• This record comes from PubMed

Various advanced wastewater treatment methods to remove microplastics and prevent transmission of SARS-CoV-2 to airborne microplastics

. 2023 ; 20 (2) : 2229-2246. [epub] 20221119

Status PubMed-not-MEDLINE Language English Country Iran Media print-electronic

Document type Journal Article, Review

Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.

See more in PubMed

Abbasi,, et al. Extensive use of face masks during COVID-19 pandemic:(micro-) plastic pollution and potential health concerns in the Arabian Peninsula. Saudi J Biol Sci. 2020;27(12):3181–3186. doi: 10.1016/j.sjbs.2020.09.054. PubMed DOI PMC

Aboubakr HA, et al. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: a review. Transbound Emerg Dis. 2021;68(2):296–312. doi: 10.1111/tbed.13707. PubMed DOI PMC

Adhikari K, Fedler CB. Pond-In-Pond: an alternative system for wastewater treatment for reuse. J Environ Chem Eng. 2020;8(2):103523. doi: 10.1016/j.jece.2019.103523. DOI

Amato-Lourenço LF, et al. An emerging class of air pollutants: potential effects of microplastics to respiratory human health? Sci Total Environ. 2020;749:141676. doi: 10.1016/j.scitotenv.2020.141676. PubMed DOI PMC

Arzate S, Pfister S, Oberschelp C, Sánchez-Pérez JA. Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant. Sci Total Environ. 2019;694:133572. doi: 10.1016/j.scitotenv.2019.07.378. PubMed DOI

Bakir A, et al. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut. 2014;185:16–23. doi: 10.1016/j.envpol.2013.10.007. PubMed DOI

Beiras R, et al. Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. J Hazard Mater. 2018;360:452–460. doi: 10.1016/j.jhazmat.2018.07.101. PubMed DOI

Beyan SM, Prabhu SV, Sissay TT, Getahun AA. Sugarcane bagasse based activated carbon preparation and its adsorption efficacy on removal of BOD and COD from textile effluents: RSM based modeling, optimization and kinetic aspects. Bioresour Technol Rep. 2021;14:100664. doi: 10.1016/j.biteb.2021.100664. DOI

Bilgin M, et al. Microplastic removal by aerated grit chambers versus settling tanks of a municipal wastewater treatment plant. J Water Process Eng. 2020;38:101604. doi: 10.1016/j.jwpe.2020.101604. DOI

Browne MA, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol. 2011;45(21):9175–9179. doi: 10.1021/es201811s. PubMed DOI

Bullard JE, et al. Preferential transport of microplastics by wind. Atmos Environ. 2021;245:118038. doi: 10.1016/j.atmosenv.2020.118038. DOI

Campanale M, et al. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020;17(4):1212. doi: 10.3390/ijerph17041212. PubMed DOI PMC

Carr SA, et al. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016;91:174–182. doi: 10.1016/j.watres.2016.01.002. PubMed DOI

Chen G, et al. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ. 2020;703:135504. doi: 10.1016/j.scitotenv.2019.135504. PubMed DOI

Chen J, Wei J, Ma C, Yang Z, Li Z, Yang X, Wang M, Zhang H, Hu J, Zhang C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? Environ Int. 2020;137:105417. doi: 10.1016/j.envint.2019.105417. PubMed DOI

Cheung PK, Fok L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Res. 2017;122:53–61. doi: 10.1016/j.watres.2017.05.053. PubMed DOI

Chuang Y-H, Szczuka A, Shabani F, Munoz J, Aflaki R, Hammond SD, Mitch WA. Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse. Water Res. 2019;152:215–225. doi: 10.1016/j.watres.2018.12.062. PubMed DOI

Cinperi NC, Ozturk E, Yigit NO, Kitis M. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J Clean Prod. 2019;223:837–848. doi: 10.1016/j.jclepro.2019.03.166. DOI

Cooper DA, Corcoran PL. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar Pollut Bull. 2010;60(5):650–654. doi: 10.1016/j.marpolbul.2009.12.026. PubMed DOI

Cosgrove WJ, Loucks DP. Water management: Current and future challenges and research directions. Water Resour Res. 2015;51(6):4823–4839. doi: 10.1002/2014WR016869. DOI

