Cellulose-Based Composites as Scaffolds for Tissue Engineering: Recent Advances
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
36557963
PubMed Central
PMC9784432
DOI
10.3390/molecules27248830
PII: molecules27248830
Knihovny.cz E-resources
- Keywords
- biocompatibility, cellulose, cellulose-based scaffolds, degradability, scaffolds, tissue engineering,
- MeSH
- Biocompatible Materials pharmacology MeSH
- Cellulose MeSH
- Porosity MeSH
- Regenerative Medicine MeSH
- Tissue Engineering * MeSH
- Tissue Scaffolds * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biocompatible Materials MeSH
- Cellulose MeSH
Today, numerous studies have focused on the design of novel scaffolds for tissue engineering and regenerative medicine applications; however, several challenges still exist in terms of biocompatibility/cytocompatibility, degradability, cell attachment/proliferation, nutrient diffusion, large-scale production, and clinical translation studies. Greener and safer technologies can help to produce scaffolds with the benefits of cost-effectiveness, high biocompatibility, and biorenewability/sustainability, reducing their toxicity and possible side effects. However, some challenges persist regarding their degradability, purity, having enough porosity, and possible immunogenicity. In this context, naturally derived cellulose-based scaffolds with high biocompatibility, ease of production, availability, sustainability/renewability, and environmentally benign attributes can be applied for designing scaffolds. These cellulose-based scaffolds have shown unique mechanical properties, improved cell attachment/proliferation, multifunctionality, and enhanced biocompatibility/cytocompatibility, which make them promising candidates for tissue engineering applications. Herein, the salient developments pertaining to cellulose-based scaffolds for neural, bone, cardiovascular, and skin tissue engineering are deliberated, focusing on the challenges and opportunities.
See more in PubMed
Trache D., Hussin M.H., Haafiz M.M., Thakur V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale. 2017;9:1763–1786. doi: 10.1039/C6NR09494E. PubMed DOI
Fu L.-H., Qi C., Ma M.-G., Wan P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B. 2019;7:1541–1562. doi: 10.1039/C8TB02331J. PubMed DOI
Dutta S.D., Patel D.K., Lim K.T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J. Biol. Eng. 2019;13:55. doi: 10.1186/s13036-019-0177-0. PubMed DOI PMC
Zou P., Yao J., Cui Y.-N., Zhao T., Che J., Yang M., Li Z., Gao C. Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels. 2022;8:364. doi: 10.3390/gels8060364. PubMed DOI PMC
Chen C., Ding W., Zhang H., Zhang L., Huang Y., Fan M., Yang J., Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr. Polym. 2022;278:118995. doi: 10.1016/j.carbpol.2021.118995. PubMed DOI
Firmanda A., Syamsu K., Widya Sari Y., Cabral J., Pletzer D., Mahadik B., Fisher J., Fahma F. 3D printed cellulose based product applications. Mater. Chem. Front. 2022;6:254–279. doi: 10.1039/D1QM00390A. DOI
Bar-Shai N., Sharabani-Yosef O., Zollmann M., Lesman A., Golberg A. Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering. Sci. Rep. 2021;11:11843. doi: 10.1038/s41598-021-90903-2. PubMed DOI PMC
Mallakpour S., Tukhani M., Hussain C.M. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Adv. Colloid Interface Sci. 2021;292:102415. doi: 10.1016/j.cis.2021.102415. PubMed DOI
