A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia

. 2022 Sep 25 ; 13 (10) : . [epub] 20220925

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu metaanalýza, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36292606

Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.

Zobrazit více v PubMed

Rhouma B., Okutman O., Muller J., Benkhalifa M., Bahri H., Rhouma B., Tebourbi O., Viville S. Genetic aspects of male infertility: From bench to clinic. Gynecol. Obstet. Fertil. Senol. 2018;47:54–62. PubMed

Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI

Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reproduct. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1. PubMed DOI PMC

Sengupta P., Dutta S., Krajewska-Kulak E. The disappearing sperms: Analysis of reports published between 1980 and 2015. Am. J. Mens Health. 2017;11:1279–1304. doi: 10.1177/1557988316643383. PubMed DOI PMC

Dabaja A.A., Schlegel P.N. Medical treatment of male infertility. Transl. Androl. Urol. 2014;3:9–16. PubMed PMC

Daneshmandpour Y., Bahmanpour Z., Hamzeiy H., Mazaheri Moghaddam M., Mazaheri Moghaddam M., Khademi B., Sakhinia E. Micrornas association with azoospermia, oligospermia, asthenozoospermia, and teratozoospermia: A systematic review. J. Assist. Reprod. Genet. 2020;37:763–775. doi: 10.1007/s10815-019-01674-9. PubMed DOI PMC

Candela L., Boeri L., Capogrosso P., Cazzaniga W., Pozzi E., Belladelli F., Baudo A., Ravizzoli A., Ventimiglia E., Viganò P. Correlation among isolated teratozoospermia, sperm DNA fragmentation and markers of systemic inflammation in primary infertile men. PLoS ONE. 2021;16:e0251608. doi: 10.1371/journal.pone.0251608. PubMed DOI PMC

Mostafa Nayel D., Salah El Din Mahrous H., El Din Khalifa E., Kholeif S., Mohamed Elhady G. The effect of teratozoospermia on sex chromosomes in human embryos. Appl. Clin. Genet. 2021;14:125–144. doi: 10.2147/TACG.S299349. PubMed DOI PMC

Dziminski M.A., Roberts J.D., Simmons L.W. Sperm morphology, motility and fertilisation capacity in the myobatrachid frog crinia georgiana. Reprod. Fertil. Dev. 2010;22:516–522. doi: 10.1071/RD09124. PubMed DOI

Cocuzza M., Alvarenga C., Pagani R. The epidemiology and etiology of azoospermia. Clinics. 2013;68((Suppl. 1)):15–26. doi: 10.6061/clinics/2013(Sup01)03. PubMed DOI PMC

Han B., Wang L., Yu S., Ge W., Li Y., Jiang H., Shen W., Sun Z. One potential biomarker for teratozoospermia identified by in-depth integrative analysis of multiple microarray data. Aging. 2021;13:10208–10224. doi: 10.18632/aging.202781. PubMed DOI PMC

Sengupta P., Dutta S., Karkada I.R., Chinni S.V. Endocrinopathies and male infertility. Life. 2022;12:10. doi: 10.3390/life12010010. PubMed DOI PMC

Kumar N., Singh A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015;8:191–196. doi: 10.4103/0974-1208.170370. PubMed DOI PMC

Wang C., Swefloff R.S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 2014;102:1502–1507. doi: 10.1016/j.fertnstert.2014.10.021. PubMed DOI PMC

Boissonnas C.C., Jouannet P., Jammes H. Epigenetic disorders and male subfertility. Fertil. Steril. 2013;99:624–631. doi: 10.1016/j.fertnstert.2013.01.124. PubMed DOI

Gannon J.R., Emery B.R., Jenkins T.G., Carell D.T. The sperm epigenome: Implications for the embryo. Adv. Exp. Med. Biol. 2014;791:53–66. PubMed

Klaver R., Gromoll J. Bringing eoigenetics into the diagnostics of the andrology laboratory: Challenges and perspectives. Asian J. Androl. 2014;16:669–674. PubMed PMC

de Mateo S., Sassone Corsi P. Regulation of spermatogenesis by small non-coding RNAs: Role of the germ granule. Semin. Cell Dev. Biol. 2014;29:84–92. doi: 10.1016/j.semcdb.2014.04.021. PubMed DOI PMC

Jodar M., Elvaraju S., Sendler E., Diamond M.P., Krawetz S.A. The presence, role and clinical use of spermatozonal RNAs. Hum. Reprod. Update. 2013;19:604–624. doi: 10.1093/humupd/dmt031. PubMed DOI PMC

