Whole Genome-Based Characterization of Multidrug Resistant Enterobacter and Klebsiella aerogenes Isolates from Lebanon
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36651778
PubMed Central
PMC9927356
DOI
10.1128/spectrum.02917-22
Knihovny.cz E-zdroje
- Klíčová slova
- ESBL, Enterobacter, Klebsiella aerogenes, multidrug resistance, β-lactamases,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Enterobacter aerogenes * genetika MeSH
- Enterobacter genetika MeSH
- karbapenemy farmakologie MeSH
- Klebsiella pneumoniae genetika MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Libanon MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- karbapenemy MeSH
Enterobacter spp. and Klebsiella aerogenes are rod-shaped Gram-negative opportunistic pathogens. This study aimed at the molecular and genomic characterization of multidrug resistant Enterobacter spp. and K. aerogenes isolates recovered from hospitalized patients in a tertiary care hospital in Lebanon. A total of 59 Enterobacter spp. clinical isolates consisting of 41 carbapenem-resistant and 18 susceptible by Etest were included in this study. Genotypic identification through whole-genome sequencing (WGS) was performed and confirmed in silico. Resistance and plasmid profiles were studied using ResFinder4.0 and Plasmid-Finder2.1. Multilocus sequence typing (MLST) was used to determine the isolates' clonality. Using the average nucleotide identity (ANI) we identified and confirmed that 47 (80%) isolates were E. hormaechei, 11 (18%) were Klebsiella aerogenes and 1 (2%) was an E. cloacae. Carbapenem-resistance was detected among 41 isolates all showing an MIC90 of ≥ 32 μg/mL for ertapenem, imipenem, and meropenem. blaNDM-1 (58.5%), blaACT-16 (54%), and blaOXA-1 (54%) were the most common detected β-lactamases, while blaCTX-M-15 (68%) was the main detected extended-spectrum β-lactamase (ESBL) encoding gene. Chromosomal ampC, carbapenemase encoding genes, and porin modifications were among the detected carbapenem resistance determinants. The carbapenemase encoding genes were linked to three well-defined plasmid Inc groups, IncFII/IncFIB, IncX3, and IncL. MLST typing revealed the diversity within the studied isolates, with ST114 being the most common among the studied E. hormaechei.: The spread of carbapenem-resistant isolates in clinical settings in Lebanon is a serious challenge. Screening and continuous monitoring through WGS analysis could effectively limit the dissemination of drug-resistant isolates in hospitalized patients. IMPORTANCE Drug resistance is an increasing global public health threat that involves most disease-causing organisms and antimicrobial drugs. Drug-resistant organisms spread in health care settings, and resistance to multiple drugs is common. Our study demonstrated the mechanisms leading to resistance against the last resort antimicrobial agents among members of the Enterobacteriaceae family. The spread of carbapenem-resistant bacteria in clinical settings is a serious challenge. Screening and continuous monitoring could effectively limit the dissemination of drug-resistant isolates in hospitalized patients.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Natural Sciences Lebanese American University Byblos Lebanon
Zobrazit více v PubMed
Sanders WE, Sanders CC. 1997. Enterobacter spp.: pathogens poised to flourish at the turn of the century. Clin Microbiol Rev 10:220–241. doi:10.1128/CMR.10.2.220. PubMed DOI PMC
Davin-Regli A, Pagès J-M. 2015. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:1–10. doi:10.3389/fmicb.2015.00392. PubMed DOI PMC