Saddique A., Cheong I.W. Recent advances in three-dimensional bioprinted nanocellulose-based hydrogel scaffolds for biomedical applications. Korean J. Chem. Eng. 2021;38:2171–2194. doi: 10.1007/s11814-021-0926-x. DOI
Domingues R.M.A., Gomes M.E., Reis R.L. The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules. 2014;15:2327–2346. doi: 10.1021/bm500524s. PubMed DOI
Foster E.J., Moon R.J., Agarwal U.P., Bortner M.J., Bras J., Camarero-Espinosa S., Chan K.J., Clift M.J., Cranston E.D., Eichhorn S.J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018;47:2609–2679. doi: 10.1039/C6CS00895J. PubMed DOI
Dong Q., Wu D., Li M., Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell. 2022;76:101782. doi: 10.1016/j.tice.2022.101782. PubMed DOI
Miyashiro D., Hamano R., Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials. 2020;10:186. doi: 10.3390/nano10020186. PubMed DOI PMC
Ramphul H., Gimié F., Andries J., Jhurry D., Bhaw-Luximon A. Sugar-cane bagasse cellulose-based scaffolds promote multi-cellular interactions, angiogenesis and reduce inflammation for skin tissue regeneration. Int. J. Biol. Macromol. 2020;157:296–310. doi: 10.1016/j.ijbiomac.2020.04.176. PubMed DOI
Aghazadeh M.R., Delfanian S., Aghakhani P., Homaeigohar S., Alipour A., Shahsavarani H. Recent Advances in Development of Natural Cellulosic Non-Woven Scaffolds for Tissue Engineering. Polymers. 2022;14:1531. doi: 10.3390/polym14081531. PubMed DOI PMC
Silva I.G.R.d., Pantoja B.T.d.S., Almeida G.H.D.R., Carreira A.C.O., Miglino M.A. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int. J. Mol. Sci. 2022;23:3955. doi: 10.3390/ijms23073955. PubMed DOI PMC
Lin D., Liu Z., Shen R., Chen S., Yang X. Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol. 2020;158:1007–1019. doi: 10.1016/j.ijbiomac.2020.04.230. PubMed DOI
Dugan J.M., Gough J.E., Eichhorn S.J. Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine. 2013;8:287–298. doi: 10.2217/nnm.12.211. PubMed DOI
Khan S., Ul-Islam M., Wajid Ullah M., Zhu Y., Narayanan K.B., Han S.S., Park J.K. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int. J. Biol. Macromol. 2022;209:9–30. doi: 10.1016/j.ijbiomac.2022.03.191. PubMed DOI
Liu W., Du H., Zhang M., Liu K., Liu H., Xie H., Zhang X., Si C. Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustain. Chem. Eng. 2020;8:7536–7562. doi: 10.1021/acssuschemeng.0c00125. DOI
Roman M., Haring A.P., Bertucio T.J. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr. Opin. Chem. Eng. 2019;24:98–106. doi: 10.1016/j.coche.2019.03.006. DOI
Wang C., Bai J., Tian P., Xie R., Duan Z., Lv Q., Tao Y. The Application Status of Nanoscale Cellulose-Based Hydrogels in Tissue Engineering and Regenerative Biomedicine. Front. Bioeng. Biotechnol. 2021;9:732513. doi: 10.3389/fbioe.2021.732513. PubMed DOI PMC
Hasanin M.S. Cellulose-Based Biomaterials: Chemistry and Biomedical Applications. Starch. 2022;74:2200060. doi: 10.1002/star.202200060. DOI
Kuhnt T., Camarero-Espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydr. Polym. 2021;252:117159. doi: 10.1016/j.carbpol.2020.117159. PubMed DOI
Ferreira F.V., Otoni C.G., De France K.J., Barud H.S., Lona L.M.F., Cranston E.D., Roja O.J. Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materialstoday. 2020;37:126–141. doi: 10.1016/j.mattod.2020.03.003. DOI