De-la-Torre GE, et al. Investigating the current status of COVID-19 related plastics and their potential impact on human health. Curr Opin Toxicol. 2021;27:47–53. doi: 10.1016/j.cotox.2021.08.002. PubMed DOI PMC

Dialynas E, Diamadopoulos E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination. 2009;238(1–3):302–311. doi: 10.1016/j.desal.2008.01.046. DOI

Diamantis V, Eftaxias A, Bundervoet B, Verstraete W. Performance of the biosorptive activated sludge (BAS) as pre-treatment to UF for decentralized wastewater reuse. Biores Technol. 2014;156:314–321. doi: 10.1016/j.biortech.2014.01.061. PubMed DOI

Dong Y, et al. Uptake of microplastics by carrots in presence of As (III): combined toxic effects. J Hazard Mater. 2021;411:125055. doi: 10.1016/j.jhazmat.2021.125055. PubMed DOI

Dris R, et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem. 2015;12(5):592–599. doi: 10.1071/EN14167. DOI

Dubaish F, Liebezeit G. Suspended microplastics and black carbon particles in the Jade system, southern North Sea. Water Air Soil Pollut. 2013;224(2):1–8. doi: 10.1007/s11270-012-1352-9. DOI

Duis K, Coors A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur. 2016;28(1):1–25. doi: 10.1186/s12302-015-0069-y. PubMed DOI PMC

Dümichen E, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–584. doi: 10.1016/j.chemosphere.2017.02.010. PubMed DOI

Egbuikwem PN, Mierzwa JC, Saroj DP. Evaluation of aerobic biological process with post-ozonation for treatment of mixed industrial and domestic wastewater for potential reuse in agriculture. Biores Technol. 2020;318:124200. doi: 10.1016/j.biortech.2020.124200. PubMed DOI

Eichhorn SJ, et al. Current international research into cellulosic fibres and composites. J Mater Sci. 2001;36(9):2107–2131. doi: 10.1023/A:1017512029696. DOI

Elert AM, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231:1256–1264. doi: 10.1016/j.envpol.2017.08.074. PubMed DOI

El-Shahawi MS, et al. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta. 2010;80(5):1587–1597. doi: 10.1016/j.talanta.2009.09.055. PubMed DOI

Enfrin M, et al. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano-and microplastics. J Membr Sci. 2020;601:117890. doi: 10.1016/j.memsci.2020.117890. DOI

Eslami H, Jalili M. The role of environmental factors to transmission of SARS-CoV-2 (COVID-19) AMB Express. 2020;10(1):1–8. doi: 10.1186/s13568-020-01028-0. PubMed DOI PMC

Estahbanati S, Fahrenfeld NL. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere. 2016;162:277–284. doi: 10.1016/j.chemosphere.2016.07.083. PubMed DOI

Fackelmann G, Sommer S. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Mar Pollution Bull. 2019;143:193–203. doi: 10.1016/j.marpolbul.2019.04.030. PubMed DOI

Fries E, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15(10):1949–1956. doi: 10.1039/c3em00214d. PubMed DOI

Fu W, et al. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci Total Environ. 2020;721:137561. doi: 10.1016/j.scitotenv.2020.137561. PubMed DOI

Gies EA, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull. 2018;133:553–561. doi: 10.1016/j.marpolbul.2018.06.006. PubMed DOI

Godoy V, et al. Physical-chemical characterization of microplastics present in some exfoliating products from Spain. Mar Pollut Bull. 2019;139:91–99. doi: 10.1016/j.marpolbul.2018.12.026. PubMed DOI

Golgoli M, et al. Microplastics fouling and interaction with polymeric membranes: a review. Chemosphere. 2021;283:131185. doi: 10.1016/j.chemosphere.2021.131185. PubMed DOI

Gozálvez-Zafrilla J, Sanz-Escribano D, Lora-García J, Hidalgo ML. Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination. 2008;222(1–3):272–279. doi: 10.1016/j.desal.2007.01.173. DOI

Hami ML, Al-Hashimi M, Al-Doori M. Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater. Desalination. 2007;216(1–3):116–122. doi: 10.1016/j.desal.2007.01.003. DOI

Hidalgo-Ruz V, et al. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46(6):3060–3075. doi: 10.1021/es2031505. PubMed DOI

Horton AA, Dixon SJ. Microplastics: an introduction to environmental transport processes. Wiley Interdiscip Rev Water. 2018;5(2):e1268. doi: 10.1002/wat2.1268. DOI

Hosseinzadeh M, Nabi Bidhendi G, Torabian A, Mehrdadi N. A study on membrane bioreactor for water reuse from the effluent of industrial town wastewater treatment plant. Iran J Toxicol. 2014;8(24):983–990.

