A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu metaanalýza, časopisecké články
    PubMed
          
           36292606
           
          
          
    PubMed Central
          
           PMC9602071
           
          
          
    DOI
          
           10.3390/genes13101721
           
          
          
      PII:  genes13101721
  
    Knihovny.cz E-zdroje
    
  
              
      
- Klíčová slova
- CCDC90B, CCDC91, SPA17, azoospermia, biomarker genes, male infertility, teratozoospermia,
- MeSH
- azoospermie * diagnóza genetika MeSH
- biologické markery MeSH
- lidé MeSH
- mužská infertilita * genetika MeSH
- RNA MeSH
- sperma metabolismus MeSH
- teratozoospermie * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- biologické markery MeSH
- RNA MeSH
Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.
Department of Applied Physics Aalto University 00076 Espoo Finland
Department of Life Science and Bioinformatics Assam University Silchar 788011 India
Department of Zoology Garhbeta College Garhbeta 721127 India
Department of Zoology Mariani College Mariani 785634 India
GyanArras Academy Gothapatna Malipada Bhubaneswar 751003 India
School of Medical Sciences Bharath Institute of Higher Education and Research Chennai 600126 India
Zobrazit více v PubMed
Rhouma B., Okutman O., Muller J., Benkhalifa M., Bahri H., Rhouma B., Tebourbi O., Viville S. Genetic aspects of male infertility: From bench to clinic. Gynecol. Obstet. Fertil. Senol. 2018;47:54–62. PubMed
Vander Borght M., Wyns C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018;62:2–10. doi: 10.1016/j.clinbiochem.2018.03.012. PubMed DOI
Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reproduct. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1. PubMed DOI PMC
Sengupta P., Dutta S., Krajewska-Kulak E. The disappearing sperms: Analysis of reports published between 1980 and 2015. Am. J. Mens Health. 2017;11:1279–1304. doi: 10.1177/1557988316643383. PubMed DOI PMC
Dabaja A.A., Schlegel P.N. Medical treatment of male infertility. Transl. Androl. Urol. 2014;3:9–16. PubMed PMC
Daneshmandpour Y., Bahmanpour Z., Hamzeiy H., Mazaheri Moghaddam M., Mazaheri Moghaddam M., Khademi B., Sakhinia E. Micrornas association with azoospermia, oligospermia, asthenozoospermia, and teratozoospermia: A systematic review. J. Assist. Reprod. Genet. 2020;37:763–775. doi: 10.1007/s10815-019-01674-9. PubMed DOI PMC
Candela L., Boeri L., Capogrosso P., Cazzaniga W., Pozzi E., Belladelli F., Baudo A., Ravizzoli A., Ventimiglia E., Viganò P. Correlation among isolated teratozoospermia, sperm DNA fragmentation and markers of systemic inflammation in primary infertile men. PLoS ONE. 2021;16:e0251608. doi: 10.1371/journal.pone.0251608. PubMed DOI PMC
Mostafa Nayel D., Salah El Din Mahrous H., El Din Khalifa E., Kholeif S., Mohamed Elhady G. The effect of teratozoospermia on sex chromosomes in human embryos. Appl. Clin. Genet. 2021;14:125–144. doi: 10.2147/TACG.S299349. PubMed DOI PMC
Dziminski M.A., Roberts J.D., Simmons L.W. Sperm morphology, motility and fertilisation capacity in the myobatrachid frog crinia georgiana. Reprod. Fertil. Dev. 2010;22:516–522. doi: 10.1071/RD09124. PubMed DOI
Cocuzza M., Alvarenga C., Pagani R. The epidemiology and etiology of azoospermia. Clinics. 2013;68((Suppl. 1)):15–26. doi: 10.6061/clinics/2013(Sup01)03. PubMed DOI PMC
