Integrated Approach from Sample-to-Answer for Grapevine Varietal Identification on a Portable Graphene Sensor Chip
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36657739
PubMed Central
PMC9973367
DOI
10.1021/acssensors.2c02090
Knihovny.cz E-resources
- Keywords
- DNA sensor, SNP, field-effect transistor, grapevine, graphene, wine authenticity,
- MeSH
- Biosensing Techniques * MeSH
- DNA Probes MeSH
- DNA chemistry MeSH
- Graphite * chemistry MeSH
- Polymerase Chain Reaction MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Probes MeSH
- DNA MeSH
- Graphite * MeSH
Identifying grape varieties in wine, related products, and raw materials is of great interest for enology and to ensure its authenticity. However, these matrices' complexity and low DNA content make this analysis particularly challenging. Integrating DNA analysis with 2D materials, such as graphene, offers an advantageous pathway toward ultrasensitive DNA detection. Here, we show that monolayer graphene provides an optimal test bed for nucleic acid detection with single-base resolution. Graphene's ultrathinness creates a large surface area with quantum confinement in the perpendicular direction that, upon functionalization, provides multiple sites for DNA immobilization and efficient detection. Its highly conjugated electronic structure, high carrier mobility, zero-energy band gap with the associated gating effect, and chemical inertness explain graphene's superior performance. For the first time, we present a DNA-based analytic tool for grapevine varietal discrimination using an integrated portable biosensor based on a monolayer graphene field-effect transistor array. The system comprises a wafer-scale fabricated graphene chip operated under liquid gating and connected to a miniaturized electronic readout. The platform can distinguish closely related grapevine varieties, thanks to specific DNA probes immobilized on the sensor, demonstrating high specificity even for discriminating single-nucleotide polymorphisms, which is hard to achieve with a classical end-point polymerase chain reaction or quantitative polymerase chain reaction. The sensor was operated in ultralow DNA concentrations, with a dynamic range of 1 aM to 0.1 nM and an attomolar detection limit of ∼0.19 aM. The reported biosensor provides a promising way toward developing decentralized analytical tools for tracking wine authenticity at different points of the food value chain, enabling data transmission and contributing to the digitalization of the agro-food industry.
Center of Physics of the Universities of Minho and Porto University of Minho Braga4710 057 Portugal
Centre of Chemistry University of Minho Campus de Gualtar Braga4710 057 Portugal
International Iberian Nanotechnology Laboratory Braga4715 330 Portugal
See more in PubMed
Kokkinomagoulos E.; Kandylis P. Sustainable Exploitation of By-Products of Vitivinicultural Origin in Winemaking. Proceedings 2020, 67, 5.10.3390/asec2020-07521. DOI
Conway J.Global Wine Market-Statistics & Facts. https://www.statista.com/topics/7802/global-wine/#dossierKeyfigures (accessed Dec 01, 2021).
Sáenz-Navajas M. P.; Campo E.; Sutan A.; Ballester J.; Valentin D. Perception of Wine Quality According to Extrinsic Cues: The Case of Burgundy Wine Consumers. Food Qual. Prefer. 2013, 27, 44–53. 10.1016/j.foodqual.2012.06.006. DOI
Romano D.; Rocchi B.; Sadiddin A.; Stefani G.; Zucaro R.; Manganiello V. A SAM-Based Analysis of the Economic Impact of Frauds in the Italian Wine Value Chain. Ital. Econ. J. 2021, 7, 297–321. 10.1007/s40797-020-00137-w. DOI
Ekaterina K.Revision of the EU Legislation on Geographical Indications of Agricultural and Food Products; European Parliamentary Research Service, 2021; pp 1–12.
Directorate-General for Communication . Quality schemes explained, Aims of EU quality schemes. European Commission, 2022. https://ec.europa.eu/info/food-farming-fisheries/food-safety-and-quality/certification/quality-labels/quality-schemes-explained_en.