Huang J, Xu C-C, Ridoutt BG, Wang X-C, Ren P-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J Clean Prod. 2017;159:171–179. doi: 10.1016/j.jclepro.2017.05.008. DOI

Im S-J, et al. Effects of co-existence of organic matter and microplastics on the rejection of PFCs by forward osmosis membrane. Environ Res. 2021;194:110597. doi: 10.1016/j.envres.2020.110597. PubMed DOI

Ivleva NP. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives. Chem Rev. 2021;121(19):11886–11936. doi: 10.1021/acs.chemrev.1c00178. PubMed DOI

Iyare PU, et al. Microplastics removal in wastewater treatment plants: a critical review. Environ Sci Water Res Technol. 2020;6(10):2664–2675. doi: 10.1039/D0EW00397B. DOI

Jacob M, Guigui C, Cabassud C, Darras H, Lavison G, Moulin L. Performances of RO and NF processes for wastewater reuse: tertiary treatment after a conventional activated sludge or a membrane bioreactor. Desalination. 2010;250(2):833–839. doi: 10.1016/j.desal.2008.11.052. DOI

James CP, Germain E, Judd S. Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse. Sep Purif Technol. 2014;127:77–83. doi: 10.1016/j.seppur.2014.02.016. DOI

Joo SH, et al. Microplastics with adsorbed contaminants: mechanisms and treatment. Environ Chall. 2021;3:100042. doi: 10.1016/j.envc.2021.100042. PubMed DOI PMC

Jury WA, Vaux HJ., Jr The emerging global water crisis: managing scarcity and conflict between water users. Adv Agron. 2007;95:1–76. doi: 10.1016/S0065-2113(07)95001-4. DOI

Kanematsu M, Young TM, Fukushi K, Green PG, Darby JL. Individual and combined effects of water quality and empty bed contact time on As (V) removal by a fixed-bed iron oxide adsorber: Implication for silicate precoating. Water Res. 2012;46(16):5061–5070. doi: 10.1016/j.watres.2012.06.047. PubMed DOI

Kasloff SB, et al. Stability of SARS-CoV-2 on critical personal protective equipment. Sci Rep. 2021;11(1):1–7. doi: 10.1038/s41598-020-80098-3. PubMed DOI PMC

Kattel G, Reeves J, Western A, Zhang W, Jing W, McGowan S, Cuo L, Scales P, Dowling K, He Q. Healthy waterways and ecologically sustainable cities in Beijing-Tianjin-Hebei urban agglomeration (northern China): Challenges and future directions. Wiley Interdiscip Rev Water. 2021;8(2):e1500. doi: 10.1002/wat2.1500. DOI

Kelkar VP, et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 2019;163:114871. doi: 10.1016/j.watres.2019.114871. PubMed DOI

Khalid N, et al. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ Pollut. 2020;267:115653. doi: 10.1016/j.envpol.2020.115653. PubMed DOI

Kitajima M, et al. SARS-CoV-2 in wastewater: state of the knowledge and research needs. Sci Total Environ. 2020;739:139076. doi: 10.1016/j.scitotenv.2020.139076. PubMed DOI PMC

Kutralam-Muniasamy G, et al. Branded milks—are they immune from microplastics contamination? Sci Total Environ. 2020;714:136823. doi: 10.1016/j.scitotenv.2020.136823. PubMed DOI

Lares M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018;133:236–246. doi: 10.1016/j.watres.2018.01.049. PubMed DOI

Lares M, et al. Intercomparison study on commonly used methods to determine microplastics in wastewater and sludge samples. Environ Sci Pollut Res. 2019;26(12):12109–12122. doi: 10.1007/s11356-019-04584-6. PubMed DOI PMC

