Evaluation of Non-Invasive Gargle Lavage Sampling for the Detection of SARS-CoV-2 Using rRT-PCR or Antigen Assay

. 2022 Dec 19 ; 14 (12) : . [epub] 20221219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36560833

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable disruption worldwide. For efficient SARS-CoV-2 detection, new methods of rapid, non-invasive sampling are needed. This study aimed to investigate the stability of SARS-CoV-2 in a novel medium for gargle-lavage (GL) self-sampling and to compare the performance of SARS-CoV-2 detection in paired self-collected GL and clinician-obtained nasopharyngeal swab (NPS) samples. The stability study for SARS-CoV-2 preservation in a novel medium was performed over 14 days (4 °C, 24-27 °C, and 37 °C). In total, 494 paired GL and NPS samples were obtained at the University Hospital in Olomouc in April 2021. SARS-CoV-2 detection in paired samples was performed with a SARS-CoV-2 Nucleic Acid Detection Kit (Zybio, Chongqing Municipality, Chongqing, China), an Elecsys® SARS-CoV-2 Antigen assay (Roche Diagnostics, Mannheim, Germany), and a SARS-CoV-2 Antigen ELISA (EUROIMMUN, Lübeck, Germany). The stability study demonstrated excellent SARS-CoV-2 preservation in the novel medium for 14 days. SARS-CoV-2 was detected in 55.7% of NPS samples and 55.7% of GL samples using rRT-PCR, with an overall agreement of 91.9%. The positive percent agreement (PPA) of the rRT-PCR in the GL samples was 92.7%, and the negative percent agreement (NPA) was 90.9%, compared with the NPS samples. The PPA of the rRT-PCR in the NPS and GL samples was 93.2% when all positive tests were used as the reference standard. Both antigen detection assays showed poor sensitivity compared to rRT-PCR (33.2% and 36.0%). rRT-PCR SARS-CoV-2 detection in self-collected GL samples had a similar PPA and NPA to that of NPSs. GL self-sampling offers a suitable and more comfortable alternative for SARS-CoV-2 detection.

Zobrazit více v PubMed

Lippi G., Simundic A.-M., Plebani M. Potential Preanalytical and Analytical Vulnerabilities in the Laboratory Diagnosis of Coronavirus Disease 2019 (COVID-19) Clin. Chem. Lab. Med. 2020;58:1070–1076. doi: 10.1515/cclm-2020-0285. PubMed DOI

WHO Laboratory Testing for 2019 Novel Coronavirus (2019-NCoV) in Suspected Human Cases Interim Guidance. [(accessed on 18 August 2021)]. Available online: https://www.who.int/publications/i/item/10665-331501.

Mittal A., Gupta A., Kumar S., Surjit M., Singh B., Soneja M., Soni K.D., Khan A.R., Singh K., Naik S., et al. Gargle Lavage as a Viable Alternative to Swab for Detection of SARS-CoV-2. Indian J. Med. Res. 2020;152:77–81. doi: 10.4103/ijmr.IJMR_2987_20. PubMed DOI PMC

Li H., Liu S.-M., Yu X.-H., Tang S.-L., Tang C.-K. Coronavirus Disease 2019 (COVID-19): Current Status and Future Perspectives. Int. J. Antimicrob. Agents. 2020;55:105951. doi: 10.1016/j.ijantimicag.2020.105951. PubMed DOI PMC

Marty F.M., Chen K., Verrill K.A. How to Obtain a Nasopharyngeal Swab Specimen. N. Engl. J. Med. 2020;382:e76. doi: 10.1056/NEJMvcm2010260. PubMed DOI

Goldfarb D.M., Tilley P., Al-Rawahi G.N., Srigley J.A., Ford G., Pedersen H., Pabbi A., Hannam-Clark S., Charles M., Dittrick M., et al. Self-Collected Saline Gargle Samples as an Alternative to Health Care Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients. J. Clin. Microbiol. 2021;59:e02427-20. doi: 10.1128/JCM.02427-20. PubMed DOI PMC