Villano C.; Lisanti M. T.; Gambuti A.; Vecchio R.; Moio L.; Frusciante L.; Aversano R.; Carputo D. Wine Varietal Authentication Based on Phenolics, Volatiles and DNA Markers: State of the Art, Perspectives and Drawbacks. Food Control 2017, 80, 1–10. 10.1016/j.foodcont.2017.04.020. DOI
Pereira L.; Gomes S.; Barrias S.; Gomes E. P.; Baleiras-Couto M.; Fernandes J. R.; Martins-Lopes P. From the Field to the Bottle—an Integrated Strategy for Wine Authenticity. Beverages 2018, 4, 71.10.3390/beverages4040071. DOI
Gomes S.; Castro C.; Barrias S.; Pereira L.; Jorge P.; Fernandes J. R.; Martins-Lopes P. Alternative SNP Detection Platforms, HRM and Biosensors, for Varietal Identification in Vitis Vinifera L. Using F3H and LDOX Genes. Sci. Rep. 2018, 8, 1–12. 10.1038/s41598-018-24158-9. PubMed DOI PMC
Ipatov A.; Garrido-Maestu A.; Guerreiro J. R.; Purwidyantri A.; Azinheiro S.; Carvalho J.; Roumani F.; Elumalai M.; Prado M.. Application of Omics-Based Miniaturized Systems in Food Quality and Safety. In Application of Omics-based Miniaturized Systems in Food Quality and SafetyFoodomics Omic Strategies and Applications in Food Science; Barros-Velázquez J., Ed.; The Royal Society of Chemistry, 2021; pp 222–256.
Ellis D. I.; Muhamadali H.; Allen D. P.; Elliott C. T.; Goodacre R. A Flavour of Omics Approaches for the Detection of Food Fraud. Curr. Opin. Food Sci. 2016, 10, 7–15. 10.1016/j.cofs.2016.07.002. DOI
Augusto D.; Ibáñez J.; Pinto-Sintra A. L.; Falco F.; Leal M.; Martínez-Zapater J.; Oliveira A. A.; Castro I. Grapevine Diversity and Genetic Relationships in Northeast Portugal Old Vineyards. Plants 2021, 10, 2755.10.3390/plants10122755. PubMed DOI PMC
Rebelo J.; Lourenço-Gomes L.; Gonçalves T.; Caldas J. A Hedonic Price Analysis for the Portuguese Wine Market: Does the Distribution Channel Matter?. J. Appl. Econ. 2019, 22, 40–59. 10.1080/15140326.2018.1550596. DOI
Jaillon O.; Aury J. M.; Noel B.; Policriti A.; Clepet C.; Casagrande A.; Choisne N.; Aubourg S.; Vitulo N.; Jubin C.; Vezzi A.; Legeai F.; Hugueney P.; Dasilva C.; Horner D.; Mica E.; Jublot D.; Poulain J.; Bruyère C.; Billault A.; Segurens B.; Gouyvenoux M.; Ugarte E.; Cattonaro F.; Anthouard V.; Vico V.; Del Fabbro C.; Alaux M.; Di Gaspero G.; Dumas V.; Felice N.; Paillard S.; Juman I.; Moroldo M.; Scalabrin S.; Canaguier A.; Le Clainche I.; Malacrida G.; Durand E.; Pesole G.; Laucou V.; Chatelet P.; Merdinoglu D.; Delledonne M.; Pezzotti M.; Lecharny A.; Scarpelli C.; Artiguenave F.; Pè M. E.; Valle G.; Morgante M.; Caboche M.; Adam-Blondon A. F.; Weissenbach J.; Quétier F.; Wincker P. The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla. Nature 2007, 449, 463–467. 10.1038/nature06148. PubMed DOI
Velasco R.; Zharkikh A.; Troggio M.; Cartwright D. A.; Cestaro A.; Pruss D.; Pindo M.; FitzGerald L. M.; Vezzulli S.; Reid J.; Malacarne G.; Iliev D.; Coppola G.; Wardell B.; Micheletti D.; Macalma T.; Facci M.; Mitchell J. T.; Perazzolli M.; Eldredge G.; Gatto P.; Oyzerski R.; Moretto M.; Gutin N.; Stefanini M.; Chen Y.; Segala C.; Davenport C.; Demattè L.; Mraz A.; Battilana J.; Stormo K.; Costa F.; Tao Q.; Si-Ammour A.; Harkins T.; Lackey A.; Perbost C.; Taillon B.; Stella A.; Solovyev V.; Fawcett J. A.; Sterck L.; Vandepoele K.; Grando S. M.; Toppo S.; Moser C.; Lanchbury J.; Bogden R.; Skolnick M.; Sgaramella V.; Bhatnagar S. K.; Fontana P.; Gutin A.; Van de Peer Y.; Salamini F.; Viola R. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS One 2007, 2, e132610.1371/journal.pone.0001326. PubMed DOI PMC