Leslie HA, et al. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int. 2017;101:133–142. doi: 10.1016/j.envint.2017.01.018. PubMed DOI

Li J, et al. Ultrafiltration membrane fouling by microplastics with raw water: behaviors and alleviation methods. Chem Eng J. 2021;410:128174. doi: 10.1016/j.cej.2020.128174. DOI

Liu K, et al. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ Int. 2019;132:105127. doi: 10.1016/j.envint.2019.105127. PubMed DOI

Lo Giudice The severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) in dentistry. Management of biological risk in dental practice. Int J Environ Res Public Health. 2020;17(9):3067. doi: 10.3390/ijerph17093067. PubMed DOI PMC

Löder LMJ, Gerdts G. Methodology used for the detection and identification of microplastics—a critical appraisal. Mar Anthropog Litter. 2015;35:201–227. doi: 10.1007/978-3-319-16510-3_8. DOI

Long Z, et al. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019;155:255–265. doi: 10.1016/j.watres.2019.02.028. PubMed DOI

Lv X, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J Clean Prod. 2019;225:579–586. doi: 10.1016/j.jclepro.2019.03.321. DOI

Ma B, et al. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J. 2019;359:159–167. doi: 10.1016/j.cej.2018.11.155. DOI

Magnusson K, Norén F (2014) Screening of microplastic particles in and down-stream a wastewater treatment plant

Mao R, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. J Hazard Mater. 2020;393:122515. doi: 10.1016/j.jhazmat.2020.122515. PubMed DOI

Marquès M, Domingo JL. Contamination of inert surfaces by SARS-CoV-2: persistence, stability and infectivity. A review. Environ Res. 2021;193:110559. doi: 10.1016/j.envres.2020.110559. PubMed DOI PMC

Mason SA, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ Pollut. 2016;218:1045–1054. doi: 10.1016/j.envpol.2016.08.056. PubMed DOI

Meneses M, Pasqualino JC, Castells F. Environmental assessment of urban wastewater reuse: treatment alternatives and applications. Chemosphere. 2010;81(2):266–272. doi: 10.1016/j.chemosphere.2010.05.053. PubMed DOI

Michielssen MR, et al. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ Sci Water Res Technol. 2016;2(6):1064–1073. doi: 10.1039/C6EW00207B. DOI

Mintenig SM, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–372. doi: 10.1016/j.watres.2016.11.015. PubMed DOI

Moe CL, Rheingans RD. Global challenges in water, sanitation and health. J Water Health. 2006;4(S1):41–57. doi: 10.2166/wh.2006.0043. PubMed DOI

Müller A, et al. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ Pollut. 2018;240:639–646. doi: 10.1016/j.envpol.2018.04.127. PubMed DOI

Murphy F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol. 2016;50(11):5800–5808. doi: 10.1021/acs.est.5b05416. PubMed DOI

Murrell KA, et al. The combination of spectroscopy, microscopy, and profilometry methods for the physical and chemical characterization of environmentally relevant microplastics. Anal Methods. 2018;10(40):4909–4916. doi: 10.1039/C8AY01826J. DOI

Naik RA, et al. Microplastic particle versus fiber generation during photo-transformation in simulated seawater. Sci Total Environ. 2020;736:139690. doi: 10.1016/j.scitotenv.2020.139690. PubMed DOI

Ngo PL, et al. Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ Pollut. 2019;255:113326. doi: 10.1016/j.envpol.2019.113326. PubMed DOI

Nguyen T-T-D, Nguyen T-T, An Binh Q, Bui X-T, Ngo HH, Vo HNP, Andrew Lin K-Y, Vo T-D-H, Guo W, Lin C, Breider F. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios. Biores Technol. 2020;314:123754. doi: 10.1016/j.biortech.2020.123754. PubMed DOI

Nuelle M-T, et al. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–169. doi: 10.1016/j.envpol.2013.07.027. PubMed DOI

O'Brien S, et al. Airborne emissions of microplastic fibres from domestic laundry dryers. Sci Total Environ. 2020;747:141175. doi: 10.1016/j.scitotenv.2020.141175. PubMed DOI

