Unique peptidic agonists of a juvenile hormone receptor with species-specific effects on insect development and reproduction
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36409882
PubMed Central
PMC9889882
DOI
10.1073/pnas.2215541119
Knihovny.cz E-resources
- Keywords
- hormone receptor, juvenile hormone, ligand-binding pocket, metamorphosis, oogenesis,
- MeSH
- Insecta metabolism MeSH
- Juvenile Hormones * metabolism MeSH
- Larva MeSH
- Ligands MeSH
- Methoprene * metabolism MeSH
- Peptides pharmacology MeSH
- Reproduction MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Juvenile Hormones * MeSH
- Ligands MeSH
- Methoprene * MeSH
- Peptides MeSH
Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.
CZ OPENSCREEN Institute of Molecular Genetics Czech Academy of Sciences Prague 14220 Czech Republic
Faculty of Science University of South Bohemia Ceske Budejovice 37005 Czech Republic
See more in PubMed
Röller H., Dahm K. H., Sweeley C. C., Trost B. M., Die Struktur des Juvenilhormones. Angew. Chem. 4, 190–191 (1967).
Kotaki T., Shinada T., Kaihara K., Ohfune Y., Numata H., Structure determination of a new juvenile hormone from a heteropteran insect. Org. Lett. 11, 5234–5237 (2009). PubMed PMC
Goodman W. G., Cusson M., “The juvenile hormones” in Insect Endocrinology, Gilbert L. I., Ed. (Academic Press, 2012), pp. 310–365.
Wigglesworth V. B., The physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and ‘metamorphosis’. Q. J. Microsc. Sci. 77, 191–222 (1934).
Jindra M., Palli S. R., Riddiford L. M., The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204 (2013). PubMed
Bellés X., Insect Metamorphosis: From Natural History to Regulation of Development and Evolution (Elsevier, 2020).
Riddiford L. M., Rhodnius, golden oil, and Met: A history of juvenile hormone research. Front. Cell Dev. Biol. 8, 679 (2020). PubMed PMC
Roy S., Saha T. T., Zou Z., Raikhel A. S., Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63, 489–511 (2018). PubMed
Santos C. G., Humann F. C., Hartfelder K., Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 31, 43–48 (2019). PubMed
Jindra M., Tumova S., Milacek M., Bittova L., A decade with the juvenile hormone receptor. Adv. Insect Physiol. 60, 37–85 (2021b).
Ashok M., Turner C., Wilson T. G., Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U.S.A. 95, 2761–2766 (1998). PubMed PMC
Bai J., Uehara Y., Montell D. J., Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047–1058 (2000). PubMed
Charles J.-P., et al. , Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108, 128–133 (2011). PubMed PMC
Jindra M., et al. , Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J. Biol. Chem. 297, 101387 (2021). PubMed PMC
Li M., Mead E. A., Zhu J., Heterodimer of two bHLH-PAS proteins mediates juvenile hormone induced gene expression. Proc. Natl. Acad. Sci. U.S.A. 108, 638–643 (2011). PubMed PMC
Zhang Z., Xu J., Sheng Z., Sui Y., Palli S. R., Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J. Biol. Chem. 286, 8437–8447 (2011). PubMed PMC
Minakuchi C., Namiki T., Shinoda T., Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325, 341–350 (2009). PubMed
Li M., et al. , A steroid receptor coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in regulating juvenile hormone response genes. Mol. Cell. Endocrinol. 394, 47–58 (2014). PubMed PMC
Kayukawa T., et al. , Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109, 729–734 (2012). PubMed PMC
Slama K., Romanuk M., Sorm F., Insect Hormones and Bioanalogues (Springer Verlag, New York, 1974).
Pener M. P., Dhadialla T. S., An overview of insect growth disruptors; applied aspects. Adv. Insect Physiol. 43, 1–162 (2012).
Ramaseshadri P., Farkas R., Palli S. R., Recent progress in juvenile hormone analogs (JHA) research. Adv. Insect Physiol. 43, 353–436 (2012).