Troggio M.; Malacarne G.; Coppola G.; Segala C.; Cartwright D. A.; Pindo M.; Stefanini M.; Mank R.; Moroldo M.; Morgante M.; Grando M. S.; Velasco R. A Dense Single-Nucleotide Polymorphism-Based Genetic Linkage Map of Grapevine (Vitis Vinifera L.) Anchoring Pinot Noir Bacterial Artificial Chromosome Contigs. Genetics 2007, 176, 2637–2650. 10.1534/genetics.106.067462. PubMed DOI PMC
Wu B. H.; Cao Y. G.; Guan L.; Xin H. P.; Li J. H.; Li S. H. Genome-Wide Transcriptional Profiles of the Berry Skin of Two Red Grape Cultivars (Vitis Vinifera) in Which Anthocyanin Synthesis Is Sunlight-Dependent or - Independent. PLoS One 2014, 9, e10595910.1371/journal.pone.0105959. PubMed DOI PMC
Röckel F.; Moock C.; Braun U.; Schwander F.; Cousins P.; Maul E.; Töpfer R.; Hausmann L. Color Intensity of the Red-Fleshed Berry Phenotype of Vitis Vinifera Teinturier Grapes Varies Due to a 408 Bp Duplication in the Promoter of Vvmyba1. Genes (Basel) 2020, 11, 891.10.3390/genes11080891. PubMed DOI PMC
Vignani R.; Liò P.; Scali M. How to Integrate Wet Lab and Bioinformatics Procedures for Wine DNA Admixture Analysis and Compositional Profiling: Case Studies and Perspectives. PLoS One 2019, 14, e021196210.1371/journal.pone.0211962. PubMed DOI PMC
Meyer R.; Chardonnens F.; Hübner P.; Lüthy J. Polymerase Chain Reaction (PCR) in the Quality and Safety Assurance of Food: Detection of Soya in Processed Meat Products. Z. Lebensm.-Unters. Forsch. 1996, 203, 339–344. 10.1007/BF01231072. PubMed DOI
Longin C.; Guilloux-Benatier M.; Alexandre H. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR. Front. Microbiol. 2016, 7, 831.10.3389/fmicb.2016.00831. PubMed DOI PMC
Galstyan A. G.; Semipyatniy V. K.; Mikhailova I. Y.; Gilmanov K. K.; Bigaeva A. v.; Vafin R. R. Methodological Approaches to DNA Authentication of Foods, Wines and Raw Materials for Their Production. Foods 2021, 10, 595.10.3390/foods10030595. PubMed DOI PMC
Işçi B.; Kalkan Yildirim H.; Altindisli A. Evaluation of Methods for DNA Extraction from Must and Wine. J. Inst. Brew. 2014, 120, 238–243. 10.1002/jib.129. DOI
Oganesyants L. A.; Vafin R. R.; Galstyan A. G.; Semipyatniy V. K.; Khurshudyan S. A.; Ryabova A. E. Prospects for DNA Authentication in Wine Production Monitoring. Foods and Raw Materials 2018, 6, 438.10.21603/2308-4057-2018-2-438-448. DOI
Pereira L.; Guedes-Pinto H.; Martins-Lopes P. An Enhanced Method for Vitis Vinifera L. DNA Extraction from Wines. Am. J. Enol. Vitic. 2011, 62, 547.10.5344/ajev.2011.10022. DOI
Onache A. P.; Bădulescu A.; Dumitru A. M.; Sumedrea D. I.; Popescu C. F. Comparison Of Some DNA Extraction Methods from Monovarietal Must and Wines. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49 (2), 12349.10.15835/nbha49212349. DOI
Savazzini F.; Martinelli L. DNA Analysis in Wines: Development of Methods for Enhanced Extraction and Real-Time Polymerase Chain Reaction Quantification. Anal. Chim. Acta 2006, 563, 274–282. 10.1016/j.aca.2005.10.078. DOI