Annavajhala MK, Gomez-Simmonds A, Uhlemann A-C. 2019. Multidrug-resistant Enterobacter cloacae complex emerging as a global. Diversifying Threat Front Microbiol 10:1–8. doi:10.3389/fmicb.2019.00044. PubMed DOI PMC
Mezzatesta ML, Gona F, Stefani S. 2012. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7:887–902. doi:10.2217/fmb.12.61. PubMed DOI
Streit JM, Jones RN, Sader HS, Fritsche TR. 2004. Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int J Antimicrob Agents 24:111–118. doi:10.1016/j.ijantimicag.2003.12.019. PubMed DOI
Hoffmann H, Roggenkamp A. 2003. Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol 69:5306–5318. doi:10.1128/AEM.69.9.5306-5318.2003. PubMed DOI PMC
Sutton GG, Brinkac LM, Clarke TH, Fouts DE. 2018. Enterobacterhormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaechei subsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Res 7:521. doi:10.12688/f1000research.14566.2. PubMed DOI PMC
Nicolau DP. 2008. Carbapenems: a potent class of antibiotics. Expert Opin Pharmacother 9:23–37. doi:10.1517/14656566.9.1.23. PubMed DOI
Peirano G, Matsumura Y, Adams MD, Bradford P, Motyl M, Chen L, Kreiswirth BN, Pitout JDD. 2018. Genomic epidemiology of global carbapenemase-producing enterobacter spp., 2008–2014. Emerg Infect Dis 24:1010–1019. doi:10.3201/eid2406.171648. PubMed DOI PMC
Malek A, McGlynn K, Taffner S, Fine L, Tesini B, Wang J, Mostafa H, Petry S, Perkins A, Graman P, Hardy D, Pecora N. 2019. Next-generation-sequencing-based hospital outbreak investigation yields insight into Klebsiella aerogenes population structure and determinants of carbapenem resistance and pathogenicity. Antimicrob Agents Chemother 63:e02577-18. doi:10.1128/AAC.02577-18. PubMed DOI PMC
Osman M, Al Mir H, Rafei R, Dabboussi F, Madec J-Y, Haenni M, Hamze M. 2019. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: an overview. J Glob Antimicrob Resist 17:123–129. doi:10.1016/j.jgar.2018.11.019. PubMed DOI
Arabaghian H, Salloum T, Alousi S, Panossian B, Araj GF, Tokajian S. 2019. Molecular characterization of Carbapenem resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae Isolated from Lebanon. Sci Rep 9:1–12. doi:10.1038/s41598-018-36554-2. PubMed DOI PMC
Alousi S, Salloum T, Arabaghian H, Matar GM, Araj GF, Tokajian ST. 2018. Genomic characterization of MDR Escherichia coli harboring blaOXA-48 on the IncL/M-type plasmid isolated from blood stream infection. BioMed Research International; 2018:3036143. https://www.hindawi.com/journals/bmri/2018/3036143/. PubMed PMC
Daoud Z, Afif C. 2011. Escherichia coli isolated from urinary tract infections of Lebanese Patients between 2000 and 2009: epidemiology and profiles of resistance. Chemother Res Pract 2011:218431. doi:10.1155/2011/218431. PubMed DOI PMC
Matar GM, Cuzon G, Araj GF, Naas T, Corkill J, Kattar MM, Nordmann P. 2008. Oxacillinase-mediated resistance to carbapenems in Klebsiella pneumoniae from Lebanon. Clin Microbiol Infect 14:887–888. doi:10.1111/j.1469-0691.2008.02059.x. PubMed DOI
Moghnieh R, Araj GF, Awad L, Daoud Z, Mokhbat JE, Jisr T, Abdallah D, Azar N, Irani-Hakimeh N, Balkis MM, Youssef M, Karayakoupoglou G, Hamze M, Matar M, Atoui R, Abboud E, Feghali R, Yared N, Husni R. 2019. A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015–2016. Antimicrob Resist Infect Control 8:1–17. doi:10.1186/s13756-019-0487-5. PubMed DOI PMC
Bitar I, Dagher C, Salloum T, Araj G, Tokajian S. 2018. First report of an Escherichia coli from Lebanon carrying an OXA-181 carbapenemase resistance determinant. J Glob Antimicrob Resist 12:113–114. doi:10.1016/j.jgar.2018.01.002. PubMed DOI