Ong SWX, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610–1612. doi: 10.1001/jama.2020.3227. PubMed DOI PMC

Padervand M, et al. Removal of microplastics from the environment. A review. Environ Chem Lett. 2020;18(3):807–828. doi: 10.1007/s10311-020-00983-1. DOI

Park C, Hong S-W, Chung TH, Choi Y-S. Performance evaluation of pretreatment processes in integrated membrane system for wastewater reuse. Desalination. 2010;250(2):673–676. doi: 10.1016/j.desal.2009.03.023. DOI

Pervez R, et al. Stereomicroscopic and Fourier transform infrared (FTIR) spectroscopic characterization of the abundance, distribution and composition of microplastics in the beaches of Qingdao, China. Anal Lett. 2020;53(18):2960–2977. doi: 10.1080/00032719.2020.1763379. DOI

Petroody SSA, et al. Transport and accumulation of microplastics through wastewater treatment sludge processes. Chemosphere. 2021;278:130471. doi: 10.1016/j.chemosphere.2021.130471. PubMed DOI

Pirsaheb M, et al. Review of microplastic occurrence and toxicological effects in marine environment: experimental evidence of inflammation. Process Saf Environ Prot. 2020;142:1–14. doi: 10.1016/j.psep.2020.05.050. DOI

Poerio T, et al. Membrane processes for microplastic removal. Molecules. 2019;24(22):4148. doi: 10.3390/molecules24224148. PubMed DOI PMC

Prata JC. Airborne microplastics: consequences to human health? Environ Pollut. 2018;234:115–126. doi: 10.1016/j.envpol.2017.11.043. PubMed DOI

Prather KA, et al. Airborne transmission of SARS-CoV-2. Science. 2020;370(6514):303–304. PubMed

Purnell S, Ebdon J, Buck A, Tupper M, Taylor H. Removal of phages and viral pathogens in a full-scale MBR: implications for wastewater reuse and potable water. Water Res. 2016;100:20–27. doi: 10.1016/j.watres.2016.05.013. PubMed DOI

Revell LE, et al. Direct radiative effects of airborne microplastics. Nature. 2021;598(7881):462–467. doi: 10.1038/s41586-021-03864-x. PubMed DOI

Rocha-Santos T, Duarte AC. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Analyt Chem. 2015;65:47–53. doi: 10.1016/j.trac.2014.10.011. DOI

Ruan Y, et al. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants. Sci Total Environ. 2019;674:171–178. doi: 10.1016/j.scitotenv.2019.04.007. PubMed DOI

Schwabl P, et al. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med. 2019;171(7):453–457. doi: 10.7326/M19-0618. PubMed DOI

Silva ALP, et al. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci Total Environ. 2020;742:140565. doi: 10.1016/j.scitotenv.2020.140565. PubMed DOI PMC

Silva ALP, et al. An urgent call to think globally and act locally on landfill disposable plastics under and after covid-19 pandemic: pollution prevention and technological (Bio) remediation solutions. Chem Eng J. 2021;426:131201. doi: 10.1016/j.cej.2021.131201. PubMed DOI PMC

Skuse C, et al. Can emerging membrane-based desalination technologies replace reverse osmosis? Desalination. 2021;500:114844. doi: 10.1016/j.desal.2020.114844. DOI

Sobhani Z, et al. Microplastics generated when opening plastic packaging. Sci Rep. 2020;10(1):1–7. doi: 10.1038/s41598-020-61146-4. PubMed DOI PMC

Stanton T, et al. Freshwater microplastic concentrations vary through both space and time. Environ Pollut. 2020;263:114481. doi: 10.1016/j.envpol.2020.114481. PubMed DOI

Šteflová M, Koop S, Elelman R, Vinyoles J, Van Leeuwen K. Governing non-potable water-reuse to alleviate water stress: the case of Sabadell, Spain. Water. 2018;10(6):739. doi: 10.3390/w10060739. DOI

Sun J, et al. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 2019;152:21–37. doi: 10.1016/j.watres.2018.12.050. PubMed DOI

Tagg AS, et al. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87(12):6032–6040. doi: 10.1021/acs.analchem.5b00495. PubMed DOI