Moud A.A., Kamkar M., Sanati-Nezhad A., Hejazi S.H. Suspensions and hydrogels of cellulose nanocrystals (CNCs): Characterization using microscopy and rheology. Cellulose. 2022;29:3621–3653. doi: 10.1007/s10570-022-04514-9. DOI
Al-Sabah A., Burnell S.E.A., Simoes I.N., Jessop Z., Badiei N., Blain E., Whitaker I.S. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydr. Polym. 2019;212:242–251. doi: 10.1016/j.carbpol.2019.02.057. PubMed DOI
Chen C., Xi Y., Weng Y. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers. 2022;14:3335. doi: 10.3390/polym14163335. PubMed DOI PMC
Wang K., Ma Q., Zhang Y.-M., Han G.-T., Qu C.-X., Wang S.-D. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage. Cellulose. 2020;27:1845–1852. doi: 10.1007/s10570-019-02869-0. DOI
Pietrucha K., Marzec E., Kudzin M. Pore structure and dielectric behaviour of the 3D collagen-DAC scaffolds designed for nerve tissue repair. Int. J. Biol. Macromol. 2016;92:1298–1306. doi: 10.1016/j.ijbiomac.2016.08.029. PubMed DOI
Abraham E., Weber D.E., Sharon S., Lapidot S., Shoseyov O. Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl. Mater. Interfaces. 2017;9:2010–2015. doi: 10.1021/acsami.6b13528. PubMed DOI
Petreus T., Stoica B.A., Petreus O., Goriuc A., Cotrutz C.E., Antoniac I.V., Barbu-Tudoran L. Preparation and cytocompatibility evaluation for hydrosoluble phosphorous acid-derivatized cellulose as tissue engineering scaffold material. J. Mater. Sci. Mater. Med. 2014;25:1115–1127. doi: 10.1007/s10856-014-5146-z. PubMed DOI
Salama A., Shukry N., El-Gendy A., El-Sakhawy M. Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization. Ind. Crops Prod. 2017;95:170–174. doi: 10.1016/j.indcrop.2016.10.019. DOI
Kashani Rahimi S., Aeinehvand R., Kim K., Otaigbe J.U. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals. Biomacromolecules. 2017;18:2179–2194. doi: 10.1021/acs.biomac.7b00578. PubMed DOI
Pal N., Dubey P., Gopinath P., Pal K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Int. J. Biol. Macromol. 2017;95:94–105. doi: 10.1016/j.ijbiomac.2016.11.041. PubMed DOI
Torres-Rendon J.G., Femmer T., De Laporte L., Tigges T., Rahimi K., Gremse F., Zafarnia S., Lederle W., Ifuku S., Wessling M., et al. Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering. Adv. Mater. 2015;27:2989–2995. doi: 10.1002/adma.201405873. PubMed DOI
Courtenay J.C., Deneke C., Lanzoni E.M., Costa C.A., Bae Y., Scott J.L., Sharma R.I. Modulating cell response on cellulose surfaces; tuneable attachment and scaffold mechanics. Cellulose. 2018;25:925–940. doi: 10.1007/s10570-017-1612-3. PubMed DOI PMC
Johns M.A., Bae Y., Guimarães F.E.G., Lanzoni E.M., Costa C.A.R., Murray P.M., Deneke C., Galembeck F., Scott J.L., Sharma R.I. Predicting Ligand-Free Cell Attachment on Next-Generation Cellulose–Chitosan Hydrogels. ACS Omega. 2018;3:937–945. doi: 10.1021/acsomega.7b01583. PubMed DOI PMC
Filion T.M., Kutikov A., Song J. Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg. Med. Chem. Lett. 2011;21:5067–5070. doi: 10.1016/j.bmcl.2011.04.032. PubMed DOI
Modulevsky D.J., Lefebvre C., Haase K., Al-Rekabi Z., Pelling A.E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE. 2014;9:e97835. doi: 10.1371/journal.pone.0097835. PubMed DOI PMC
