Ademi Z, et al. . Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: Systematic review and meta-analysis. BMJ (2021) 375:e068302. doi: 10.1136/bmj-2021-068302 PubMed DOI PMC
Pak A, Adegboye OA, Adekunle AI, Rahman KM, McBryde ES, Eisen DP. Economic consequences of the COVID-19 outbreak: The need for epidemic preparedness. Front Public Health (2020) 8:241. doi: 10.3389/fpubh.2020.00241 PubMed DOI PMC
Moghadas SM, Vilches TN, Zhang K, Wells CR, Shoukat A, Singer BH, et al. . The impact of vaccination on coronavirus disease 2019 (COVID-19) outbreaks in the united states. Clin Infect Dis (2021) 73(12):2257–64. doi: 10.1093/cid/ciab079 PubMed DOI PMC
Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, et al. . Effect of covid-19 vaccination on transmission of alpha and delta variants. N Engl J Med (2022) 386(8):744–56. doi: 10.1056/NEJMoa2116597 PubMed DOI PMC
Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, et al. . BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med (2021) 384(15):1412–23. doi: 10.1056/NEJMoa2101765 PubMed DOI PMC
Liu Q, Qin C, Liu M, Liu J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: a systematic review and meta-analysis. Infect Dis Poverty (2021) 10(1):132. doi: 10.1186/s40249-021-00915-3 PubMed DOI PMC
Andrews N, Stowe J, Kirsebom F, Toffa S, Sachdeva R, Gower C, et al. . Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms, hospitalization and death in England. Nat Med (2022) 28(4):831–7. doi: 10.1038/s41591-022-01699-1 PubMed DOI PMC
Furer V, Eviatar T, Zisman D, Peleg H, Paran D, Levartovsky D, et al. . Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis (2021) 80(10):1330–8. doi: 10.1136/annrheumdis-2021-220647 PubMed DOI
Mahil SK, Bechman K, Raharja A, Domingo-Vila C, Baudry D, Brown MA, et al. . Humoral and cellular immunogenicity to a second dose of COVID-19 vaccine BNT162b2 in people receiving methotrexate or targeted immunosuppression: A longitudinal cohort study. Lancet Rheumatol (2022) 4(1):e42–52. doi: 10.1016/S2665-9913(21)00333-7 PubMed DOI PMC
Smetanova J, Strizova Z, Sediva A, Milota T, Horvath R. Humoral and cellular immune responses to mRNA COVID-19 vaccines in patients with axial spondyloarthritis treated with adalimumab or secukinumab. Lancet Rheumatol (2022) 4(3):e163–6. doi: 10.1016/S2665-9913(21)00393-3 PubMed DOI PMC
van der Heijde D, Ramiro S, Landewé R, Baraliakos X, van den Bosch F, Sepriano A, et al. . 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis (2017) 76(6):978–91. doi: 10.1136/annrheumdis-2016-210770 PubMed DOI
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ (2007) 335(7624):806–8. doi: 10.1136/bmj.39335.541782.AD PubMed DOI PMC
Landewé RBM, Kroon FPB, Alunno A, Najm A, Bijlsma JW, Burmester G-RR, et al. . EULAR recommendations for the management and vaccination of people with rheumatic and musculoskeletal diseases in the context of SARS-CoV-2: The November 2021 update. Ann Rheum Dis (2022). 2:1–12. doi: 10.1136/annrheumdis-2021-222006 PubMed DOI
Proft F, Poddubnyy D. Ankylosing spondylitis and axial spondyloarthritis: Recent insights and impact of new classification criteria. Ther Adv Musculoskelet Dis (2018) 10(5-6):129–39. doi: 10.1177/1759720X18773726 PubMed DOI PMC
Arevalo-Rodriguez I, Seron P, Buitrago-García D, Ciapponi A, Muriel A, Zambrano-Achig P, et al. . Recommendations for SARS-CoV-2/COVID-19 testing: A scoping review of current guidance. BMJ Open (2021) 11(1):e043004. doi: 10.1136/bmjopen-2020-043004 PubMed DOI PMC
