Rewiring the altered tryptophan metabolism as a novel therapeutic strategy in inflammatory bowel diseases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36270778
PubMed Central
PMC10314090
DOI
10.1136/gutjnl-2022-327337
PII: gutjnl-2022-327337
Knihovny.cz E-zdroje
- Klíčová slova
- inflammatory bowel disease,
- MeSH
- idiopatické střevní záněty * farmakoterapie MeSH
- kolitida * chemicky indukované farmakoterapie metabolismus MeSH
- lidé MeSH
- myši MeSH
- střeva MeSH
- tryptofan metabolismus MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- tryptofan MeSH
OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.
Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille Luminy Marseille France
CHRU Tours Medical Biology Center Tours France
CNRS IMoPA Université de Lorraine Vandoeuvre lès Nancy France
Department of Cell Biology and Genetics Faculty of Science Palacky University Olomouc Czech Republic
Gastroenterology department Saint Antoine Hospital APHP Paris France
Molecular Pharmacology Genetics and Medicine Albert Einstein College of Medicine Bronx New York USA
Paris Center for Microbiome Medicine FHU Paris France
Sorbonne Université INSERM UMRS 938 Centre de Recherche Saint Antoine CRSA AP HP Paris France
UMR 1253 iBrain University of Tours Inserm 37044 Tours France
Université Paris Saclay INRAe AgroParisTech Micalis institute Jouy en Josas France
Zobrazit více v PubMed
Furman D, Campisi J, Verdin E, et al. . Chronic inflammation in the etiology of disease across the life span. Nat Med 2019;25:1822–32. 10.1038/s41591-019-0675-0 PubMed DOI PMC
Xu X-R, Liu C-Q, Feng B-S, et al. . Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World J Gastroenterol 2014;20:3255. 10.3748/wjg.v20.i12.3255 PubMed DOI PMC
Lamas B, Richard ML, Leducq V, et al. . Card9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016;22:598–605. 10.1038/nm.4102 PubMed DOI PMC
Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 2017;152:327–39. 10.1053/j.gastro.2016.10.012 PubMed DOI PMC
Burger JR, Hou C, Brown JH. Toward a metabolic theory of life history. Proc Natl Acad Sci U S A 2019;116:26653–61. 10.1073/pnas.1907702116 PubMed DOI PMC
Pols T, Sikkema HR, Gaastra BF, et al. . A synthetic metabolic network for physicochemical homeostasis. Nat Commun 2019;10:4239. 10.1038/s41467-019-12287-2 PubMed DOI PMC
Duddu AS, Sahoo S, Hati S, et al. . Multi-stability in cellular differentiation enabled by a network of three mutually repressing master regulators. J. R. Soc. Interface. 2020;17:20200631. 10.1098/rsif.2020.0631 PubMed DOI PMC
Lampropoulou V, Sergushichev A, Bambouskova M, et al. . Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 2016;24:158–66. 10.1016/j.cmet.2016.06.004 PubMed DOI PMC
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016;23:27–47. 10.1016/j.cmet.2015.12.006 PubMed DOI PMC
Nikolaus S, Schulte B, Al-Massad N, et al. . Increased tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 2017;153:1504–16. 10.1053/j.gastro.2017.08.028 PubMed DOI
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716–24. 10.1016/j.chom.2018.05.003 PubMed DOI
Dodd D, Spitzer MH, Van Treuren W, et al. . A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017;551:648–52. 10.1038/nature24661 PubMed DOI PMC
Manzella CR, Jayawardena D, Pagani W, et al. . Serum serotonin differentiates between disease activity states in Crohn's patients. Inflamm Bowel Dis 2020;26:1607–18. 10.1093/ibd/izaa208 PubMed DOI PMC
Tashita C, Hoshi M, Hirata A, et al. . Kynurenine plays an immunosuppressive role in 2,4,6-trinitrobenzene sulfate-induced colitis in mice. World J Gastroenterol 2020;26:918–32. 10.3748/wjg.v26.i9.918 PubMed DOI PMC
Cussotto S, Delgado I, Anesi A, et al. . Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol 2020;11:557. 10.3389/fimmu.2020.00557 PubMed DOI PMC
Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 2015;43:1522–35. 10.1124/dmd.115.064246 PubMed DOI PMC
Agudelo LZ, Ferreira DMS, Cervenka I, et al. . Kynurenic acid and GPR35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab 2018;27:378–92. 10.1016/j.cmet.2018.01.004 PubMed DOI
Lugo-Huitrón R, Ugalde Muñiz P, Pineda B, et al. . Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev 2013;2013:1–14. 10.1155/2013/104024 PubMed DOI PMC
Campesato LF, Budhu S, Tchaicha J, et al. . Blockade of the AhR restricts a Treg-macrophage suppressive axis induced by L-kynurenine. Nat Commun 2020;11:4011. 10.1038/s41467-020-17750-z PubMed DOI PMC