Zander J., Scholtes S., Ottinger M., Kremer M., Kharazi A., Stadler V., Bickmann J., Zeleny C., Kuiper J.W.P., Hauck C.R., et al. Self-Collected Gargle Lavage Allows Reliable Detection of SARS-CoV-2 in an Outpatient Setting. Microbiol. Spectr. 2021;9:e00361-21. doi: 10.1128/Spectrum.00361-21. PubMed DOI PMC

Kohmer N., Eckermann L., Böddinghaus B., Götsch U., Berger A., Herrmann E., Kortenbusch M., Tinnemann P., Gottschalk R., Hoehl S., et al. Self-Collected Samples to Detect SARS-CoV-2: Direct Comparison of Saliva, Tongue Swab, Nasal Swab, Chewed Cotton Pads and Gargle Lavage. J. Clin. Med. 2021;10:5751. doi: 10.3390/jcm10245751. PubMed DOI PMC

Schuit E., Veldhuijzen I.K., Venekamp R.P., van den Bijllaardt W., Pas S.D., Lodder E.B., Molenkamp R., GeurtsvanKessel C.H., Velzing J., Huisman R.C., et al. Diagnostic Accuracy of Rapid Antigen Tests in Asymptomatic and Presymptomatic Close Contacts of Individuals with Confirmed SARS-CoV-2 Infection: Cross Sectional Study. BMJ. 2021;374:n1676. doi: 10.1136/bmj.n1676. PubMed DOI PMC

Peeling R.W., Olliaro P.L., Boeras D.I., Fongwen N. Scaling up COVID-19 Rapid Antigen Tests: Promises and Challenges. Lancet Infect. Dis. 2021;21:e290–e295. doi: 10.1016/S1473-3099(21)00048-7. PubMed DOI PMC

Liu R., Han H., Liu F., Lv Z., Wu K., Liu Y., Feng Y., Zhu C. Positive Rate of RT-PCR Detection of SARS-CoV-2 Infection in 4880 Cases from One Hospital in Wuhan, China, from Jan to Feb 2020. Clin. Chim. Acta. 2020;505:172–175. doi: 10.1016/j.cca.2020.03.009. PubMed DOI PMC

Williams E., Bond K., Zhang B., Putland M., Williamson D.A. Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2. J. Clin. Microbiol. 2021;58:e00776-20. doi: 10.1128/JCM.00776-20. PubMed DOI PMC

To K.K.-W., Tsang O.T.-Y., Yip C.C.-Y., Chan K.-H., Wu T.-C., Chan J.M.-C., Leung W.-S., Chik T.S.-H., Choi C.Y.-C., Kandamby D.H., et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020;71:841–843. doi: 10.1093/cid/ciaa149. PubMed DOI PMC

Saito M., Adachi E., Yamayoshi S., Koga M., Iwatsuki-Horimoto K., Kawaoka Y., Yotsuyanagi H. Gargle Lavage as a Safe and Sensitive Alternative to Swab Samples to Diagnose COVID-19: A Case Report in Japan. Clin. Infect. Dis. 2020;71:893–894. doi: 10.1093/cid/ciaa377. PubMed DOI PMC

Yu F., Yan L., Wang N., Yang S., Wang L., Tang Y., Gao G., Wang S., Ma C., Xie R., et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020;71:793–798. doi: 10.1093/cid/ciaa345. PubMed DOI PMC

Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral Load of SARS-CoV-2 in Clinical Samples. Lancet. Infect. Dis. 2020;20:411–412. doi: 10.1016/S1473-3099(20)30113-4. PubMed DOI PMC

Marais G., Hsiao N., Iranzadeh A., Doolabh D., Enoch A., Chu C., Williamson C., Brink A., Hardie D. Saliva Swabs Are the Preferred Sample for Omicron Detection. medRxiv. 2021 doi: 10.1101/2021.12.22.21268246. DOI