Han B., Wang L., Yu S., Ge W., Li Y., Jiang H., Shen W., Sun Z. One potential biomarker for teratozoospermia identified by in-depth integrative analysis of multiple microarray data. Aging. 2021;13:10208–10224. doi: 10.18632/aging.202781. PubMed DOI PMC
Sengupta P., Dutta S., Karkada I.R., Chinni S.V. Endocrinopathies and male infertility. Life. 2022;12:10. doi: 10.3390/life12010010. PubMed DOI PMC
Kumar N., Singh A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015;8:191–196. doi: 10.4103/0974-1208.170370. PubMed DOI PMC
Wang C., Swefloff R.S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 2014;102:1502–1507. doi: 10.1016/j.fertnstert.2014.10.021. PubMed DOI PMC
Boissonnas C.C., Jouannet P., Jammes H. Epigenetic disorders and male subfertility. Fertil. Steril. 2013;99:624–631. doi: 10.1016/j.fertnstert.2013.01.124. PubMed DOI
Gannon J.R., Emery B.R., Jenkins T.G., Carell D.T. The sperm epigenome: Implications for the embryo. Adv. Exp. Med. Biol. 2014;791:53–66. PubMed
Klaver R., Gromoll J. Bringing eoigenetics into the diagnostics of the andrology laboratory: Challenges and perspectives. Asian J. Androl. 2014;16:669–674. PubMed PMC
de Mateo S., Sassone Corsi P. Regulation of spermatogenesis by small non-coding RNAs: Role of the germ granule. Semin. Cell Dev. Biol. 2014;29:84–92. doi: 10.1016/j.semcdb.2014.04.021. PubMed DOI PMC
Jodar M., Elvaraju S., Sendler E., Diamond M.P., Krawetz S.A. The presence, role and clinical use of spermatozonal RNAs. Hum. Reprod. Update. 2013;19:604–624. doi: 10.1093/humupd/dmt031. PubMed DOI PMC
Hotaling J., Carell D.T. Clinical genetic testing for male factor infertility: Current applications and future directions. Andrology. 2014;2:339–350. doi: 10.1111/j.2047-2927.2014.00200.x. PubMed DOI
Li C., Zhou X. Gene transcripts in spermatozoa: Markers of male infertility. Clin. Chim. Acta. 2012;413:1035–1038. doi: 10.1016/j.cca.2012.03.002. PubMed DOI
Coutton C., Escoffier J., Martinez G., Arnoult C., Ray P.F. Teratozoospermia: Spotlight on the main genetic actors in the human. Hum. Reprod. Update. 2015;21:455–485. doi: 10.1093/humupd/dmv020. PubMed DOI
Wang Y.Y., Lai T.H., Chen M.F., Lee H.L., Kuo P.L., Lin Y.H. SEPT14 Mutations and Teratozoospermia: Genetic Effects on Sperm Head Morphology and DNA Integrity. J. Clin. Med. 2019;8:1297. doi: 10.3390/jcm8091297. PubMed DOI PMC
Omolaoye T.S., Hachim M.Y., du Plessis S.S. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci. Rep. 2022;12:2584. doi: 10.1038/s41598-022-06476-1. PubMed DOI PMC
Sánchez-Peña M.L., Isaza C.E., Pérez-Morales J., Rodríguez-Padilla C., Castro J.M., Cabrera-Ríos M. Identification of potential biomarkers from microarray experiments using multiple criteria optimization. Cancer Med. 2013;2:253–265. doi: 10.1002/cam4.69. PubMed DOI PMC
Juanes-Velasco P., Carabias-Sanchez J., Garcia-Valiente R., Fernandez-García J., Gongora R., Gonzalez-Gonzalez M., Fuentes M. Rapid Test - Advances in Design, Format and Diagnostic Applications. IntechOpen; London, UK: 2018. Microarrays as platform for multiplex assays in biomarker and drug discovery.
Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and alzheimer’s disease dementia. Int. J. Mol. Sci. 2019;20:5403. doi: 10.3390/ijms20215403. PubMed DOI PMC