Yang Z., Si J., Cui Z., Ye J., Wang X., Wang Q., Peng K., Chen W., Chen S.C. Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr. Polym. 2017;174:750–759. doi: 10.1016/j.carbpol.2017.07.010. PubMed DOI
Ye J., Si J., Cui Z., Wang Q., Peng K., Chen W., Peng X., Chen S.-C. Surface Modification of Electrospun TPU Nanofiber Scaffold with CNF Particles by Ultrasound-Assisted Technique for Tissue Engineering. Macromol. Mater. Eng. 2017;302:1700277. doi: 10.1002/mame.201700277. DOI
Qi A., Hoo S.P., Friend J., Yeo L., Yue Z., Chan P.P.Y. Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications. Adv. Healthc. Mater. 2014;3:543–554. doi: 10.1002/adhm.201300155. PubMed DOI
Wali A., Zhang Y., Sengupta P., Higaki Y., Takahara A., Badiger M.V. Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: Characterization and applications. Carbohydr. Polym. 2018;181:175–182. doi: 10.1016/j.carbpol.2017.10.070. PubMed DOI
Hoo S.P., Loh Q.L., Yue Z., Fu J., Tan T.T.Y., Choong C., Chan P.P.Y. Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J. Mater. Chem. B. 2013;1:3107. doi: 10.1039/c3tb00446e. PubMed DOI
Kageyama T., Osaki T., Enomoto J., Myasnikova D., Nittami T., Hozumi T., Ito T., Fukuda J. In Situ Cross-Linkable Gelatin-CMC Hydrogels Designed for Rapid Engineering of Perfusable Vasculatures. ACS Biomater. Sci. Eng. 2016;2:1059–1066. doi: 10.1021/acsbiomaterials.6b00203. PubMed DOI
Ninan N., Muthiah M., Park I.-K., Elain A., Thomas S., Grohens Y. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr. Polym. 2013;98:877–885. doi: 10.1016/j.carbpol.2013.06.067. PubMed DOI
Kolewe K.W., Dobosz K.M., Rieger K.A., Chang C.C., Emrick T., Schiffman J.D. Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions. ACS Appl. Mater. Interfaces. 2016;8:27585–27593. doi: 10.1021/acsami.6b09839. PubMed DOI PMC
Ramphul H., Bhaw-Luximon A., Jhurry D. Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydr. Polym. 2017;178:238–250. doi: 10.1016/j.carbpol.2017.09.046. PubMed DOI
O’Donnell N., Okkelman I.A., Timashev P., Gromovykh T.I., Papkovsky D.B., Dmitriev R.I. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater. 2018;80:85–96. doi: 10.1016/j.actbio.2018.09.034. PubMed DOI
Pour-Esmaeil S., Sharifi-Sanjani N., Khoee S., Taheri-Qazvini N. Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application. Carbohydr. Polym. 2020;241:116322. doi: 10.1016/j.carbpol.2020.116322. PubMed DOI
Fabbri P., Bondioli F., Messori M., Bartoli C., Dinucci D., Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J. Mater. Sci. Mater. Med. 2010;21:343–351. doi: 10.1007/s10856-009-3839-5. PubMed DOI
Iravani S., Varma R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21:4839–4867. doi: 10.1039/C9GC02391G. DOI
Bilirgen A.C., Toker M., Odabas S., Yetisen A.K., Garipcan B., Tasoglu S. Plant-Based Scaffolds in Tissue Engineering. ACS Biomater. Sci. Eng. 2021;7:926–938. doi: 10.1021/acsbiomaterials.0c01527. PubMed DOI
Salehi A., Mobarhan M.A., Mohammadi J., Shahsavarani H., Shokrgozar M.A., Alipour A. Natural cellulose-based scaffold for improvement of stem cell osteogenic differentiation. J. Drug Deliv. Sci. Technol. 2021;63:102453. doi: 10.1016/j.jddst.2021.102453. DOI
Celikkin N., Rinoldi C., Costantini M., Trombetta M., Rainer A., Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 2017;78:1277–1299. doi: 10.1016/j.msec.2017.04.016. PubMed DOI
Sultana N. Scaffolds for tissue engineering. MRS Bull. 2003;28:301–306.