Riddiford L. M., Ashburner M., Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 82, 172–183 (1991). PubMed
Zhou X., Riddiford L. M., Broad specifies pupal development and mediates the “status quo” action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129, 2259–2269 (2002). PubMed
Williams C. M., Third-generation pesticides. Sci. Am. 217, 13–17 (1967). PubMed
Minakuchi C., Riddiford L. M., Insect juvenile hormone action as a potential target of pest management. J. Pestic. Sci. 31, 77–84 (2006).
Jindra M., Uhlirova M., Charles J.-P., Smykal V., Hill R. J., Genetic evidence for function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11, e1005394 (2015). PubMed PMC
Bittova L., et al. , Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294, 410–423 (2019). PubMed PMC
Jindra M., Bittova L., The juvenile hormone receptor as a target of juvenoid “insect growth regulators”. Arch. Insect Biochem. Physiol. 103, e21615 (2020). PubMed
Bowers W. S., Fales H. M., Thompson M. J., Uebel E. C., Juvenile hormone: Identification of an active compound from balsam fir. Science 154, 1020–1021 (1966). PubMed
Slama K., Williams C. M., Juvenile hormone activity for the bug Pyrrhocoris apterus. Proc. Natl. Acad. Sci. U.S.A. 54, 411–414 (1965). PubMed PMC
Suchy M., Slama K., Sorm F., Insect hormone activity of p-(1,5-dimethylhexyl)benzoic acid derivatives in Dysdercus species. Science 162, 582–583 (1968). PubMed
Zaoral M., Slama K., Peptides with juvenile hormone activity. Science 170, 92–93 (1970). PubMed
Babu T. H., Slama K., Systemic activity of a juvenile hormone analog. Science 175, 78–79 (1972). PubMed
Poduska K., Sorm F., Slama K., Natural and synthetic materials with insect hormone activity. 9. Structure-juvenile hormone activity relationships in simple peptides. Z. Naturforsch. B. 26, 719–722 (1971). PubMed
Konopova B., Smykal V., Jindra M., Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6, e28728 (2011). PubMed PMC
Smykal V., et al. , Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 45, 69–76 (2014). PubMed
Hejnikova M., et al. , Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 142, 103721 (2022). PubMed
Smykal V., et al. , Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev. Biol. 390, 221–230 (2014). PubMed
Miyakawa H., Iguchi T., Comparative luciferase assay for establishing reliable in vitro screening system of juvenile hormone agonists. J. Appl. Toxicol. 37, 1082–1090 (2017). PubMed
Dixon A. S., et al. , NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016). PubMed
Hejnikova M., Paroulek M., Hodkova M., Decrease in methoprene tolerant and taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. J. Insect Physiol. 93–94, 72–80 (2016). PubMed
Hlavacek J., Poduska K., Sorm F., Slama K., Peptidic analogues of the insect juvenile hormone containing urethan-type protecting groups. Collection Czechoslov. Chem. Commun. 41, 317–324 (1976).
Milacek M., et al. , Binding of de novo synthesized radiolabeled juvenile hormone (JH III) by JH receptors from the Cuban subterranean termite Prorhinotermes simplex and the German cockroach Blattella germanica. Insect Biochem. Mol. Biol. 139, 103671 (2021). PubMed
Yokoi T., et al. , Virtual screening identifies a novel piperazine-based insect juvenile hormone agonist. J. Pestic. Sci. 46, 68–74 (2021). PubMed PMC
Hlavacek J., Poduska K., Sorm F., Slama K., Amino acid derivatives with acyl and chloroacyl protecting groups – Synthesis and insect juvenile hormone activity. Collection Czechoslov. Chem. Commun. 41, 1257–1264 (1976).
Hlavacek J., Koudelka J., Järv J., Structure-activity relationships in peptide juvenoids. Bioorg. Chem. 21, 7–12 (1993).
Wu D., et al. , Bidirectional modulation of HIF-2 activity through chemical ligands. Nat. Chem. Biol. 15, 367–376 (2019). PubMed PMC
Hirano M., et al. , Molecular insights into structural and ligand binding features of methoprene-tolerant in daphnids. Chem. Res. Toxicol. 33, 2785–2792 (2020). PubMed
David C. C., Jacobs D. J., Principal component analysis: A method for determining the essential dynamics of proteins. Methods Mol. Biol. 1084, 193–226 (2014). PubMed PMC