Makhlouf J, Merhi G, Salloum T, Abboud E, Tokajian S. 2021. Molecular characterization of a carbapenem-resistant Enterobacter hormaechei ssp. xiangfangensis co-harbouring blaNDM-1 and a chromosomally encoded phage-linked blaCTX-M-15 genes. Infection. Genetics and Evolution 93:104924. doi:10.1016/j.meegid.2021.104924. PubMed DOI
Dagher C, Salloum T, Alousi S, Arabaghian H, Araj GF, Tokajian S. 2018. Molecular characterization of Carbapenem resistant Escherichia coli recovered from a tertiary hospital in Lebanon. PLoS One 13:e0203323. doi:10.1371/journal.pone.0203323. PubMed DOI PMC
Nordmann P, Naas T, Poirel L. 2011. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. doi:10.3201/eid1710.110655. PubMed DOI PMC
Cantón R, González-Alba JM, Galán JC. 2012. CTX-M enzymes: origin and diffusion. Front Microbiol 3:1–19. doi:10.3389/fmicb.2012.00110. PubMed DOI PMC
Hammami S, Saidani M, Ferjeni S, Aissa I, Slim A, Boutiba-Ben Boubaker I. 2013. Characterization of extended spectrum β-lactamase-producing Escherichia coli in community-acquired urinary tract infections in Tunisia. Microb Drug Resist 19:231–236. doi:10.1089/mdr.2012.0172. PubMed DOI
Haenni M, Saras E, Ponsin C, Dahmen S, Petitjean M, Hocquet D, Madec J-Y. 2016. High prevalence of international ESBL CTX-M-15-producing Enterobacter cloacae ST114 clone in animals. J Antimicrob Chemother 71:1497–1500. doi:10.1093/jac/dkw006. PubMed DOI
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088-17. doi:10.1128/CMR.00088-17. PubMed DOI PMC
Zong Z, Ginn AN, Dobiasova H, Iredell JR, Partridge SR. 2015. Different IncI1 plasmids from Escherichia coli carry ISEcp1-blaCTX-M-15 associated with different Tn2-derived elements. Plasmid 80:118–126. doi:10.1016/j.plasmid.2015.04.007. PubMed DOI
Rodríguez I, Thomas K, Van Essen A, Schink A-K, Day M, Chattaway M, Wu G, Mevius D, Helmuth R, Guerra B, SAFEFOODERA-ESBL consortium . 2014. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, The Netherlands and the UK. Int J Antimicrob Agents 43:553–557. doi:10.1016/j.ijantimicag.2014.02.019. PubMed DOI
Izdebski R, Baraniak A, Herda M, Fiett J, Bonten MJM, Carmeli Y, Goossens H, Hryniewicz W, Brun-Buisson C, Gniadkowski M, MOSAR WP2, WP3 and WP5 Study Groups . 2015. MLST reveals potentially high-risk international clones of Enterobacter cloacae. J Antimicrob Chemother 70:48–56. doi:10.1093/jac/dku359. PubMed DOI
Girlich D, Poirel L, Nordmann P. 2015. Clonal distribution of multidrug-resistant Enterobacter cloacae. Diagn Microbiol Infect Dis 81:264–268. doi:10.1016/j.diagmicrobio.2015.01.003. PubMed DOI
Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM, Jenney AWJ, Brisse S, Holt KE. 2018. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 4:e000196. doi:10.1099/mgen.0.000196. PubMed DOI PMC
Pitout JDD, Peirano G, Kock MM, Strydom K-A, Matsumura Y. 2019. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 33:e00102-19. doi:10.1128/CMR.00102-19. PubMed DOI PMC
Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D, Hill R, Pike R, Mustafa N, Livermore DM, Woodford N. 2017. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 72:1340–1349. doi:10.1093/jac/dkx012. PubMed DOI
Pulss S, Stolle I, Stamm I, Leidner U, Heydel C, Semmler T, Prenger-Berninghoff E, Ewers C. 2018. Multispecies and clonal dissemination of OXA-48 carbapenemase in Enterobacteriaceae from companion animals in Germany, 2009–2016. Front Microbiol 9:1–12. doi:10.3389/fmicb.2018.01265. PubMed DOI PMC