Edgar R., Domrachev M., Lash A.E. Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Aponte P.M. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J. Stem Cells. 2015;7:669–680. doi: 10.4252/wjsc.v7.i4.669. PubMed DOI PMC
Platts A.E., Dix D.J., Chemes H.E., Thompson K.E., Goodrich R., Rockett J.C., Rawe V.Y., Quintana S., Diamond M.P., Strader L.F., et al. Success and failure in human spermatogenesis as revealed by teratozoospermic rnas. Hum. Mol. Gen. 2007;16:763–773. doi: 10.1093/hmg/ddm012. PubMed DOI
Hodžić A., Maver A., Plaseska-Karanfilska D., Ristanović M., Noveski P., Zorn B., Terzic M., Kunej T., Peterlin B. De novo mutations in idiopathic male infertility-a pilot study. Andrology. 2021;9:212–220. doi: 10.1111/andr.12897. PubMed DOI
Hadziselimovic F., Hadziselimovic N.O., Demougin P., Oakeley E.J. Testicular gene expression in cryptorchid boys at risk of azoospermia. Sex. Dev. Genet. Mol. Biol. Evol. Endocrinol. Embryol. Pathol. Sex Determ. Differ. 2011;5:49–59. doi: 10.1159/000323955. PubMed DOI
Sharov A.A., Schlessinger D., Ko M.S. Exatlas: An interactive online tool for meta-analysis of gene expression data. J. Bioinform. Comput. Biol. 2015;13:1550019. doi: 10.1142/S0219720015500195. PubMed DOI PMC
Le Cook B., Manning W., Alegria M. Measuring disparities across the distribution of mental health care expenditures. J. Ment. Health Policy Econ. 2013;16:3–12. PubMed PMC
Zhou G., Soufan O., Ewald J., Hancock R.E.W., Basu N., Xia J. Networkanalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–W241. doi: 10.1093/nar/gkz240. PubMed DOI PMC
Klemmt P.A.B., Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr. Women’s Health Rev. 2018;14:106–116. doi: 10.2174/1573404813666170306163448. PubMed DOI PMC
Bell A., Fairbrother M., Jones K. Fixed and random effects models: Making an informed choice. Qual. Quant. 2019;53:1051–1074. doi: 10.1007/s11135-018-0802-x. DOI
Guha P., Roychoudhury S., Singha S., Kalita J.C., Kolesarova A., Jamal Q.M.S., Jha N.K., Kumar D., Ruokolainen J., Kesari K.K. A comparative cross-platform meta-analysis to identify potential biomarker genes common to endometriosis and recurrent pregnancy loss. Appl. Sci. 2021;11:3349. doi: 10.3390/app11083349. DOI
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Laganà A.S., Garzon S., Götte M., Viganò P., Franchi M., Ghezzi F., Martin D.C. The pathogenesis of endometriosis: Molecular and cell biology insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615. PubMed DOI PMC
Green G.H., Diggle P.J. On the operational characteristics of the benjamini and hochberg false discovery rate procedure. Stat. Appl. Gen. Mol. Biol. 2007;6:27. doi: 10.2202/1544-6115.1302. PubMed DOI
Mudunuri U., Che A., Yi M., Stephens R.M. Biodbnet: The biological database network. Bioinformatics. 2009;25:555–556. doi: 10.1093/bioinformatics/btn654. PubMed DOI PMC
Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Doncheva N.T., Morris J.H., Gorodkin J., Jensen L.J. Cytoscape stringapp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019;18:623–632. doi: 10.1021/acs.jproteome.8b00702. PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Maere S., Heymans K., Kuiper M. Bingo: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–3449. doi: 10.1093/bioinformatics/bti551. PubMed DOI