Gertler M., Krause E., van Loon W., Krug N., Kausch F., Rohardt C., Rössig H., Michel J., Nitsche A., Mall M.A., et al. Self-Collected Oral, Nasal and Saliva Samples Yield Sensitivity Comparable to Professionally Collected Oro-Nasopharyngeal Swabs in SARS-CoV-2 Diagnosis among Symptomatic Outpatients. Int. J. Infect. Dis. 2021;110:261–266. doi: 10.1016/j.ijid.2021.07.047. PubMed DOI PMC

Kandel C.E., Young M., Serbanescu M.A., Powis J.E., Bulir D., Callahan J., Katz K., McCready J., Racher H., Sheldrake E., et al. Detection of Severe Acute Respiratory Coronavirus Virus 2 (SARS-CoV-2) in Outpatients: A Multicenter Comparison of Self-Collected Saline Gargle, Oral Swab, and Combined Oral-Anterior Nasal Swab to a Provider Collected Nasopharyngeal Swab. Infect. Control Hosp. Epidemiol. 2021;42:1340–1344. doi: 10.1017/ice.2021.2. PubMed DOI PMC

LeBlanc J.J., Pettipas J., Di Quinzio M., Hatchette T.F., Patriquin G. Reliable Detection of SARS-CoV-2 with Patient-Collected Swabs and Saline Gargles: A Three-Headed Comparison on Multiple Molecular Platforms. J. Virol. Methods. 2021;295:114184. doi: 10.1016/j.jviromet.2021.114184. PubMed DOI PMC

Kinshella M.-L.W., Tilley P., Al-Rawahi G.N., Srigley J.A., Kayda I., Canes M., McLennan M., Bone J.N., Dittrick M., Gadkar V.J., et al. Evaluation of Observed and Unobserved Self-Collection of Saline Gargle Samples for the Detection of SARS-CoV-2 in Outpatients. Diagn. Microbiol. Infect. Dis. 2022;102:115566. doi: 10.1016/j.diagmicrobio.2021.115566. PubMed DOI PMC

Utama R., Hapsari R., Puspitasari I., Sari D., Hendrianingtyas M., Nurainy N. Self-Collected Gargle Specimen as a Patient-Friendly Sample Collection Method for COVID-19 Diagnosis in a Population Context. Sci. Rep. 2022;12:3706. doi: 10.1038/s41598-022-07690-7. PubMed DOI PMC

Willeit P., Krause R., Lamprecht B., Berghold A., Hanson B., Stelzl E., Stoiber H., Zuber J., Heinen R., Köhler A., et al. Prevalence of RT-QPCR-Detected SARS-CoV-2 Infection at Schools: First Results from the Austrian School-SARS-CoV-2 Prospective Cohort Study. Lancet Reg. Health Eur. 2021;5:100086. doi: 10.1016/j.lanepe.2021.100086. PubMed DOI PMC

Babady N.E., McMillen T., Jani K., Viale A., Robilotti E.V., Aslam A., Diver M., Sokoli D., Mason G., Shah M.K., et al. Performance of Severe Acute Respiratory Syndrome Coronavirus 2 Real-Time RT-PCR Tests on Oral Rinses and Saliva Samples. J. Mol. Diagn. 2021;23:3–9. doi: 10.1016/j.jmoldx.2020.10.018. PubMed DOI PMC

Wang W.-K., Chen S.-Y., Liu I.-J., Chen Y.-C., Chen H.-L., Yang C.-F., Chen P.-J., Yeh S.-H., Kao C.-L., Huang L.-M., et al. Detection of SARS-Associated Coronavirus in Throat Wash and Saliva in Early Diagnosis. Emerg. Infect. Dis. 2004;10:1213–1219. doi: 10.3201/eid1007.031113. PubMed DOI PMC