Aldana A.A., Abraham G.A. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int. J. Pharm. 2017;523:441–453. doi: 10.1016/j.ijpharm.2016.09.044. PubMed DOI
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for bone tissue engineering: State of the art and new perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI
Li Z., Xie M.-B., Li Y., Ma Y., Li J.-S., Dai F.-Y. ecent progress in tissue engineering and regenerative medicine. J. Biomater. Tissue Eng. 2016;6:755–766. doi: 10.1166/jbt.2016.1510. DOI
He Y., Lu F. Development of synthetic and natural materials for tissue engineering applications using adipose stem cells. Stem Cells Int. 2016;2016:5786257. doi: 10.1155/2016/5786257. PubMed DOI PMC
Rodrı’guez K., Renneckar S., Gatenholm P. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl. Mater. Interfac. 2011;3:681–689. doi: 10.1021/am100972r. PubMed DOI
Wattanaanek N., Suttapreyasri S., Samruajbenjakun B. 3D Printing of Calcium Phosphate/Calcium Sulfate with Alginate/Cellulose-Based Scaffolds for Bone Regeneration: Multilayer Fabrication and Characterization. J. Funct. Biomater. 2022;13:47. doi: 10.3390/jfb13020047. PubMed DOI PMC
Afewerki S., Sheikhi A., Kannan S., Ahadian S., Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng. Transl. Med. 2018;4:96–115. doi: 10.1002/btm2.10124. PubMed DOI PMC
Jabbari F., Babaeipour V., Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int. J. Biol. Macromol. 2022;217:120–130. doi: 10.1016/j.ijbiomac.2022.07.037. PubMed DOI
Thunberg J., Kalogeropoulos T., Kuzmenko V., Ha¨gg D., Johannesson S., Westman G., Gatenholm P. In situ synthesis of conductive polypyrrole on electrospun cellulose nanofibers: Scaffold for neural tissue engineering. Cellulose. 2015;22:1459–1467. doi: 10.1007/s10570-015-0591-5. DOI
Novotna K., Havelka P., Sopuch T., Kolarova K., Vosmanska V., Lisa V., Svorcik V., Bacakova L. Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 2013;20:2263–2278. doi: 10.1007/s10570-013-0006-4. DOI
Zha F., Chen W., Hao L., Wu C., Lu M., Zhang L., Yu D. Electrospun cellulose-based conductive polymer nanofibrous mats: Composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter. 2020;16:6591–6598. doi: 10.1039/D0SM00593B. PubMed DOI
Kim D., Park S., Jo I., Kim S.-M., Kang D.H., Cho S.-P., Park J.B., Hong B.H., Yoon M.-H. Multiscale Modulation of Nanocrystalline Cellulose Hydrogel via Nanocarbon Hybridization for 3D Neuronal Bilayer Formation. Small. 2017;13:1700331. doi: 10.1002/smll.201700331. PubMed DOI
Janmohammadi M., Nazemi Z., Mahmoud Salehi A.O., Seyfoori A., John J.V., Nourbakhsh M.S., Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact. Mater. 2023;20:137–163. doi: 10.1016/j.bioactmat.2022.05.018. PubMed DOI PMC
Palaveniene A., Songailiene K., Baniukaitiene O., Tamburaci S., Kimna C., Tihminlioğlu F., Liesiene J. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds. Int. J. Biol. Macromol. 2020;152:1194–1204. doi: 10.1016/j.ijbiomac.2019.10.213. PubMed DOI
Torgbo S., Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today. 2018;11:34–49. doi: 10.1016/j.apmt.2018.01.004. DOI
He J.-X., Tan W.-L., Han Q.-M., Cui S.-Z., Shao W., Sang F. Fabrication of silk fibroin/cellulose whiskers–chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J. Mater. Sci. 2016;51:4399–4410. doi: 10.1007/s10853-016-9752-7. DOI
Wang X., Tang S., Chai S., Wang P., Qin J., Pei W., Bian H., Jiang Q., Huang C. Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr. Polym. 2021;270:118342. doi: 10.1016/j.carbpol.2021.118342. PubMed DOI