Terrades S.; Wagner S.; Ros-Lis J. V.; Ibáñez J.; Andrés A. Optical System for Automatic Color Monitoring in Heterogeneous Media during Vinification Processes. Sens. Actuators, B 2019, 285, 513–518. 10.1016/j.snb.2019.01.033. DOI
Prabowo B. A.; Purwidyantri A.; Liu B.; Lai H. C.; Liu K. C. Gold Nanoparticle-Assisted Plasmonic Enhancement for DNA Detection on a Graphene-Based Portable Surface Plasmon Resonance Sensor. Nanotechnology 2021, 32, 095503.10.1088/1361-6528/abcd62. PubMed DOI
Pfusterschmied G.; Toledo J.; Kucera M.; Steindl W.; Zemann S.; Ruiz-Díez V.; Schneider M.; Bittner A.; Sanchez-Rojas J. L.; Schmid U. Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring. Micromachines (Basel) 2017, 8, 200.10.3390/mi8070200. PubMed DOI PMC
Moyano A.; Salvador M.; Martínez-García J. C.; Socoliuc V.; Vékás L.; Peddis D.; Alvarez M. A.; Fernández M.; Rivas M.; Blanco-López M. C. Magnetic Immunochromatographic Test for Histamine Detection in Wine. Anal. Bioanal. Chem. 2019, 411, 6615–6624. 10.1007/s00216-019-02031-6. PubMed DOI
Begum P.; Morozumi T.; Kawaguchi T.; Sone T. Development of an Electrochemical Sensing System for Wine Component Analysis. ACS Food Sci. Technol. 2021, 1, 2030–2040. 10.1021/acsfoodscitech.1c00146. DOI
Raymundo-Pereira P. A.; Gomes N. O.; Carvalho J. H. S.; Machado S. A. S.; Oliveira O. N.; Janegitz B. C. Simultaneous Detection of Quercetin and Carbendazim in Wine Samples Using Disposable Electrochemical Sensors. ChemElectroChem 2020, 7, 3074–3081. 10.1002/celc.202000788. DOI
Kaisti M. Detection Principles of Biological and Chemical FET Sensors. Biosens. Bioelectron. 2017, 98, 437–448. 10.1016/j.bios.2017.07.010. PubMed DOI
Kaisti M.; Kerko A.; Aarikka E.; Saviranta P.; Boeva Z.; Soukka T.; Lehmusvuori A. Real-Time Wash-Free Detection of Unlabeled PNA-DNA Hybridization Using Discrete FET Sensor. Sci. Rep. 2017, 7, 15734.10.1038/s41598-017-16028-7. PubMed DOI PMC
Lin L.; Peng H.; Liu Z. Synthesis Challenges for Graphene Industry. Nat. Mater. 2019, 18, 520.10.1038/s41563-019-0341-4. PubMed DOI
Choi S. H.; Yun S. J.; Won Y. S.; Oh C. S.; Kim S. M.; Kim K. K.; Lee Y. H. Large-Scale Synthesis of Graphene and Other 2D Materials towards Industrialization. Nat. Commun. 2022, 13, 1484.10.1038/s41467-022-29182-y. PubMed DOI PMC
Cao Z.; Yadav P.; Barati Farimani A. Which 2D Material Is Better for DNA Detection: Graphene, MoS2, or MXene?. Nano Lett. 2022, 22, 7874.10.1021/acs.nanolett.2c02603. PubMed DOI
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. 10.1126/science.aab1343. PubMed DOI
Vermisoglou E.; Panáček D.; Jayaramulu K.; Pykal M.; Frébort I.; Kolář M.; Hajdúch M.; Zbořil R.; Otyepka M. Human Virus Detection with Graphene-Based Materials. Biosens. Bioelectron. 2020, 166, 112436.10.1016/j.bios.2020.112436. PubMed DOI PMC
Li J.; Chen M.; Samad A.; Dong H.; Ray A.; Zhang J.; Jiang X.; Schwingenschlögl U.; Domke J.; Chen C.; Han Y.; Fritz T.; Ruoff R. S.; Tian B.; Zhang X. Wafer-Scale Single-Crystal Monolayer Graphene Grown on Sapphire Substrate. Nat. Mater. 2022, 21, 740.10.1038/s41563-021-01174-1. PubMed DOI
Kwong Hong Tsang D.; Lieberthal T. J.; Watts C.; Dunlop I. E.; Ramadan S.; del Rio Hernandez A. E.; Klein N. Chemically Functionalised Graphene FET Biosensor for the Label-Free Sensing of Exosomes. Sci. Rep. 2019, 9, 2–11. 10.1038/s41598-019-50412-9. PubMed DOI PMC