Talvitie J, et al. Solutions to microplastic pollution–removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017;123:401–407. doi: 10.1016/j.watres.2017.07.005. PubMed DOI

Tam L, Tang T, Lau GN, Sharma K, Chen G. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination. 2007;202(1–3):106–113. doi: 10.1016/j.desal.2005.12.045. DOI

Tchobanoglous G, Kenny J, Leverenz H. Rationale for constant flow to optimize wastewater treatment and advanced water treatment performance for potable reuse applications. Water Environ Res. 2021;93(8):1231–1242. doi: 10.1002/wer.1531. PubMed DOI PMC

Vairavamoorthy K, Gorantiwar SD, Pathirana A. Managing urban water supplies in developing countries–Climate change and water scarcity scenarios. Phys Chem Earth Parts a/b/c. 2008;33(5):330–339. doi: 10.1016/j.pce.2008.02.008. DOI

Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. doi: 10.1016/j.envpol.2014.06.010. PubMed DOI

Viveknand AC, et al. Microplastics in aquatic environment: challenges and perspectives. Chemosphere. 2021;282:131151. doi: 10.1016/j.chemosphere.2021.131151. PubMed DOI

Wang W, et al. Microplastics in surface waters of dongting lake and hong lake, China. Sci Total Environ. 2018;633:539–545. doi: 10.1016/j.scitotenv.2018.03.211. PubMed DOI

Wang T, et al. Coastal zone use influences the spatial distribution of microplastics in Hangzhou Bay, China. Environ Pollut. 2020;266:115137. doi: 10.1016/j.envpol.2020.115137. PubMed DOI

Wang Z, et al. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP) Sci Total Environ. 2020;700:134520. doi: 10.1016/j.scitotenv.2019.134520. PubMed DOI

Wang Z, et al. Household transmission of SARS-CoV-2. J Infect. 2020;81(1):179–182. doi: 10.1016/j.jinf.2020.03.040. PubMed DOI PMC

Wang LC, et al. The sorption of persistent organic pollutants in microplastics from the coastal environment. J Hazard Mater. 2021;420:126658. doi: 10.1016/j.jhazmat.2021.126658. PubMed DOI

Wang Z, et al. Removal and fouling influence of microplastics in fertilizer driven forward osmosis for wastewater reclamation. Membranes. 2021;11(11):845. doi: 10.3390/membranes11110845. PubMed DOI PMC

Wang C, et al. Environmental source, fate, and toxicity of microplastics. J Hazard Mater. 2021;407:124357. doi: 10.1016/j.jhazmat.2020.124357. PubMed DOI

Wu M, et al. Fate and effects of microplastics in wastewater treatment processes. Sci Total Environ. 2021;757:143902. doi: 10.1016/j.scitotenv.2020.143902. PubMed DOI

Xu EGX, et al. Primary and secondary plastic particles exhibit limited acute toxicity but chronic effects on Daphnia magna. Environ Sci Technol. 2020;54(11):6859–6868. doi: 10.1021/acs.est.0c00245. PubMed DOI

Xu Y, Lu Z, Sun W, Zhang X. Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics. Front Environ Sci Eng. 2021;15(6):1–13. doi: 10.1007/s11783-021-1419-1. DOI

Yang L, et al. Removal of microplastics in municipal sewage from China's largest water reclamation plant. Water Res. 2019;155:175–181. doi: 10.1016/j.watres.2019.02.046. PubMed DOI

Zahmatkesh S, Pirouzi A. Effects of the microalgae, sludge and activated carbon on the wastewater treatment with low organics (weak wastewater) Int J Environ Sci Technol. 2020;17(5):2681–2688. doi: 10.1007/s13762-020-02661-9. DOI

Zahmatkesh S, Sillanpää M. Review of method and a new tool for decline and inactive SARS-CoV-2 in wastewater treatment. Clean Chem Eng. 2022;3:100037. doi: 10.1016/j.clce.2022.100037. DOI

Zahmatkesh S, Amesho KT, Sillanpää M. A critical review on diverse technologies for advanced wastewater treatment during SARS-CoV-2 pandemic: what do we know? J Hazard Mater Adv. 2022;7:100121. doi: 10.1016/j.hazadv.2022.100121. PubMed DOI PMC