Wang Y., Qian J., Zhao N., Liu T., Xu W., Suo A. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr. Polym. 2017;167:44–51. doi: 10.1016/j.carbpol.2017.03.030. PubMed DOI
Basu P., Saha N., Alexandrova R., Andonova-Lilova B., Georgieva M., Miloshev G., Saha P. Biocompatibility and Biological Efficiency of Inorganic Calcium Filled Bacterial Cellulose Based Hydrogel Scaffolds for Bone Bioengineering. Int. J. Mol. Sci. 2018;19:3980. doi: 10.3390/ijms19123980. PubMed DOI PMC
Sofi H.S., Akram T., Shabir N., Vasita R., Jadhav A.H., Sheikh F.A. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C. 2021;118:111547. doi: 10.1016/j.msec.2020.111547. PubMed DOI
Nouri-Felekori M., Nezafati N., Moraveji M., Hesaraki S., Ramezani T. Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. Int. J. Biol. Macromol. 2021;183:2030–2043. doi: 10.1016/j.ijbiomac.2021.06.005. PubMed DOI
Nasri-Nasrabadi B., Mehrasa M., Rafienia M., Bonakdar S., Behzad T., Gavanji S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr. Polym. 2014;108:232–238. doi: 10.1016/j.carbpol.2014.02.075. PubMed DOI
Wang B., Lv X., Chen S., Li Z., Yao J., Peng X., Feng C., Xu Y., Wang H. Use of heparinized bacterial cellulose based scaffold for improving angiogenesis in tissue regeneration. Carbohydr. Polym. 2018;181:948–956. doi: 10.1016/j.carbpol.2017.11.055. PubMed DOI
Jia B., Li Y., Yang B., Xiao D., Zhang S., Rajulu A.V., Kondo T., Zhang L., Zhou J. Effect of microcrystal cellulose and cellulose whisker on biocompatibility of cellulose-based electrospun scaffolds. Cellulose. 2013;20:1911–1923. doi: 10.1007/s10570-013-9952-0. DOI
Entcheva E., Bien H., Yin L., Chung C.-Y., Farrell M., Kostov Y. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials. 2004;25:5753–5762. doi: 10.1016/j.biomaterials.2004.01.024. PubMed DOI
Simeoni R.B., Mogharbel B.F., Francisco J.C., Miyague N.I., Irioda A.C., Souza C.M., Souza D., Stricker P.E.F., da Rosa N.N., Souza C.F. Beneficial Roles of Cellulose Patch-Mediated Cell Therapy in Myocardial Infarction: A Preclinical Study. Cells. 2021;10:424. doi: 10.3390/cells10020424. PubMed DOI PMC
Schumann D.A., Wippermann J., Klemm D.O., Kramer F., Koth D., Kosmehl H., Wahlers T., Salehi-Gelani S. Artificial vascular implants from bacterial cellulose: Preliminary results of small arterial substitutes. Cellulose. 2009;16:877–885. doi: 10.1007/s10570-008-9264-y. PubMed DOI
Andrade F.K., Costa R., Domingues L., Soares R., Gama M. Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater. 2010;6:4034–4041. doi: 10.1016/j.actbio.2010.04.023. PubMed DOI
Fusco D., Meissner F., Podesser B.K., Marsano A., Grapow M., Eckstein F., Winkler B. Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model. Front. Cardiovasc. Med. 2022;9:881557. doi: 10.3389/fcvm.2022.881557. PubMed DOI PMC
Liu L., Ji X., Mao L., Wang L., Chen K., Shi Z., Qaed Ahmed A.A., Thomas S., Vasilievich R.V., Xiao L., et al. Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohydr. Polym. 2022;281:119034. doi: 10.1016/j.carbpol.2021.119034. PubMed DOI
Madub K., Goonoo N., Gimié F., Arsa I.A., Schönherr H., Bhaw-Luximon A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr. Polym. 2021;251:117025. doi: 10.1016/j.carbpol.2020.117025. PubMed DOI
Radu C.D., Verestiuc L., Ulea E., Lipsa F.D., Vulpe V., Munteanu C., Bulgariu L., Pașca S., Tamas C., Ciuntu B.M., et al. Evaluation of Keratin/Bacterial Cellulose Based Scaffolds as Potential Burned Wound Dressing. Appl. Sci. 2021;11:1995.