Papamatthaiou S.; Estrela P.; Moschou D. Printable Graphene BioFETs for DNA Quantification in Lab-on-PCB Microsystems. Sci. Rep. 2021, 11, 9815.10.1038/s41598-021-89367-1. PubMed DOI PMC
Purwidyantri A.; Ipatov A.; Domingues T.; Borme J.; Martins M.; Alpuim P.; Prado M. Programmable Graphene-Based Microfluidic Sensor for DNA Detection. Sens. Actuators, B 2022, 367, 132044.10.1016/j.snb.2022.132044. DOI
Cabral P. D.; Domingues T.; Machado G.; Chicharo A.; Cerqueira F.; Fernandes E.; Athayde E.; Alpuim P.; Borme J. Clean-Room Lithographical Processes for the Fabrication of Graphene Biosensors. Materials 2020, 13, 5728.10.3390/ma13245728. PubMed DOI PMC
Purwidyantri A.; Domingues T.; Borme J.; Guerreiro J. R.; Ipatov A.; Abreu C. M.; Martins M.; Alpuim P.; Prado M. Influence of the Electrolyte Salt Concentration on DNA Detection with Graphene Transistors. Biosensors (Basel) 2021, 11, 24.10.3390/bios11010024. PubMed DOI PMC
Aliakbarinodehi N.; Jolly P.; Bhalla N.; Miodek A.; De Micheli G.; Estrela P.; Carrara S. Aptamer-Based Field-Effect Biosensor for Tenofovir Detection. Sci. Rep. 2017, 7, 44409.10.1038/srep44409. PubMed DOI PMC
Nguyen N. H. L.; Kim S.; Lindemann G.; Berry V. COVID-19 Spike Protein Induced Phononic Modification in Antibody-Coupled Graphene for Viral Detection Application. ACS Nano 2021, 15, 11743.10.1021/acsnano.1c02549. PubMed DOI
Woo S. O.; Froberg J.; Pan Y.; Tani S.; Goldsmith B. R.; Yang Z.; Choi Y. Protein Detection Using Quadratic Fit Analysis near the Dirac Point of Graphene Field-Effect Biosensors. ACS Appl. Electron. Mater. 2020, 2, 913–919. 10.1021/acsaelm.9b00840. PubMed DOI PMC
de Almeida P. R.; Murad A. M.; Silva L. P.; Rech E. L.; Alves E. S. Development of a Graphene-Based Biosensor for Detecting Recombinant Cyanovirin-N. Biosensors (Basel) 2020, 10, 206.10.3390/bios10120206. PubMed DOI PMC
Ohno Y.; Maehashi K.; Yamashiro Y.; Matsumoto K. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting PH and Protein Adsorption. Nano Lett. 2009, 9, 3318–3322. 10.1021/nl901596m. PubMed DOI
Campos R.; Borme J.; Guerreiro J. R.; Machado G.; Cerqueira M. F.; Petrovykh D. Y.; Alpuim P. Attomolar Label-Free Detection of Dna Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens. 2019, 4, 286–293. 10.1021/acssensors.8b00344. PubMed DOI
Chen T. Y.; Loan P. T. K.; Hsu C. L.; Lee Y. H.; Tse-Wei Wang J.; Wei K. H.; Lin C. T.; Li L. J. Label-Free Detection of DNA Hybridization Using Transistors Based on CVD Grown Graphene. Biosens. Bioelectron. 2013, 41, 103–109. 10.1016/j.bios.2012.07.059. PubMed DOI
Wenmackers S.; Vermeeren V.; vandeVen M.; Ameloot M.; Bijnens N.; Haenen K.; Michiels L.; Wagner P. Diamond-Based DNA Sensors: Surface Functionalization and Read-out Strategies. Phys. Status Solidi A 2009, 206, 391–408. 10.1002/pssa.200880486. DOI
Hwang M. T.; Landon B. L.; Lee L.; Choi C.; Mo H. M.; Glinsky G.; Lal L. Highly Specific SNP Detection Using 2D Graphene Electronics and DNA Strand Displacement. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 7088.10.1073/pnas.1603753113. PubMed DOI PMC