Quintana FJ, Basso AS, Iglesias AH, et al. . Control of Treg and Th17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453:65–71. 10.1038/nature06880 PubMed DOI
McAleer JP, Fan J, Roar B, et al. . Cytokine regulation in human CD4 T cells by the aryl hydrocarbon receptor and Gq-coupled receptors. Sci Rep 2018;8:10954. 10.1038/s41598-018-29262-4 PubMed DOI PMC
Michaudel C, Bataille F, Maillet I, et al. . Ozone-Induced aryl hydrocarbon receptor activation controls lung inflammation via interleukin-22 modulation. Front Immunol 2020;11:144. 10.3389/fimmu.2020.00144 PubMed DOI PMC
Schiering C, Wincent E, Metidji A, et al. . Feedback control of AhR signalling regulates intestinal immunity. Nature 2017;542:242–5. 10.1038/nature21080 PubMed DOI PMC
Vogel CFA, Van Winkle LS, Esser C, et al. . The aryl hydrocarbon receptor as a target of environmental stressors – implications for pollution mediated stress and inflammatory responses. Redox Biol 2020;34:101530. 10.1016/j.redox.2020.101530 PubMed DOI PMC
Sokol H, Landman C, Seksik P, et al. . Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. Microbiome 2020;8:12. 10.1186/s40168-020-0792-5 PubMed DOI PMC
Wisniewski A, Kirchgesner J, Seksik P, et al. . Increased incidence of systemic serious viral infections in patients with inflammatory bowel disease associates with active disease and use of thiopurines. United European Gastroenterol J 2020;8:303–13. 10.1177/2050640619889763 PubMed DOI PMC
Metidji A, Omenetti S, Crotta S, et al. . The environmental sensor AhR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 2018;49:353–62. 10.1016/j.immuni.2018.07.010 PubMed DOI PMC
Yin J, Sheng B, Qiu Y, et al. . Role of AhR in positive regulation of cell proliferation and survival. Cell Prolif 2016;49:554–60. 10.1111/cpr.12282 PubMed DOI PMC
Michaudel C, Sokol H. The gut microbiota at the service of Immunometabolism. Cell Metab 2020;32:514–23. 10.1016/j.cmet.2020.09.004 PubMed DOI
Argüello RJ, Combes AJ, Char R, et al. . SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab 2020;32:1063–75. 10.1016/j.cmet.2020.11.007 PubMed DOI PMC
Alarcan H, Chaumond R, Emond P, et al. . Some CSF kynurenine pathway intermediates associated with disease evolution in amyotrophic lateral sclerosis. Biomolecules 2021;11:691. 10.3390/biom11050691 PubMed DOI PMC
Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm 2014;2014:1–14. 10.1155/2014/928461 PubMed DOI PMC
Kinugasa T, Sakaguchi T, Gu X, et al. . Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000;118:1001–11. 10.1016/S0016-5085(00)70351-9 PubMed DOI
Kirchner FR, LeibundGut-Landmann S. Tissue-Resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol 2021;14:455–67. 10.1038/s41385-020-0327-1 PubMed DOI PMC
Hueber W, Sands BE, Lewitzky S, et al. . Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012;61:1693–700. 10.1136/gutjnl-2011-301668 PubMed DOI PMC
Yansen Z, Lingang Z, Dali L. Inflammatory bowel disease susceptible gene GPR35 promotes bowel inflammation in mice. Yi Chuan 2021;43:169–81. PubMed
Walczak K, Langner E, Makuch-Kocka A, et al. . Effect of tryptophan-derived AhR ligands, kynurenine, kynurenic acid and FICZ, on proliferation, cell cycle regulation and cell death of melanoma Cells—In vitro studies. Int J Mol Sci 2020;21:E7946. 10.3390/ijms21217946 PubMed DOI PMC
Donohoe DR, Garge N, Zhang X, et al. . The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011;13:517–26. 10.1016/j.cmet.2011.02.018 PubMed DOI PMC
Skelly AN, Sato Y, Kearney S, et al. . Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 2019;19:305–23. 10.1038/s41577-019-0144-5 PubMed DOI
Gill R, Woodruff GN. The neuroprotective actions of kynurenic acid and MK-801 in gerbils are synergistic and not related to hypothermia. Eur J Pharmacol 1990;176:143–9. 10.1016/0014-2999(90)90522-8 PubMed DOI
Dupraz L, Magniez A, Rolhion N, et al. . Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep 2021;36:109332. 10.1016/j.celrep.2021.109332 PubMed DOI
Sokol H, Conway KL, Zhang M, et al. . Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 2013;145:591–601. 10.1053/j.gastro.2013.05.047 PubMed DOI PMC
Lefèvre A, Mavel S, Nadal-Desbarats L, et al. . Validation of a global quantitative analysis methodology of tryptophan metabolites in mice using LC-MS. Talanta 2019;195:593–8. 10.1016/j.talanta.2018.11.094 PubMed DOI
Denison MS, Rogers JM, Rushing SR, et al. . Analysis of the Aryl Hydrocarbon Receptor (AhR) Signal Transduction Pathway. Curr Protoc Toxicol 2002;11. 10.1002/0471140856.tx0408s11 PubMed DOI