Tarrahi R., Khataee A., Karimi A., Yoon Y. The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair. Chemosphere. 2022;288:132529. doi: 10.1016/j.chemosphere.2021.132529. PubMed DOI
Eltom A., Zhong G., Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019;2019:1–13. doi: 10.1155/2019/3429527. DOI
Chinta M.L., Velidandi A., Prashanth Pabbathi N.P., Dahariya S., Parcha S.R. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int. J. Biol. Macromol. 2021;175:495–515. doi: 10.1016/j.ijbiomac.2021.01.196. PubMed DOI
Qian H., Liu J., Wang X., Pei W., Fu C., Ma M., Huang C. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohydr. Polym. 2023;300:120252. doi: 10.1016/j.carbpol.2022.120252. PubMed DOI
Poh P.S.P., Valainis D., Bhattacharya K., Griensven M.v., Dondl P. Optimization of Bone Scaffold Porosity Distributions. Sci. Rep. 2019;9:9170. doi: 10.1038/s41598-019-44872-2. PubMed DOI PMC
Ahmadi F., Giti R., Mohammadi-Samani S., Mohammadi F. Biodegradable Scaffolds for Cartilage Tissue Engineering. Galen Med. J. 2017;6:70–80.
Da L., Gong M., Chen A., Zhang Y., Huang Y., Guo Z., Li S., Li-Ling J., Zhang L., Xie H. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 2017;59:45–57. doi: 10.1016/j.actbio.2017.05.041. PubMed DOI
Ramesh Joshi S., Pendyala G.S., Shah P., Mopagar V.P., Padmawar N., Padubidri M. Scaffolds—The Ground for Regeneration: A Narrative Review. J. Int. Soc. Prev. Community Dent. 2020;10:692–699. PubMed PMC
Park S.-H., Gil E.S., Shi H., Kim H.J., Lee K., Kaplan D.L. Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials. 2010;31:6162–6172. doi: 10.1016/j.biomaterials.2010.04.028. PubMed DOI PMC
Mallick K.K., Cox S.C. Biomaterial scaffolds for tissue engineering. Front. Biosci. 2013;5:341–360. doi: 10.2741/E620. PubMed DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Materialstoday. 2011;14:88–95.
Hickey R.J., Pelling A.E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 2019;7:45. doi: 10.3389/fbioe.2019.00045. PubMed DOI PMC
Chang H., Wang Y. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Eberli D., editor. Regenerative Medicine and Tissue Engineering-Cells and Biomaterials. IntechOpen; London, UK: 2011.
Wang W., Caetano G., Ambler W.S., Blaker J.J., Frade M.A., Mandal P., Diver C., Bártolo P. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials. 2016;9:992. doi: 10.3390/ma9120992. PubMed DOI PMC
Mastrogiacomo M., Scaglione S., Martinetti R., Dolcini L., Beltrame F., Cancedda R., Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27:3230–3237. doi: 10.1016/j.biomaterials.2006.01.031. PubMed DOI
Bružauskaitė I., Bironaitė D., Bagdonas E., Bernotienė E. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes-different cell effects. Cytotechnology. 2016;68:355–369. doi: 10.1007/s10616-015-9895-4. PubMed DOI PMC
Liu Z., Tamaddon M., Gu Y., Yu J., Xu N., Gang F., Sun X., Liu C. Cell Seeding Process Experiment and Simulation on Three-Dimensional Polyhedron and Cross-Link Design Scaffolds. Front. Bioeng. Biotechnol. 2020;8:104. doi: 10.3389/fbioe.2020.00104. PubMed DOI PMC
Luo H., Cha R., Li J., Hao W., Zhang Y., Zhou F. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr. Polym. 2019;224:115144. doi: 10.1016/j.carbpol.2019.115144. PubMed DOI
Xu X., Jia Z., Zheng Y., Wang Y. Bioadaptability of biomaterials: Aiming at precision medicine. Matter. 2021;4:2648–2650. doi: 10.1016/j.matt.2021.06.033. DOI
Wang Y. Bioadaptability: An Innovative Concept for Biomaterials. J. Mater. Sci. Technol. 2016;32:801–809. doi: 10.1016/j.jmst.2016.08.002. DOI