Hotaling J., Carell D.T. Clinical genetic testing for male factor infertility: Current applications and future directions. Andrology. 2014;2:339–350. doi: 10.1111/j.2047-2927.2014.00200.x. PubMed DOI

Li C., Zhou X. Gene transcripts in spermatozoa: Markers of male infertility. Clin. Chim. Acta. 2012;413:1035–1038. doi: 10.1016/j.cca.2012.03.002. PubMed DOI

Coutton C., Escoffier J., Martinez G., Arnoult C., Ray P.F. Teratozoospermia: Spotlight on the main genetic actors in the human. Hum. Reprod. Update. 2015;21:455–485. doi: 10.1093/humupd/dmv020. PubMed DOI

Wang Y.Y., Lai T.H., Chen M.F., Lee H.L., Kuo P.L., Lin Y.H. SEPT14 Mutations and Teratozoospermia: Genetic Effects on Sperm Head Morphology and DNA Integrity. J. Clin. Med. 2019;8:1297. doi: 10.3390/jcm8091297. PubMed DOI PMC

Omolaoye T.S., Hachim M.Y., du Plessis S.S. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci. Rep. 2022;12:2584. doi: 10.1038/s41598-022-06476-1. PubMed DOI PMC

Sánchez-Peña M.L., Isaza C.E., Pérez-Morales J., Rodríguez-Padilla C., Castro J.M., Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Med. 2013;2:253–265. doi: 10.1002/cam4.69. PubMed DOI PMC

Juanes-Velasco P., Carabias-Sanchez J., Garcia-Valiente R., Fernandez-García J., Gongora R., Gonzalez-Gonzalez M., Fuentes M. Rapid Test - Advances in Design, Format and Diagnostic Applications. IntechOpen; London, UK: 2018. Microarrays as platform for multiplex assays in biomarker and drug discovery.

Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and alzheimer’s disease dementia. Int. J. Mol. Sci. 2019;20:5403. doi: 10.3390/ijms20215403. PubMed DOI PMC

Edgar R., Domrachev M., Lash A.E. Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Aponte P.M. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J. Stem Cells. 2015;7:669–680. doi: 10.4252/wjsc.v7.i4.669. PubMed DOI PMC

Platts A.E., Dix D.J., Chemes H.E., Thompson K.E., Goodrich R., Rockett J.C., Rawe V.Y., Quintana S., Diamond M.P., Strader L.F., et al. Success and failure in human spermatogenesis as revealed by teratozoospermic rnas. Hum. Mol. Gen. 2007;16:763–773. doi: 10.1093/hmg/ddm012. PubMed DOI

Hodžić A., Maver A., Plaseska-Karanfilska D., Ristanović M., Noveski P., Zorn B., Terzic M., Kunej T., Peterlin B. De novo mutations in idiopathic male infertility-a pilot study. Andrology. 2021;9:212–220. doi: 10.1111/andr.12897. PubMed DOI

Hadziselimovic F., Hadziselimovic N.O., Demougin P., Oakeley E.J. Testicular gene expression in cryptorchid boys at risk of azoospermia. Sex. Dev. Genet. Mol. Biol. Evol. Endocrinol. Embryol. Pathol. Sex Determ. Differ. 2011;5:49–59. doi: 10.1159/000323955. PubMed DOI

Sharov A.A., Schlessinger D., Ko M.S. Exatlas: An interactive online tool for meta-analysis of gene expression data. J. Bioinform. Comput. Biol. 2015;13:1550019. doi: 10.1142/S0219720015500195. PubMed DOI PMC

Le Cook B., Manning W., Alegria M. Measuring disparities across the distribution of mental health care expenditures. J. Ment. Health Policy Econ. 2013;16:3–12. PubMed PMC

Zhou G., Soufan O., Ewald J., Hancock R.E.W., Basu N., Xia J. Networkanalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–W241. doi: 10.1093/nar/gkz240. PubMed DOI PMC

Klemmt P.A.B., Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr. Women’s Health Rev. 2018;14:106–116. doi: 10.2174/1573404813666170306163448. PubMed DOI PMC

Bell A., Fairbrother M., Jones K. Fixed and random effects models: Making an informed choice. Qual. Quant. 2019;53:1051–1074. doi: 10.1007/s11135-018-0802-x. DOI