Marona J, Sepriano A, Rodrigues-Manica S, Pimentel-Santos F, Mourão AF, Gouveia N, et al. . Eligibility criteria for biologic disease-modifying antirheumatic drugs in axial spondyloarthritis: going beyond BASDAI. RMD Open (2020) 6(1):1–8. doi: 10.1136/rmdopen-2019-001145 PubMed DOI PMC
Šimánek V, Pecen L, Krátká Z, Fürst T, Řezáčková H, Topolčan O, et al. . Five commercial immunoassays for SARS-CoV-2 antibody determination and their comparison and correlation with the virus neutralization test. Diagnostics (Basel) (2021) 11(4):1–14. doi: 10.3390/diagnostics11040593 PubMed DOI PMC
Havlin J, Skotnicova A, Dvorackova E, Hubacek P, Svorcova M, Lastovicka J, et al. . Impaired humoral response to third dose of BNT162b2 mRNA COVID-19 vaccine despite detectable spike protein-specific T cells in lung transplant recipients. Transplantation (2022) 106(3):e183–4. doi: 10.1097/TP.0000000000004021 PubMed DOI PMC
Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, et al. . Waning immune humoral response to BNT162b2 covid-19 vaccine over 6 months. N Engl J Med (2021) 385(24):e84. doi: 10.1056/NEJMoa2114583 PubMed DOI PMC
Menni C, May A, Polidori L, Louca P, Wolf J, Capdevila J, et al. . COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID study. Lancet Infect Dis (2022) 22:1002–10. doi: 10.2139/ssrn.3980542 PubMed DOI PMC
Haberman RH, Um S, Axelrad JE, Blank RB, Uddin Z, Catron S, et al. . Methotrexate and TNF inhibitors affect long-term immunogenicity to COVID-19 vaccination in patients with immune-mediated inflammatory disease. Lancet Rheumatol (2022) 4(6):e384–7. doi: 10.1016/S2665-9913(22)00069-8 PubMed DOI PMC
Geisen UM, Sümbül M, Tran F, Berner DK, Reid HM, Vullriede L, et al. . Humoral protection to SARS-CoV2 declines faster in patients on TNF alpha blocking therapies. RMD Open (2021) 7(3):1–3. doi: 10.1136/rmdopen-2021-002008 PubMed DOI PMC
Bonelli M, Mrak D, Tobudic S, Sieghart D, Koblischke M, Mandl P, et al. . Additional heterologous versus homologous booster vaccination in immunosuppressed patients without SARS-CoV-2 antibody seroconversion after primary mRNA vaccination: A randomised controlled trial. Ann Rheum Dis (2022) 81(5):687–94. doi: 10.1136/annrheumdis-2021-221558 PubMed DOI
Parker EPK, Desai S, Marti M, Nohynek H, Kaslow DC, Kochhar S, et al. . Response to additional COVID-19 vaccine doses in people who are immunocompromised: A rapid review. Lancet Glob Health (2022) 10(3):e326–8. doi: 10.1016/S2214-109X(21)00593-3 PubMed DOI PMC
Nordström P, Ballin M, Nordström A. Risk of SARS-CoV-2 reinfection and COVID-19 hospitalisation in individuals with natural and hybrid immunity: A retrospective, total population cohort study in Sweden. Lancet Infect Dis (2022) 22:781–90. doi: 10.2139/ssrn.4000584 PubMed DOI PMC
Hall V, Foulkes S, Insalata F, Kirwan P, Saei A, Atti A, et al. . Protection against SARS-CoV-2 after covid-19 vaccination and previous infection. N Engl J Med (2022) 386(13):1207–20. doi: 10.1056/NEJMoa2118691 PubMed DOI PMC
Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. . Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med (2021) 27(7):1205–11. doi: 10.1038/s41591-021-01377-8 PubMed DOI
Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, et al. . Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med (2021) 27(11):2032–40. doi: 10.1038/s41591-021-01540-1 PubMed DOI PMC
Moreira ED, Kitchin N, Xu X, Dychter SS, Lockhart S, Gurtman A, et al. . Safety and efficacy of a third dose of BNT162b2 covid-19 vaccine. N Engl J Med (2022) 386:1910–21. doi: 10.1056/NEJMoa2200674 PubMed DOI PMC
van Assen S, Agmon-Levin N, Elkayam O, Cervera R, Doran MF, Dougados M, et al. . EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis (2011) 70(3):414–22. doi: 10.1136/ard.2010.137216 PubMed DOI