Stem rust on barberry species in Europe: Host specificities and genetic diversity

. 2022 ; 13 () : 988031. [epub] 20220927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36246643

The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.

Zobrazit více v PubMed

Abbasi M., Goodwin S. B., Scholler M. (2005). Taxonomy, phylogeny, and distribution of Puccinia graminis, the black stem rust: New insights based on rDNA sequence data. Mycoscience 46, 241–247. 10.1007/s10267-005-0244-x DOI

Ahrendt L. W. A. (1961). Berberis and Mahonia. A taxonomic revision. Bot. J. Linn. Soc. 369, 1–410. 10.1111/j.1095-8339.1961.tb00889.x DOI

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-blast: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC

Anikster Y. (1984). “The formae speciales,” in The cereal rusts. Editors Bushness W. R., Roelfs A. P. (Orlando, FL: Academic Press; ), 124–137.

Bartaula R., Melo A. T. O., Connolly B. A., Jin Y., Hale I. (2018). An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis . J. Exp. Bot. 69, 2483–2493. 10.1093/jxb/ery066 PubMed DOI PMC

Berlin A., Djurle A., Samils B., Yuen J. (2012). Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology 102, 1006–1012. 10.1094/PHYTO-03-12-0041-R PubMed DOI

Berlin A., Kyaschenko J., Justesen A. F., Yuen J. (2013a). Rust fungi forming aecia on Berberis spp. in Sweden. Plant Dis. 97, 1281–1287. 10.1094/pdis-10-12-0989-re PubMed DOI

Berlin A., Rahmatov M., Muminjanov H., Yuen J. (2014). Sexual reproduction contributes to genotypic variation in the population of Puccinia graminis in Tajikistan. Eur. J. Plant Pathol. 141, 159–168. 10.1007/s10658-014-0534-2 DOI

Berlin A., Samils B., Andersson B. (2017). Multiple genotypes within aecial clusters in Puccinia graminis and Puccinia coronata improved understanding of the biology of cereal rust fungi. Fungal Biol. Biotechnol. 4, 3. 10.1186/s40694-017-0032-3 PubMed DOI PMC

Berlin A., Samils B., Djurle A., Wirsén H., Szabo L., Yuen J. (2013b). Disease development and genotypic diversity of Puccinia graminis f. sp. avenae in Swedish oat fields. Plant Pathol. 62, 32–40. 10.1111/j.1365-3059.2012.02609.x DOI

Bhattacharya S. (2017). Deadly new wheat disease threatens Europe’s crops. Nature 542, 145–146. 10.1038/nature.2017.21424 PubMed DOI

Billiard S., Lopez-Villavicencio M., Hood M. E., Giraud T. (2012). Sex, outcrossing and mating types: Unsolved questions in fungi and beyond. J. Evol. Biol. 25, 1020–1038. 10.1111/j.1420-9101.2012.02495.x PubMed DOI

Brown J. K., Hovmøller M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541. 10.1126/science.1072678 PubMed DOI

Burdon J. J., Roelfs A. P. (1985). The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis . Phytopathology 75, 1068–1073. 10.1094/Phyto-75-1068 DOI

Cummins B., Greene H. C. (1966). A review of the grass rust fungi that have uredial paraphyses and aecia on berberis-mahonia. Mycologia 58, 702–721. 10.2307/3756846 DOI

Eriksson J., Henning E. (1894). Die Hauptresultate einer neuen Untersuchung über die Getreiderostpilze. Z. Pflanzenkr 4, 197–203. AvaliableAt: https://www.jstor.org/stable/43319571 .

Excoffier L., Smouse P. E., Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial-DNA restriction data. Genetics 131, 479–491. 10.1093/genetics/131.2.479 PubMed DOI PMC

Grünwald N. J., Goodwin S. B., Milgroom M. G., Fry W. E. (2003). Analysis of genotypic diversity data for populations of microorganisms. Phytopathology 93, 738–746. 10.1094/PHYTO.2003.93.6.738 PubMed DOI

Hermansen J. E. (1968). Studies on the spread and survival of cereal rust and mildew diseases in Denmark. Copenhagen: The Royal Veterinary and Agricultural University. Doctor of Science thesis.

Hovmøller M. S., Rodriguez-Algaba J., Thach T., Sørensen C. K. (2017). “Race typing of Puccinia striiformis on wheat,” in Wheat rust diseases, methods and protocols. Editor Periyannan S. (N.Y., U.S.A: Springer Protocols Methods in Molecular Biology; ), 29–40. PubMed

Hovmøller M. S., Walter S., Bayles R. A., Hubbard A., Flath K., Sommerfeldt N., et al. (2016). Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 65, 402–411. 10.1111/ppa.12433 DOI

Jin Y. (2011). Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis . Euphytica 179, 105–108. 10.1007/s10681-010-0328-3 DOI

Jin Y., Szabo L. J., Carson M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology 100, 432–435. 10.1094/PHYTO-100-5-0432 PubMed DOI