Liu Y, Feng Y, Wu W, Xie Y, Wang X, Zhang X, Chen X, Zong Z. 2015. First report of OXA-181-producing Escherichia coli in China and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother 59:5022–5025. doi:10.1128/AAC.00442-15. PubMed DOI PMC
El-Herte RI, Kanj SS, Matar GM, Araj GF. 2012. The threat of carbapenem-resistant Enterobacteriaceae in Lebanon: an update on the regional and local epidemiology. J Infect Public Health 5:233–243. doi:10.1016/j.jiph.2012.02.003. PubMed DOI
Moubareck C, Daoud Z, Hakime NI, Hamze M, Mangeney N, Matta H, Mokhbat JE, Rohban R, Sarkis DK, Doucet-Populaire F. 2005. Countrywide spread of community- and hospital-acquired extended-spectrum -lactamase (CTX-M-15)-producing Enterobacteriaceae in Lebanon. J Clin Microbiol 43:3309–3313. doi:10.1128/JCM.43.7.3309-3313.2005. PubMed DOI PMC
Morand PC, Billoet A, Rottman M, Sivadon-Tardy V, Eyrolle L, Jeanne L, Tazi A, Anract P, Courpied J-P, Poyart C, Dumaine V. 2009. Specific distribution within the Enterobacter cloacae complex of strains isolated from infected orthopedic implants. J Clin Microbiol 47:2489–2495. doi:10.1128/JCM.00290-09. PubMed DOI PMC
Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, Bonomo RA, Adams MD, Kreiswirth BN. 2016. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new Insights into Phylogeny, population structure, and resistance mechanisms. mBio 7:e02093-16. doi:10.1128/mBio.02093-16. PubMed DOI PMC
Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K, Hardy D, Zimmer B, Butler-Wu S, Dien Bard J, Brasso B, Shawar R, Dingle T, Humphries R, Sei K, Koeth L. 2018. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J Clin Microbiol 56:e01934-17. doi:10.1128/JCM.01934-17. PubMed DOI PMC
Galani I, Kontopidou F, Souli M, Rekatsina P-D, Koratzanis E, Deliolanis J, Giamarellou H. 2008. Colistin susceptibility testing by Etest and disk diffusion methods. Int J Antimicrob Agents 31:434–439. doi:10.1016/j.ijantimicag.2008.01.011. PubMed DOI
Madeira F, Park Ym, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. doi:10.1093/nar/gkz268. PubMed DOI PMC
Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC
Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239. doi:10.1128/jcm.33.9.2233-2239.1995. PubMed DOI PMC
Miyoshi-Akiyama T, Hayakawa K, Ohmagari N, Shimojima M, Kirikae T. 2013. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS One 8:e66358. doi:10.1371/journal.pone.0066358. PubMed DOI PMC
Papagiannitsis CC, Bitar I, Malli E, Tsilipounidaki K, Hrabak J, Petinaki E. 2019. IncC blaKPC-2-positive plasmid characterised from ST648 Escherichia coli. J Glob Antimicrob Resist 19:73–77. doi:10.1016/j.jgar.2019.05.001. PubMed DOI
Andrews A. 2010. FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Retrieved 10 June 2019.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi:10.1093/bioinformatics/btt086. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:1–8. doi:10.1038/s41467-018-07641-9. PubMed DOI PMC
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. doi:10.1093/nar/gkw1004. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Wick RR, Heinz E, Holt KE, Wyres KL. 2018. Kaptive web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 56:e00197-18. doi:10.1128/JCM.00197-18. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC
Vielva L, de Toro M, Lanza VF, de la Cruz F. 2017. PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes. Bioinformatics 33:3796–3798. doi:10.1093/bioinformatics/btx462. PubMed DOI
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi:10.1186/1471-2105-11-119. PubMed DOI PMC
Lee MD. 2019. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35:4162–4164. doi:10.1093/bioinformatics/btz188. PubMed DOI PMC