Ignatieva E.V., Osadchuk A.V., Kleshchev M.A., Bogomolov A.G., Osadchuk L.V. A catalog of human genes associated with pathozoospermia and functional characteristics of these genes. Front. Genet. 2021;12:662770. doi: 10.3389/fgene.2021.662770. PubMed DOI PMC
Sengupta P., Cho C.L. Male Infertility in Reproductive Medicine. CRC Press; Boca Raton, FL, USA: 2019. The pathophysiology of male infertility; pp. 1–9.
Krausz C., Riera-Escamilla A. Genetics of male infertility. Nat. Rev. Urol. 2018;15:369–384. doi: 10.1038/s41585-018-0003-3. PubMed DOI
World Health Organization . World Health Statistics. World Health Organization; Geneva, Switzerland: 2009.
Chemes E.H., Rawe Y.V. Sperm pathology: A step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum. Reprod. Update. 2003;9:405–428. doi: 10.1093/humupd/dmg034. PubMed DOI
Chemes H.E., Alvarez Sedo C. Tales of the tail and sperm headaches: Changing concepts on the prognostic significance of sperm pathologies affecting the head, neck and tail. Asian J. Androl. 2012;14:14–23. doi: 10.1038/aja.2011.168. PubMed DOI PMC
Malcher A., Rozwadowska N., Stokowy T., Kolanowski T., Jedrzejczak P., Zietkowiak W., Kurpisz M. Potential biomarkers of nonobstructive azoospermia identified in microarray gene expression analysis. Fertil. Steril. 2013;100:e1681–e1687. doi: 10.1016/j.fertnstert.2013.07.1999. PubMed DOI
Hu T., Luo S., Xi Y., Tu X., Yang X., Zhang H., Feng J., Wang C., Zhang Y. Integrative bioinformatics approaches for identifying potential biomarkers and pathways involved in non-obstructive azoospermia. Transl. Androl. Urol. 2021;10:243–257. doi: 10.21037/tau-20-1029. PubMed DOI PMC
Ma Y., Xie N., Xie D., Sun L., Li S., Li P., Li Y., Li J., Dong Z., Xie X. A novel homozygous fbxo43 mutation associated with male infertility and teratozoospermia in a consanguineous chinese family. Fertil. Steril. 2019;111:909–917.e901. doi: 10.1016/j.fertnstert.2019.01.007. PubMed DOI
Coutton C., Martinez G., Kherraf Z.E., Amiri-Yekta A., Boguenet M., Saut A., He X., Zhang F., Cristou-Kent M., Escoffier J., et al. Bi-allelic mutations in armc2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am. J. Hum. Gen. 2019;104:331–340. doi: 10.1016/j.ajhg.2018.12.013. PubMed DOI PMC
Kuo Y.C., Lin Y.H., Chen H.I., Wang Y.Y., Chiou Y.W., Lin H.H., Pan H.A., Wu C.M., Su S.M., Hsu C.C., et al. Sept12 mutations cause male infertility with defective sperm annulus. Hum. Mutat. 2012;33:710–719. doi: 10.1002/humu.22028. PubMed DOI
Kastner S., Thiemann I.J., Dekomien G., Petrasch-Parwez E., Schreiber S., Akkad D.A., Gerding W.M., Hoffjan S., Günes S., Günes S., et al. Exome sequencing reveals agbl5 as novel candidate gene and additional variants for retinitis pigmentosa in five turkish families. Investig. Ophthal. Mol. Vis. Sci. 2015;56:8045–8053. doi: 10.1167/iovs.15-17473. PubMed DOI
Kherraf Z.E., Cazin C., Lestrade F., Muronova J., Coutton C., Arnoult C., Thierry-Mieg N., Ray P.F. From azoospermia tomacrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene. Asian J. Androl. 2022;24:243–247. PubMed PMC
Wen Y., Wang X., Zheng R., Dai S., Li J., Yang Y., Shen Y. Sequencing of the ZMYND15 gene in a cohort of infertile Chinese men reveals novel mutations in patients with teratozoospermia. J. Med. Genet. 2022:108727. doi: 10.1136/jmg-2022-108727. PubMed DOI