Zahmatkesh S, Amesho KT, Sillanpaa M, Wang C. Integration of renewable energy in wastewater treatment during COVID-19 pandemic: challenges, opportunities, and progressive research trends. Clean Chem Eng. 2022;3:100036. doi: 10.1016/j.clce.2022.100036. DOI

Zahmatkesh S, Far SS, Sillanpää M. RSM-D-optimal modeling approach for COD removal from low strength wastewater by microalgae, sludge, and activated carbon-case study mashhad. J Hazard Mater Adv. 2022;7:100110. doi: 10.1016/j.hazadv.2022.100110. DOI

Zahmatkesh S, Sillanpaa M, Rezakhani Y, Wang C. Review of concerned SARS-CoV-2 variants like alpha (B. 1.1. 7), Beta (B. 1.351), Gamma (P. 1), Delta (B. 1.617. 2), and Omicron (B. 1.1. 529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. J Hazard Mater Adv. 2022;7:100140. doi: 10.1016/j.hazadv.2022.100140. PubMed DOI PMC

Zahmatkesh S, Klemeš JJ, Bokhari A, Wang C, Sillanpaa M, Hasan M, Amesho KT. Critical role of hyssop plant in the possible transmission of SARS-CoV-2 in contaminated human Feces and its implications for the prevention of the virus spread in sewage. Chemosphere. 2022;305:135247. doi: 10.1016/j.chemosphere.2022.135247. PubMed DOI PMC

Zahmatkesh S, Hajiaghaei-Keshteli M, Bokhari A, Sundaramurthy S, Panneerselvam B, Rezakhani Y (2022f) Wastewater treatment with nanomaterials for the future: a state-of-the-art review. Environ Res 216:114652 PubMed

Zahmatkesh S, Rezakhani Y, Chofreh AG, Karimian M, Wang C, Ghodrati I, Hasan M, Sillanpaa M, Panchal H, Khan R (2022g) SARS-CoV-2 removal by mix matrix membrane: A novel application of artificial neural network based simulation in MATLAB for evaluating wastewater reuse risks. Chemosphere 310:136837 PubMed PMC

Zahmatkesh S, Rezakhani Y, Arabi A, Hasan M, Ahmad Z, Wang C, Sillanpää M, Al-Bahrani M, Ghodrati I (2022h) An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: a novel application of artificial neural network based simulation in MATLAB. Chemosphere 308:136304 PubMed

Zahmatkesh S, Bokhari A, Karimian M, Zahra MMA, Sillanpää M, Panchal H, Alrubaie AJ, Rezakhani Y (2022i) A comprehensive review of various approaches for treatment of tertiary wastewater with emerging contaminants: what do we know? Environ Monit Assess 194(12):1–15 PubMed PMC

Zahmatkesh S, Klemeš JJ, Bokhari A, Rezakhani Y, Wang C, Sillanpaa M, Amesho KT, Ahmed WS (2022j) Reducing chemical oxygen demand from low strength wastewater: a novel application of fuzzy logic based simulation in MATLAB. Comput Chem Eng 166:107944

Zebger I, et al. Singlet oxygen images of heterogeneous samples: Examining the effect of singlet oxygen diffusion across the interfacial boundary in phase-separated liquids and polymers. Langmuir. 2003;19(21):8927–8933. doi: 10.1021/la0301487. DOI

Zhang Z, Chen Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. Chem Eng J. 2020;382:122955. doi: 10.1016/j.cej.2019.122955. DOI

Zhang Y, et al. A critical review of control and removal strategies for microplastics from aquatic environments. J Environ Chem Eng. 2021;9(4):105463. doi: 10.1016/j.jece.2021.105463. DOI

Zhang Y, et al. Is froth flotation a potential scheme for microplastics removal? Analysis on flotation kinetics and surface characteristics. Sci Total Environ. 2021;792:148345. doi: 10.1016/j.scitotenv.2021.148345. PubMed DOI

Zhang Z, et al. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system. Waste Manag. 2021;120:240–247. doi: 10.1016/j.wasman.2020.11.025. PubMed DOI

Ziajahromi S, et al. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res. 2017;112:93–99. doi: 10.1016/j.watres.2017.01.042. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...