Guha P., Roychoudhury S., Singha S., Kalita J.C., Kolesarova A., Jamal Q.M.S., Jha N.K., Kumar D., Ruokolainen J., Kesari K.K. A comparative cross-platform meta-analysis to identify potential biomarker genes common to endometriosis and recurrent pregnancy loss. Appl. Sci. 2021;11:3349. doi: 10.3390/app11083349. DOI

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Laganà A.S., Garzon S., Götte M., Viganò P., Franchi M., Ghezzi F., Martin D.C. The pathogenesis of endometriosis: Molecular and cell biology insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615. PubMed DOI PMC

Green G.H., Diggle P.J. On the operational characteristics of the benjamini and hochberg false discovery rate procedure. Stat. Appl. Gen. Mol. Biol. 2007;6:27. doi: 10.2202/1544-6115.1302. PubMed DOI

Mudunuri U., Che A., Yi M., Stephens R.M. Biodbnet: The biological database network. Bioinformatics. 2009;25:555–556. doi: 10.1093/bioinformatics/btn654. PubMed DOI PMC

Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI

Doncheva N.T., Morris J.H., Gorodkin J., Jensen L.J. Cytoscape stringapp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Maere S., Heymans K., Kuiper M. Bingo: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551. PubMed DOI

Ignatieva E.V., Osadchuk A.V., Kleshchev M.A., Bogomolov A.G., Osadchuk L.V. A catalog of human genes associated with pathozoospermia and functional characteristics of these genes. Front. Genet. 2021;12:662770. doi: 10.3389/fgene.2021.662770. PubMed DOI PMC

Sengupta P., Cho C.L. Male Infertility in Reproductive Medicine. CRC Press; Boca Raton, FL, USA: 2019. The pathophysiology of male infertility; pp. 1–9.

Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat. Rev. Urol. 2018;15:369–384. doi: 10.1038/s41585-018-0003-3. PubMed DOI

World Health Organization . World Health Statistics. World Health Organization; Geneva, Switzerland: 2009.

Chemes E.H., Rawe Y.V. Sperm pathology: A step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum. Reprod. Update. 2003;9:405–428. doi: 10.1093/humupd/dmg034. PubMed DOI

Chemes H.E., Alvarez Sedo C. Tales of the tail and sperm headaches: Changing concepts on the prognostic significance of sperm pathologies affecting the head, neck and tail. Asian J. Androl. 2012;14:14–23. doi: 10.1038/aja.2011.168. PubMed DOI PMC

Malcher A., Rozwadowska N., Stokowy T., Kolanowski T., Jedrzejczak P., Zietkowiak W., Kurpisz M. Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis. Fertil. Steril. 2013;100:e1681–e1687. doi: 10.1016/j.fertnstert.2013.07.1999. PubMed DOI

Hu T., Luo S., Xi Y., Tu X., Yang X., Zhang H., Feng J., Wang C., Zhang Y. Integrative bioinformatics approaches for identifying potential biomarkers and pathways involved in non-obstructive azoospermia. Transl. Androl. Urol. 2021;10:243–257. doi: 10.21037/tau-20-1029. PubMed DOI PMC

Ma Y., Xie N., Xie D., Sun L., Li S., Li P., Li Y., Li J., Dong Z., Xie X. A novel homozygous fbxo43 mutation associated with male infertility and teratozoospermia in a consanguineous chinese family. Fertil. Steril. 2019;111:909–917.e901. doi: 10.1016/j.fertnstert.2019.01.007. PubMed DOI

Coutton C., Martinez G., Kherraf Z.E., Amiri-Yekta A., Boguenet M., Saut A., He X., Zhang F., Cristou-Kent M., Escoffier J., et al. Bi-allelic mutations in armc2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am. J. Hum. Gen. 2019;104:331–340. doi: 10.1016/j.ajhg.2018.12.013. PubMed DOI PMC

Kuo Y.C., Lin Y.H., Chen H.I., Wang Y.Y., Chiou Y.W., Lin H.H., Pan H.A., Wu C.M., Su S.M., Hsu C.C., et al. Sept12 mutations cause male infertility with defective sperm annulus. Hum. Mutat. 2012;33:710–719. doi: 10.1002/humu.22028. PubMed DOI

Kastner S., Thiemann I.J., Dekomien G., Petrasch-Parwez E., Schreiber S., Akkad D.A., Gerding W.M., Hoffjan S., Günes S., Günes S., et al. Exome sequencing reveals agbl5 as novel candidate gene and additional variants for retinitis pigmentosa in five turkish families. Investig. Ophthal. Mol. Vis. Sci. 2015;56:8045–8053. doi: 10.1167/iovs.15-17473. PubMed DOI