Rousseaux-Prévost R., Lesur P., Collier F., Rigot J.M., Dalla Venezia N., Pol P.S., Delaunay J., Gauthier A., Rousseaux J. Abnormal expression of protein 4.1 in spermatozoa of infertile men with teratospermia. Lancet. 1994;343:764–765. doi: 10.1016/S0140-6736(94)91840-6. PubMed DOI
Chen J., Gu Y., Zhang Z., Zheng W., Yang L., Huang W., Lin S., Li Y., Guo H., Luo M., et al. Deficiency of spata46, a novel nuclear membrane protein, causes subfertility in male mice. Biol. Reprod. 2016;95:58. doi: 10.1095/biolreprod.116.140996. PubMed DOI
Zhou J.H., Zhou Q.Z., Lyu X.M., Zhu T., Chen Z.J., Chen M.K., Xia H., Wang C.Y., Qi T., Li X., et al. The expression of cysteine-rich secretory protein 2 (crisp2) and its specific regulator mir-27b in the spermatozoa of patients with asthenozoospermia. Biol. Reprod. 2015;92:28. doi: 10.1095/biolreprod.114.124487. PubMed DOI
Yuan S., Stratton C.J., Bao J., Zheng H., Bhetwal B.P., Yanagimachi R., Yan W. Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc. Natl. Acad. Sci. USA. 2015;112:E430–E439. doi: 10.1073/pnas.1424648112. PubMed DOI PMC
Bracke A., Peeters K., Punjabi U., Hoogewijs D., Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online. 2018;36:327–339. doi: 10.1016/j.rbmo.2017.12.005. PubMed DOI
Fox M.S., Ares V.X., Turek P.J., Haqq C., Reijo Pera R.A. Feasibility of global gene expression analysis in testicular biopsies from infertile men. Mol. Reprod. Dev. 2003;66:403–421. doi: 10.1002/mrd.10364. PubMed DOI
Ellis P.J., Furlong R.A., Conner S.J., Kirkman-Brown J., Afnan M., Barratt C., Griffin D.K., Affara N.A. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men. J. Med. Genet. 2007;44:498–508. doi: 10.1136/jmg.2007.049650. PubMed DOI PMC
Spiess A.N., Feig C., Schulze W., Chalmel F., Cappallo-Obermann H., Primig M., Kirchhoff C. Cross-platform gene expression signature of human spermatogenic failure reveals inflammatory-like response. Hum. Reprod. 2007;22:2936–2946. doi: 10.1093/humrep/dem292. PubMed DOI
Cooke H., Hargreave T., Elliott D. Understanding the genes involved in spermatogenesis: A progress report. Fertil. Steril. 1998;69:989–995. doi: 10.1016/S0015-0282(98)00071-5. PubMed DOI
Grootegoed J.A., Siep M., Baarends W.M. Molecular and cellular mechanisms in spermatogenesis. Best Pract. Res. Clin. Endocrinol. 2000;14:331–343. doi: 10.1053/beem.2000.0083. PubMed DOI
Johnson L. Efficiency of spermatogenesis. Micros. Res. Tech. 1995;3:385–422. doi: 10.1002/jemt.1070320504. PubMed DOI
Paquis-Flucklinger V., Santucci-Darmanin S., Paul R., Saunieres A., Turc-Carel C., Desnuelle C. Cloning and expression analysis of a meiosis-specific MutS homolog: The human MSH4 gene. Genomics. 1997;44:188–194. doi: 10.1006/geno.1997.4857. PubMed DOI
Lundgren K., Walworth N., Booher R., Dembski M., Kirschner M., Beach D. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell. 1991;64:1111–1122. doi: 10.1016/0092-8674(91)90266-2. PubMed DOI
Subramaniam K., Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development. 1999;126:4861–4871. doi: 10.1242/dev.126.21.4861. PubMed DOI
Subramaniam K., Seydoux G. Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr. Biol. 2003;13:134–139. PubMed
Dada R., Ahmed M.E., Talwar R., Kucheria K. Clinical and Genetic study in a XX (SRY negative) male. Int. J. Med. 2002
Shamsi M.B., Kumar K., Dada R. Genetic and epigenetic factors: Role in male infertility. Indian J. Urol. 2011;27:110–120. PubMed PMC
