Unique peptidic agonists of a juvenile hormone receptor with species-specific effects on insect development and reproduction

. 2022 Nov 29 ; 119 (48) : e2215541119. [epub] 20221121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36409882

Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.

Zobrazit více v PubMed

Röller H., Dahm K. H., Sweeley C. C., Trost B. M., Die Struktur des Juvenilhormones. Angew. Chem. 4, 190–191 (1967).

Kotaki T., Shinada T., Kaihara K., Ohfune Y., Numata H., Structure determination of a new juvenile hormone from a heteropteran insect. Org. Lett. 11, 5234–5237 (2009). PubMed PMC

Goodman W. G., Cusson M., “The juvenile hormones” in Insect Endocrinology, Gilbert L. I., Ed. (Academic Press, 2012), pp. 310–365.

Wigglesworth V. B., The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microsc. Sci. 77, 191–222 (1934).

Jindra M., Palli S. R., Riddiford L. M., The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204 (2013). PubMed

Bellés X., Insect Metamorphosis: From Natural History to Regulation of Development and Evolution (Elsevier, 2020).

Riddiford L. M., Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 8, 679 (2020). PubMed PMC

Roy S., Saha T. T., Zou Z., Raikhel A. S., Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018). PubMed

Santos C. G., Humann F. C., Hartfelder K., Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 31, 43–48 (2019). PubMed

Jindra M., Tumova S., Milacek M., Bittova L., A decade with the juvenile hormone receptor. Adv. Insect Physiol. 60, 37–85 (2021b).

Ashok M., Turner C., Wilson T. G., Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U.S.A. 95, 2761–2766 (1998). PubMed PMC

Bai J., Uehara Y., Montell D. J., Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000). PubMed

Charles J.-P., et al. , Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108, 128–133 (2011). PubMed PMC

Jindra M., et al. , Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J. Biol. Chem. 297, 101387 (2021). PubMed PMC

Li M., Mead E. A., Zhu J., Heterodimer of two bHLH-PAS proteins mediates juvenile hormone induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 108, 638–643 (2011). PubMed PMC

Zhang Z., Xu J., Sheng Z., Sui Y., Palli S. R., Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J. Biol. Chem. 286, 8437–8447 (2011). PubMed PMC

Minakuchi C., Namiki T., Shinoda T., Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350 (2009). PubMed

Li M., et al. , A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 394, 47–58 (2014). PubMed PMC

Kayukawa T., et al. , Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109, 729–734 (2012). PubMed PMC

Slama K., Romanuk M., Sorm F., Insect Hormones and Bioanalogues (Springer Verlag, New York, 1974).

Pener M. P., Dhadialla T. S., An overview of insect growth disruptors; applied aspects. Adv. Insect Physiol. 43, 1–162 (2012).

Ramaseshadri P., Farkas R., Palli S. R., Recent progress in juvenile hormone analogs (JHA) research. Adv. Insect Physiol. 43, 353–436 (2012).

Riddiford L. M., Ashburner M., Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 82, 172–183 (1991). PubMed

Zhou X., Riddiford L. M., Broad specifies pupal development and mediates the “status quo” action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129, 2259–2269 (2002). PubMed

Williams C. M., Third-generation pesticides. Sci. Am. 217, 13–17 (1967). PubMed

Minakuchi C., Riddiford L. M., Insect juvenile hormone action as a potential target of pest management. J. Pestic. Sci. 31, 77–84 (2006).

Jindra M., Uhlirova M., Charles J.-P., Smykal V., Hill R. J., Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11, e1005394 (2015). PubMed PMC

Bittova L., et al. , Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294, 410–423 (2019). PubMed PMC

Jindra M., Bittova L., The juvenile hormone receptor as a target of juvenoid “insect growth regulators”. Arch. Insect Biochem. Physiol. 103, e21615 (2020). PubMed

Bowers W. S., Fales H. M., Thompson M. J., Uebel E. C., Juvenile hormone: Identification of an active compound from balsam fir. Science 154, 1020–1021 (1966). PubMed

Slama K., Williams C. M., Juvenile hormone activity for the bug Pyrrhocoris apterus. Proc. Natl. Acad. Sci. U.S.A. 54, 411–414 (1965). PubMed PMC

Suchy M., Slama K., Sorm F., Insect hormone activity of p-(1,5-dimethylhexyl)benzoic acid derivatives in Dysdercus species. Science 162, 582–583 (1968). PubMed

Zaoral M., Slama K., Peptides with juvenile hormone activity. Science 170, 92–93 (1970). PubMed

Babu T. H., Slama K., Systemic activity of a juvenile hormone analog. Science 175, 78–79 (1972). PubMed

Poduska K., Sorm F., Slama K., Natural and synthetic materials with insect hormone activity. 9. Structure-juvenile hormone activity relationships in simple peptides. Z. Naturforsch. B. 26, 719–722 (1971). PubMed

Konopova B., Smykal V., Jindra M., Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6, e28728 (2011). PubMed PMC

Smykal V., et al. , Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 45, 69–76 (2014). PubMed

Hejnikova M., et al. , Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 142, 103721 (2022). PubMed

Smykal V., et al. , Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390, 221–230 (2014). PubMed

Miyakawa H., Iguchi T., Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 37, 1082–1090 (2017). PubMed

Dixon A. S., et al. , NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016). PubMed

Hejnikova M., Paroulek M., Hodkova M., Decrease in methoprene tolerant and taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 93–94, 72–80 (2016). PubMed

Hlavacek J., Poduska K., Sorm F., Slama K., Peptidic analogues of the insect juvenile hormone containing urethan-type protecting groups. Collection Czechoslov. Chem. Commun. 41, 317–324 (1976).

Milacek M., et al. , Binding of de novo synthesized radiolabeled juvenile hormone (JH III) by JH receptors from the Cuban subterranean termite Prorhinotermes simplex and the German cockroach Blattella germanica. Insect Biochem. Mol. Biol. 139, 103671 (2021). PubMed

Yokoi T., et al. , Virtual screening identifies a novel piperazine-based insect juvenile hormone agonist. J. Pestic. Sci. 46, 68–74 (2021). PubMed PMC

Hlavacek J., Poduska K., Sorm F., Slama K., Amino acid derivatives with acyl and chloroacyl protecting groups – Synthesis and insect juvenile hormone activity. Collection Czechoslov. Chem. Commun. 41, 1257–1264 (1976).

Hlavacek J., Koudelka J., Järv J., Structure-activity relationships in peptide juvenoids. Bioorg. Chem. 21, 7–12 (1993).

Wu D., et al. , Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367–376 (2019). PubMed PMC

Hirano M., et al. , Molecular insights into structural and ligand binding features of methoprene-tolerant in daphnids. Chem. Res. Toxicol. 33, 2785–2792 (2020). PubMed

David C. C., Jacobs D. J., Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084, 193–226 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...