Kherraf Z.E., Cazin C., Lestrade F., Muronova J., Coutton C., Arnoult C., Thierry-Mieg N., Ray P.F. From azoospermia tomacrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene. Asian J. Androl. 2022;24:243–247. PubMed PMC

Wen Y., Wang X., Zheng R., Dai S., Li J., Yang Y., Shen Y. Sequencing of the ZMYND15 gene in a cohort of infertile Chinese men reveals novel mutations in patients with teratozoospermia. J. Med. Genet. 2022:108727. doi: 10.1136/jmg-2022-108727. PubMed DOI

Rousseaux-Prévost R., Lesur P., Collier F., Rigot J.M., Dalla Venezia N., Pol P.S., Delaunay J., Gauthier A., Rousseaux J. Abnormal expression of protein 4.1 in spermatozoa of infertile men with teratospermia. Lancet. 1994;343:764–765. doi: 10.1016/S0140-6736(94)91840-6. PubMed DOI

Chen J., Gu Y., Zhang Z., Zheng W., Yang L., Huang W., Lin S., Li Y., Guo H., Luo M., et al. Deficiency of spata46, a novel nuclear membrane protein, causes subfertility in male mice. Biol. Reprod. 2016;95:58. doi: 10.1095/biolreprod.116.140996. PubMed DOI

Zhou J.H., Zhou Q.Z., Lyu X.M., Zhu T., Chen Z.J., Chen M.K., Xia H., Wang C.Y., Qi T., Li X., et al. The expression of cysteine-rich secretory protein 2 (crisp2) and its specific regulator mir-27b in the spermatozoa of patients with asthenozoospermia. Biol. Reprod. 2015;92:28. doi: 10.1095/biolreprod.114.124487. PubMed DOI

Yuan S., Stratton C.J., Bao J., Zheng H., Bhetwal B.P., Yanagimachi R., Yan W. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc. Natl. Acad. Sci. USA. 2015;112:E430–E439. doi: 10.1073/pnas.1424648112. PubMed DOI PMC

Bracke A., Peeters K., Punjabi U., Hoogewijs D., Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online. 2018;36:327–339. doi: 10.1016/j.rbmo.2017.12.005. PubMed DOI

Fox M.S., Ares V.X., Turek P.J., Haqq C., Reijo Pera R.A. Feasibility of global gene expression analysis in testicular biopsies from infertile men. Mol. Reprod. Dev. 2003;66:403–421. doi: 10.1002/mrd.10364. PubMed DOI

Ellis P.J., Furlong R.A., Conner S.J., Kirkman-Brown J., Afnan M., Barratt C., Griffin D.K., Affara N.A. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men. J. Med. Genet. 2007;44:498–508. doi: 10.1136/jmg.2007.049650. PubMed DOI PMC

Spiess A.N., Feig C., Schulze W., Chalmel F., Cappallo-Obermann H., Primig M., Kirchhoff C. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum. Reprod. 2007;22:2936–2946. doi: 10.1093/humrep/dem292. PubMed DOI

Cooke H., Hargreave T., Elliott D. Understanding the genes involved in spermatogenesis: A progress report. Fertil. Steril. 1998;69:989–995. doi: 10.1016/S0015-0282(98)00071-5. PubMed DOI

Grootegoed J.A., Siep M., Baarends W.M. Molecular and cellular mechanisms in spermatogenesis. Best Pract. Res. Clin. Endocrinol. 2000;14:331–343. doi: 10.1053/beem.2000.0083. PubMed DOI

Johnson L. Efficiency of spermatogenesis. Micros. Res. Tech. 1995;3:385–422. doi: 10.1002/jemt.1070320504. PubMed DOI

Paquis-Flucklinger V., Santucci-Darmanin S., Paul R., Saunieres A., Turc-Carel C., Desnuelle C. Cloning and expression analysis of a meiosis-specific MutS homolog: The human MSH4 gene. Genomics. 1997;44:188–194. doi: 10.1006/geno.1997.4857. PubMed DOI

Lundgren K., Walworth N., Booher R., Dembski M., Kirschner M., Beach D. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell. 1991;64:1111–1122. doi: 10.1016/0092-8674(91)90266-2. PubMed DOI