Boué A., Gallano P. A collaborative study of the segregation of inherited chromosome structural rearrangements in 1356 prenatal diagnoses. Prenat. Diagn. 1984;4:45–67. doi: 10.1002/pd.1970040705. PubMed DOI
Rodríguez de la Vega Otazo M., Lorenzo J., Tort O., Avilés F.X., Bautista J.M. Functional segregation and emerging role of cilia-related cytosolic carboxypeptidases (CCPs) FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013;27:424–431. PubMed
Rogowski K., van Dijk J., Magiera M.M., Bosc C., Deloulme J.C., Bosson A., Peris L., Gold N.D., Lacroix B., Bosch Grau M., et al. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell. 2010;143:564–578. doi: 10.1016/j.cell.2010.10.014. PubMed DOI
Wu H.Y., Rong Y., Correia K., Min J., Morgan J.I. Comparison of the enzymatic and functional properties of three cytosolic carboxypeptidase family members. J. Biol. Chem. 2015;290:1222–1232. doi: 10.1074/jbc.M114.604850. PubMed DOI PMC
Carrell D.T. Methods of Identifying Male Fertility Status and Embryo Quality. Application No. 15/750,715. U.S. Patent. 2019 April 19;
Lea I.A., Richardson R.T., Widgren E.E., O’Rand M.G. Cloning and sequencing of cdnas encoding the human sperm protein, sp17. Biochim. Biophys. Acta. 1996;1307:263–266. doi: 10.1016/0167-4781(96)00077-2. PubMed DOI
Gjerstorff M.F., Andersen M.H., Ditzel H.J. Oncogenic cancer/testis antigens: Prime candidates for immunotherapy. Oncotarget. 2015;6:15772–15787. doi: 10.18632/oncotarget.4694. PubMed DOI PMC
Wen Y., Richardson R.T., Widgren E.E., O’Rand M.G. Characterization of sp17: A ubiquitous three domain protein that binds heparin. Biochem. 2001;357:25–31. doi: 10.1042/bj3570025. PubMed DOI PMC
Zhang Q., Gao M., Zhang Y., Song Y., Cheng H., Zhou R. The germline-enriched Ppp1r36 promotes autophagy. Sci. Rep. 2016;6:24609. doi: 10.1038/srep24609. PubMed DOI PMC
Zhou H., Kuang J., Zhong L., Kuo W.L., Gray J.W., Sahin A., Brinkley B.R., Sen S. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 1998;20:189–193. doi: 10.1038/2496. PubMed DOI
Crane R., Gadea B., Littlepage L., Wu H., Ruderman J.V. Aurora A, meiosis and mitosis. Biol. Cell. 2004;96:215–229. doi: 10.1016/j.biolcel.2003.09.008. PubMed DOI
Roig I., Dowdle J.A., Toth A., de Rooij D.G., Jasin M., Keeney S. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 2010;6:e1001062. doi: 10.1371/journal.pgen.1001062. PubMed DOI PMC
Ma H.T., Poon R. TRIP13 Regulates Both the Activation and Inactivation of the Spindle-Assembly Checkpoint. Cell Rep. 2016;14:1086–1099. doi: 10.1016/j.celrep.2016.01.001. PubMed DOI
Vader G. Pch2(TRIP13): Controlling cell division through regulation of HORMA domains. Chromosoma. 2015;124:333–339. doi: 10.1007/s00412-015-0516-y. PubMed DOI
Archambault V., Pinson X. Free centrosomes: Where do they all come from? Fly. 2010;4:172–177. doi: 10.4161/fly.4.2.11674. PubMed DOI
Barr F.A., Silljé H.H., Nigg E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 2004;5:429–440. doi: 10.1038/nrm1401. PubMed DOI
Adlakha J., Karamichali I., Sangwallek J., Deiss S., Bär K., Coles M., Hartmann M.D., Lupas A.N., Hernandez Alvarez B. Characterization of mcu-binding proteins mcur1 and ccdc90b—representatives of a protein family conserved in prokaryotes and eukaryotic organelles. Structure. 2019;27:464–475.e466. doi: 10.1016/j.str.2018.11.004. PubMed DOI