Jin Y., Szabo L. J., Rouse M. N., Fetch T., Jr., Pretorius Z. A., Wanyera R., et al. (2009). Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici . Plant Dis. 93, 367–370. 10.1094/pdis-93-4-0367 PubMed DOI

Johnson T. (1949). Intervarietal crosses in puccinia graminis . Can. J. Res. 27c, 45–65. 10.1139/cjr49c-004 DOI

Jombart T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI

Jombart T., Devillard S., Balloux F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. 10.1186/1471-2156-11-94 PubMed DOI PMC

Kamvar Z. N., Brooks J. C., Grünwald N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. 10.3389/fgene.2015.00208 PubMed DOI PMC

Kamvar Z. N., Tabima J. F., Grunwald N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. 10.7717/peerj.281 PubMed DOI PMC

Kolmer J. A., Ordoñez M. E., German S., Morgounov A., Pretorius Z., Visser B., et al. (2019). Multilocus genotypes of the wheat leaf rust fungus Puccinia triticina in worldwide regions indicate past and current long-distance migration. Phytopathology® 109, 1453–1463. 10.1094/phyto-10-18-0411-r PubMed DOI

Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC

Lewis C. M., Persoons A., Bebber D. P., Kigathi R. N., Maintz J., Findlay K., et al. (2018). Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1, 13. 10.1038/s42003-018-0013-y PubMed DOI PMC

López González G. (1986). “Berberidaceae,” in Flora iberica. Editor López González G. (Madrid, Spain: Real Jardín Botánico, CSIC; ), 402–405.

Mehmood S., Sajid M., Zhao J., Huang L., Kang Z. (2020). Alternate hosts of Puccinia striiformis f.sp. tritici and their role. Pathogens 9, 434. 10.3390/pathogens9060434 PubMed DOI PMC

Milus E. A., Moon D. E., Lee K. D., Mason R. E. (2015). Race-specific adult-plant resistance in winter wheat to stripe rust and characterization of pathogen virulence patterns. Phytopathology 105, 1114–1122. 10.1094/PHYTO-11-14-0305-R PubMed DOI

Naef A., Roy B. A., Kaiser R., Honegger R. (2002). Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris . New Phytol. 154, 717–730. 10.1046/j.1469-8137.2002.00406.x PubMed DOI

Nagarajan S., Singh D. V. (1990). Long-distance dispersion of rust pathogens. Annu. Rev. Phytopathol. 28, 139–153. 10.1146/annurev.py.28.090190.001035 PubMed DOI

Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. 10.1093/genetics/89.3.583 PubMed DOI PMC

Nei M. (1972). Genetic distance between populations. Am. Nat. 106, 283–292. 10.1086/282771 DOI

Olivera Firpo P. D., Newcomb M., Flath K., Sommerfeldt-Impe N., Szabo L. J., Carter M., et al. (2017). Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol. 66, 1258–1266. 10.1111/ppa.12674 DOI

Olivera P. D., Sikharulidze Z., Dumbadze R., Szabo L. J., Newcomb M., Natsarishvili K., et al. (2019). Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 109, 2152–2160. 10.1094/PHYTO-06-19-0186-R PubMed DOI

Patpour M., Hovmøller M. S., Rodriguez-Algaba J., Randazzo B., Villegas D., Shamanin V. P., et al. (2022). Wheat stem rust back in Europe: Diversity, prevalence and impact on host resistance. Front. Plant Sci. 13, 882440. 10.3389/fpls.2022.882440 PubMed DOI PMC

Peakall R. O. D., Smouse P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. 10.1111/j.1471-8286.2005.01155.x PubMed DOI PMC

Peakall R., Smouse P. E. (2012). GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC

Peterson P. D., Leonard K. J., Roelfs A. P., Sutton T. B. (2005). Effect of barberry eradication on changes in populations of Puccinia graminis in Minnesota. Plant Dis. 89, 935–940. 10.1094/PD-89-0935 PubMed DOI

Peterson P. D. (2018). The barberry eradication program in Minnesota for stem rust control: A case study. Annu. Rev. Phytopathol. 56, 203–223. 10.1146/annurev-phyto-080417-050133 PubMed DOI

Pretorius Z. A., Singh R. P., Wagoire W. W., Payne T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f.sp. tritici in Uganda. Plant Dis. 84, 203. 10.1094/PDIS.2000.84.2.203B PubMed DOI

Rodriguez-Algaba J., Hovmøller M. S., Justesen A. F. (2020). Sexual recombination within the “Kranich” race of the yellow rust fungus Puccinia striiformis f.sp. tritici on Berberis vulgaris . Eur. J. Plant Pathol. 156, 1169–1173. 10.1007/s10658-019-01919-4 DOI

Rodriguez-Algaba J., Hovmøller M. S., Villegas D., Cantero-Martínez C., Jin Y., Justesen A. F. (2021). Two indigenous Berberis species from Spain were confirmed as alternate hosts of the yellow rust fungus Puccinia striiformis f. sp. tritici . Plant Dis. 105, 2281–2285. 10.1094/PDIS-02-21-0269-SC PubMed DOI