Subramaniam K., Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 1999;126:4861–4871. doi: 10.1242/dev.126.21.4861. PubMed DOI

Subramaniam K., Seydoux G. Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr. Biol. 2003;13:134–139. PubMed

Dada R., Ahmed M.E., Talwar R., Kucheria K. Clinical and Genetic study in a XX (SRY negative) male. Int. J. Med. 2002

Shamsi M.B., Kumar K., Dada R. Genetic and epigenetic factors: Role in male infertility. Indian J. Urol. 2011;27:110–120. PubMed PMC

Boué A., Gallano P. A collaborative study of the segregation of inherited chromosome structural rearrangements in 1356 prenatal diagnoses. Prenat. Diagn. 1984;4:45–67. doi: 10.1002/pd.1970040705. PubMed DOI

Rodríguez de la Vega Otazo M., Lorenzo J., Tort O., Avilés F.X., Bautista J.M. Functional segregation and emerging role of cilia-related cytosolic carboxypeptidases (CCPs) FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013;27:424–431. PubMed

Rogowski K., van Dijk J., Magiera M.M., Bosc C., Deloulme J.C., Bosson A., Peris L., Gold N.D., Lacroix B., Bosch Grau M., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010;143:564–578. doi: 10.1016/j.cell.2010.10.014. PubMed DOI

Wu H.Y., Rong Y., Correia K., Min J., Morgan J.I. Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members. J. Biol. Chem. 2015;290:1222–1232. doi: 10.1074/jbc.M114.604850. PubMed DOI PMC

Carrell D.T. Methods of Identifying Male Fertility Status and Embryo Quality. Application No. 15/750,715. U.S. Patent. 2019 April 19;

Lea I.A., Richardson R.T., Widgren E.E., O’Rand M.G. Cloning and sequencing of cdnas encoding the human sperm protein, sp17. Biochim. Biophys. Acta. 1996;1307:263–266. doi: 10.1016/0167-4781(96)00077-2. PubMed DOI

Gjerstorff M.F., Andersen M.H., Ditzel H.J. Oncogenic cancer/testis antigens: Prime candidates for immunotherapy. Oncotarget. 2015;6:15772–15787. doi: 10.18632/oncotarget.4694. PubMed DOI PMC

Wen Y., Richardson R.T., Widgren E.E., O’Rand M.G. Characterization of sp17: A ubiquitous three domain protein that binds heparin. Biochem. 2001;357:25–31. doi: 10.1042/bj3570025. PubMed DOI PMC

Zhang Q., Gao M., Zhang Y., Song Y., Cheng H., Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci. Rep. 2016;6:24609. doi: 10.1038/srep24609. PubMed DOI PMC

Zhou H., Kuang J., Zhong L., Kuo W.L., Gray J.W., Sahin A., Brinkley B.R., Sen S. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 1998;20:189–193. doi: 10.1038/2496. PubMed DOI

Crane R., Gadea B., Littlepage L., Wu H., Ruderman J.V. Aurora A, meiosis and mitosis. Biol. Cell. 2004;96:215–229. doi: 10.1016/j.biolcel.2003.09.008. PubMed DOI

Roig I., Dowdle J.A., Toth A., de Rooij D.G., Jasin M., Keeney S. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 2010;6:e1001062. doi: 10.1371/journal.pgen.1001062. PubMed DOI PMC

Ma H.T., Poon R. TRIP13 Regulates Both the Activation and Inactivation of the Spindle-Assembly Checkpoint. Cell Rep. 2016;14:1086–1099. doi: 10.1016/j.celrep.2016.01.001. PubMed DOI

Vader G. Pch2(TRIP13): Controlling cell division through regulation of HORMA domains. Chromosoma. 2015;124:333–339. doi: 10.1007/s00412-015-0516-y. PubMed DOI

Archambault V., Pinson X. Free centrosomes: Where do they all come from? Fly. 2010;4:172–177. doi: 10.4161/fly.4.2.11674. PubMed DOI

Barr F.A., Silljé H.H., Nigg E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 2004;5:429–440. doi: 10.1038/nrm1401. PubMed DOI

Adlakha J., Karamichali I., Sangwallek J., Deiss S., Bär K., Coles M., Hartmann M.D., Lupas A.N., Hernandez Alvarez B. Characterization of mcu-binding proteins mcur1 and ccdc90b—representatives of a protein family conserved in prokaryotes and eukaryotic organelles. Structure. 2019;27:464–475.e466. doi: 10.1016/j.str.2018.11.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...