Implementing a Compression Technique on the Progressive Contextual Excitation Network for Smart Farming Applications

. 2022 Dec 12 ; 22 (24) : . [epub] 20221212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36560087

Grantová podpora
CTU-TAIWAN TECH-2022-01 Czech Technical University-National Taiwan University of Science and Technology Joint Research Program

The utilization of computer vision in smart farming is becoming a trend in constructing an agricultural automation scheme. Deep learning (DL) is famous for the accurate approach to addressing the tasks in computer vision, such as object detection and image classification. The superiority of the deep learning model on the smart farming application, called Progressive Contextual Excitation Network (PCENet), has also been studied in our recent study to classify cocoa bean images. However, the assessment of the computational time on the PCENet model shows that the original model is only 0.101s or 9.9 FPS on the Jetson Nano as the edge platform. Therefore, this research demonstrates the compression technique to accelerate the PCENet model using pruning filters. From our experiment, we can accelerate the current model and achieve 16.7 FPS assessed in the Jetson Nano. Moreover, the accuracy of the compressed model can be maintained at 86.1%, while the original model is 86.8%. In addition, our approach is more accurate than ResNet18 as the state-of-the-art only reaches 82.7%. The assessment using the corn leaf disease dataset indicates that the compressed model can achieve an accuracy of 97.5%, while the accuracy of the original PCENet is 97.7%.

Zobrazit více v PubMed

Bai C.H., Prakosa S.W., Hsieh H.Y., Leu J.S., Fang W.H. Progressive Contextual Excitation for Smart Farming Application. In: Tsapatsoulis N., Panayides A., Theocharides T., Lanitis A., Pattichis C., Vento M., editors. Computer Analysis of Images and Patterns. CAIP 2021. Volume 13052. Springer; Cham, Switzerland: 2021. Lecture Notes in Computer Science. DOI

Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017;39:1137–1149. doi: 10.1109/TPAMI.2016.2577031. PubMed DOI

Sari C.T., Gunduz-Demir C. Unsupervised Feature Extraction via Deep Learning for Histopathological Classification of Colon Tissue Images. IEEE Trans. Med Imaging. 2019;38:1139–1149. doi: 10.1109/TMI.2018.2879369. PubMed DOI

Mulyanto M., Faisal M., Prakosa S.W., Leu J.-S. Effectiveness of Focal Loss for Minority Classification in Network Intrusion Detection Systems. Symmetry. 2020;13:4. doi: 10.3390/sym13010004. DOI

Sun W., Wu T. Learning Layout and Style Reconfigurable GANs for Controllable Image Synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 2022;44:5070–5087. doi: 10.1109/TPAMI.2021.3078577. PubMed DOI

Adhitya Y., Prakosa S.W., Köppen M., Leu J.-S. Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application. Agronomy. 2020;10:1642. doi: 10.3390/agronomy10111642. DOI

Li H., Kadav A., Durdanovic I., Samet H., Graf H.P. Pruning Filters for Efficient Convnets. [(accessed on 4 November 2022)];Comput. Res. Repos. 2016 Available online: https://arxiv.org/abs/1608.08710.

Dong X., Chen S., Pan S.J. Learning to prune deep neural networks via layer-wise optimal brain surgeon. arXiv. 20171705.07565v2

Howard A., Sandler M., Chu G., Chen L.-C., Chen B., Tan M., Wang W., Zhu Y., Pang R., Vasudevan V., et al. Searching for MobileNetV3; Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV); Seoul, Republic of Korea. 27 October–2 November 2019; pp. 1314–1324. DOI

Iandola F.N., Han S., Moskewicz M.W., Ashraf K., Dally W.J., Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Comput. Vis. Pattern Recognit. 2016;9349:1–13.

Han S., Mao H., Dally W.J. Deep compression: Compressing deep neural networks with pruning trained quantization and huffman coding. Fiber. 2015;56:3–7.

Hinton G.E., Vinyals O., Dean J. Distilling the knowledge in a neural network. arXiv. 20151503.02531

Prakosa S.W., Leu J.-S., Chen Z.-H. Pattern Analysis and Applications (PAA) Volume 24. Springer; Berlin/Heidelberg, Germany: 2021. Improving the Accuracy of Pruned Network Using Knowledge Distillation; pp. 819–830.

Rezk N.G., Hemdan E.E.-D., Attia A.-F., El-Sayed A., El-Rashidy M.A. An efficient IoT based smart farming system using machine learning algorithms. Multimedia Tools Appl. 2020;80:773–797. doi: 10.1007/s11042-020-09740-6. DOI

Udendhran R., Balamurugan M. Towards secure deep learning architecture for smart farming-based applications. Complex Intell. Syst. 2020;7:659–666. doi: 10.1007/s40747-020-00225-5. DOI

Menshchikov A., Shadrin D., Prutyanov V., Lopatkin D., Sosnin S., Tsykunov E., Iakovlev E., Somov A. Real-Time Detection of Hogweed: UAV Platform Empowered by Deep Learning. IEEE Trans. Comput. 2021;70:1175–1188. doi: 10.1109/TC.2021.3059819. DOI

Joshi P., Das D., Udutalapally V., Pradhan M.K., Misra S. RiceBioS: Identification of Biotic Stress in Rice Crops Using Edge-as-a-Service. IEEE Sens. J. 2022;22:4616–4624. doi: 10.1109/JSEN.2022.3143950. DOI

Hughes D.P., Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv. 20151511.08060

Yu H., Liu J., Chen C., Heidari A.A., Zhang Q., Chen H., Mafarja M., Turabieh H. Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning. IEEE Access. 2021;9:143824–143835. doi: 10.1109/ACCESS.2021.3120379. DOI

Zeng W., Li H., Hu G., Liang D. Lightweight dense-scale network (LDSNet) for corn leaf disease identification. Comput. Electron. Agric. 2022;197:106943. doi: 10.1016/j.compag.2022.106943. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...