Rodriguez-Algaba J., Sørensen C. K., Labouriau R., Justesen A. F., Hovmøller M. S. (2017). Genetic diversity within and among aecia of the wheat rust fungus Puccinia striiformis on the alternate host Berberis vulgaris . Fungal Biol. 12, 541–549. 10.1016/j.funbio.2017.03.003 PubMed DOI

Roelfs A. P. (1982). Effects of barberry eradication on stem rust in the United States. Plant Dis. 66, 177–181. 10.1094/PD-66-177 DOI

Roelfs A. P., Groth V. J. (1980). A comparison of virulence phenotypes in wheat stem rust populations reproducing sexually and asexually. Phytopathology 70, 855–862. 10.1094/phyto-70-855 DOI

Roelfs A. P., Roelfs A. P., Bushnell W. R. (1985). “Wheat and rye stem rust,” in The cereal rusts vol. II: Diseases, distribution, epidemiology, and control (Orlando, FL: Academic Press; ), 3–37.

Saunders D. G. O., Pretorius Z. A., Hovmøller M. S. (2019). Tackling the re-emergence of wheat stem rust in Western Europe. Commun. Biol. 2, 51. 10.1038/s42003-019-0294-9 PubMed DOI PMC

Schillberg S., Gross P., Tiburzy R. (1995). Isolation and characterization of the EF-1 alpha gene of the filamentous fungus Puccinia graminis f. sp. tritici . Curr. Genet. 27, 367–372. 10.1007/bf00352106 PubMed DOI

Sharma-Poudyal D., Bai Q., Wan A., Wang M., See D., Chen X. (2020). Molecular characterization of international collections of the wheat stripe rust pathogen Puccinia striiformis f. sp. tritici reveals high diversity and intercontinental migration. Phytopathology 110, 933–942. 10.1094/phyto-09-19-0355-r PubMed DOI

Simpson E. H. (1949). Measurement of diversity. Nature 163, 688. 10.1038/163688a0 DOI

Singh R. P., Hodson D. P., Huerta-Espino J., Jin Y., Bhavani S., Njau P., et al. (2011). The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49, 465–481. 10.1146/annurev-phyto-072910-095423 PubMed DOI

Singh R. P., Singh P. K., Rutkoski J., Hodson D. P., He X., Jorgensen L. N., et al. (2016). Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 54, 303–322. 10.1146/annurev-phyto-080615-095835 PubMed DOI

Stace C. (2005). New flora of the British isles. United Kingdom: Cambridge University Press.

Stakman E. C. (1923). Barberry eradication prevents black rust in Western Europe. United States: U. S. Department of Agriculture.

Stoxen S. (2012). Population structure of Puccinia graminis f. sp. tritici in the United States. USA: MSc, University of Minnesota.

Stubbs R. W., Roelfs A. P., Bushnell W. R. (1985). “Stripe rust,” in The cereal rusts vol. II: Diseases, distribution, epidemiology, and control (Orlando, FL: Academic Press; ), 61–101.

Van Der Merwe M., Ericson L., Walker J., Thrall P. H., Burdon J. J. (2007). Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol. Res. 111, 163–175. 10.1016/j.mycres.2006.09.015 PubMed DOI

Van Der Merwe M. M., Walker J., Ericson L., Burdon J. J. (2008). Coevolution with higher taxonomic host groups within the Puccinia/Uromyces rust lineage obscured by host jumps. Mycol. Res. 112, 1387–1408. 10.1016/j.mycres.2008.06.027 PubMed DOI

Villegas D., Bartaula B., Cantero-Martínez C., Luster D., Szabo L., Olivera P., et al. (2022). Barberry plays an active role as an alternate host of Puccinia graminis in Spain. Plant Pathol. 71, 1174–1184. 10.1111/ppa.13540 PubMed DOI PMC

Wang Z., Zhao J., Chen X., Peng Y., Ji J., Zhao S., et al. (2016). Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis. 100, 131–138. 10.1094/pdis-12-14-1296-re PubMed DOI

Wright S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420. 10.2307/2406450 DOI

Yang Z. (1994). Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39, 105–111. 10.1007/BF00178256 PubMed DOI

Zambino P. J., Kubelik A. R., Szabo L. J. (2000). Gene action and linkage of avirulence genes to DNA markers in the rust fungus Puccinia graminis . Phytopathology 90, 819–826. 10.1094/PHYTO.2000.90.8.819 PubMed DOI

Zambino P. J., Szabo L. J. (1993). Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis Mycologia. Mycologia 85, 401–414. 10.1080/00275514.1993.12026292 DOI

Zhao J., Wang L., Wang Z., Chen X., Zhang H., Yao J., et al. (2013). Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology 103, 927–934. 10.1094/PHYTO-09-12-0249-R PubMed DOI

Zhao J., Wang M., Chen X., Kang Z. (2016). Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu. Rev. Phytopathol. 54, 207–228. 10.1146/annurev-phyto-080615-095851 PubMed DOI

Zhong S., Leng Y., Friesen T. L., Faris J. D., Szabo L. J. (2009). Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stem rust fungus Puccinia graminis f. sp. tritici. Phytopathology 99, 282–289. 10.1094/phyto-99-3-0282 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...