Liu I.-J., Chen P.-J., Yeh S.-H., Chiang Y.-P., Huang L.-M., Chang M.-F., Chen S.-Y., Yang P.-C., Chang S.-C., Wang W.-K., et al. Immunofluorescence Assay for Detection of the Nucleocapsid Antigen of the Severe Acute Respiratory Syndrome (SARS)-Associated Coronavirus in Cells Derived from Throat Wash Samples of Patients with SARS. J. Clin. Microbiol. 2005;43:2444–2448. doi: 10.1128/JCM.43.5.2444-2448.2005. PubMed DOI PMC

Kheiroddin P., Borchers N., Cibali E., Würfel T., Nowosadtko S., Kabesch M., Ambrosch A. SARS-CoV-2 Detection Limits in Swab and Gargle Samples by Comparing Antigen and RT-QPCR Testing. COVID. 2022;2:752–758. doi: 10.3390/covid2060056. DOI

Audigé A., Böni J., Schreiber P.W., Scheier T., Buonomano R., Rudiger A., Braun D.L., Eich G., Keller D.I., Hasse B., et al. Reduced Relative Sensitivity of the Elecsys SARS-CoV-2 Antigen Assay in Saliva Compared to Nasopharyngeal Swabs. Microorganisms. 2021;9:1700. doi: 10.3390/microorganisms9081700. PubMed DOI PMC

Kahn M., Schuierer L., Bartenschlager C., Zellmer S., Frey R., Freitag M., Dhillon C., Heier M., Ebigbo A., Denzel C., et al. Performance of Antigen Testing for Diagnosis of COVID-19: A Direct Comparison of a Lateral Flow Device to Nucleic Acid Amplification Based Tests. BMC Infect. Dis. 2021;21:798. doi: 10.1186/s12879-021-06524-7. PubMed DOI PMC

Khalid M.F., Selvam K., Jeffry A.J.N., Salmi M.F., Najib M.A., Norhayati M.N., Aziah I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics. 2022;12:110. doi: 10.3390/diagnostics12010110. PubMed DOI PMC

WHO Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays Interim Guidance. [(accessed on 25 August 2021)]. Available online: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays.

Amendola A., Sberna G., Lalle E., Colavita F., Castilletti C., Menchinelli G., Posteraro B., Sanguinetti M., Ippolito G., Bordi L., et al. Saliva Is a Valid Alternative to Nasopharyngeal Swab in Chemiluminescence-Based Assay for Detection of SARS-CoV-2 Antigen. J. Clin. Med. 2021;10:1471. doi: 10.3390/jcm10071471. PubMed DOI PMC

Ikeda M., Imai K., Tabata S., Miyoshi K., Murahara N., Mizuno T., Horiuchi M., Kato K., Imoto Y., Iwata M., et al. Clinical Evaluation of Self-Collected Saliva by RT-QPCR, Direct RT-QPCR, RT-LAMP, and a Rapid Antigen Test to Diagnose COVID-19. medRxiv. 2020 doi: 10.1101/2020.06.06.20124123. PubMed DOI PMC

Basso D., Aita A., Padoan A., Cosma C., Navaglia F., Moz S., Contran N., Zambon C.-F., Maria Cattelan A., Plebani M. Salivary SARS-CoV-2 Antigen Rapid Detection: A Prospective Cohort Study. Clin. Chim. Acta. 2021;517:54–59. doi: 10.1016/j.cca.2021.02.014. PubMed DOI PMC

Mak G.C.K., Cheng P.K.C., Lau S.S.Y., Wong K.K.Y., Lau C.S., Lam E.T.K., Chan R.C.W., Tsang D.N.C. Evaluation of Rapid Antigen Test for Detection of SARS-CoV-2 Virus. J. Clin. Virol. 2020;129:104500. doi: 10.1016/j.jcv.2020.104500. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...