Cheung K. M.; Abendroth J. M.; Nakatsuka N.; Zhu B.; Yang Y.; Andrews A. M.; Weiss P. S. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Nano Lett. 2020, 20, 5982–5990. 10.1021/acs.nanolett.0c01971. PubMed DOI PMC
Bauer M.; Kantelhardt E. J.; Stiewe T.; Nist A.; Mernberger M.; Politt K.; Hanf V.; Lantzsch T.; Uleer C.; Peschel S.; John J.; Buchmann J.; Weigert E.; Bürrig K. F.; Wickenhauser C.; Thomssen C.; Bartel F.; Vetter M. Specific Allelic Variants of SNPs in the MDM2 and MDMX Genes Are Associated with Earlier Tumor Onset and Progression in Caucasian Breast Cancer Patients. Oncotarget 2019, 10, 1975.10.18632/oncotarget.26768. PubMed DOI PMC
Ahmed Z.; Zeeshan S.; Mendhe D.; Dong X. Human Gene and Disease Associations for Clinical-genomics and Precision Medicine Research. Clin. Transl. Med. 2020, 10, 297.10.1002/ctm2.28. PubMed DOI PMC
Elumalai M.; Ipatov A.; Carvalho J.; Guerreiro J.; Prado M. Dual Colorimetric Strategy for Specific DNA Detection by Nicking Endonuclease-Assisted Gold Nanoparticle Signal Amplification. Anal. Bioanal. Chem. 2022, 414, 5239.10.1007/s00216-021-03564-5. PubMed DOI
Li Z.; Zhu W.; Zhang J.; Jiang J.; Shen G.; Yu R. A Label-Free Amplified Fluorescence DNA Detection Based on Isothermal Circular Strand-Displacement Polymerization Reaction and Graphene Oxide. Analyst 2013, 138, 3616.10.1039/c3an00421j. PubMed DOI
Luo M.; Chen X.; Zhou G.; Xiang X.; Chen L.; Ji X.; He Z. Chemiluminescence Biosensors for DNA Detection Using Graphene Oxide and a Horseradish Peroxidase-Mimicking DNAzyme. Chem. Commun. 2012, 48, 1126–1128. 10.1039/c2cc16868e. PubMed DOI
Xia Y.; Sun Y.; Li H.; Chen S.; Zhu T.; Wang G.; Man B.; Pan J.; Yang C. Plasma Treated Graphene FET Sensor for the DNA Hybridization Detection. Talanta 2021, 223, 121766.10.1016/j.talanta.2020.121766. PubMed DOI
Huang C. C.; Kuo Y. H.; Chen Y. S.; Huang P. C.; Lee G. B. A Miniaturized, DNA-FET Biosensor-Based Microfluidic System for Quantification of Two Breast Cancer Biomarkers. Microfluid. Nanofluid. 2021, 25, 33.10.1007/s10404-021-02437-8. DOI
Sui J.; Gandotra N.; Xie P.; Lin Z.; Scharfe C.; Javanmard M. Multi-Frequency Impedance Sensing for Detection and Sizing of DNA Fragments. Sci. Rep. 2021, 11, 6490.10.1038/s41598-021-85755-9. PubMed DOI PMC
Balaji A.; Yang S.; Wang J.; Zhang J. Graphene Oxide-Based Nanostructured DNA Sensor. Biosensors (Basel) 2019, 9, 74.10.3390/bios9020074. PubMed DOI PMC
Dong H.; Zhu Z.; Ju H.; Yan F. Triplex Signal Amplification for Electrochemical DNA Biosensing by Coupling Probe-Gold Nanoparticles-Graphene Modified Electrode with Enzyme Functionalized Carbon Sphere as Tracer. Biosens. Bioelectron. 2012, 33, 228–232. 10.1016/j.bios.2012.01.006. PubMed DOI
Gao S.; Sun L.-P.; Li J.; Jin L.; Ran Y.; Huang Y.; Guan B.-O. High-Sensitivity DNA Biosensor Based on Microfiber Sagnac Interferometer. Opt. Express 2017, 25, 13305–13313. 10.1364/oe.25.013305. PubMed DOI
Chen Z.; Liu X.; Liu D.; Li F.; Wang L.; Liu S. Ultrasensitive Electrochemical DNA Biosensor Fabrication by Coupling an Integral Multifunctional Zirconia-Reduced Graphene Oxide-Thionine Nanocomposite and Exonuclease I-Assisted Cleavage. Front. Chem. 2020, 8, 521.10.3389/fchem.2020.00521. PubMed DOI PMC
Hwang M. T.; Heiranian M.; Kim Y.; You S.; Leem J.; Taqieddin A.; Faramarzi V.; Jing Y.; Park I.; van der Zande A. M.; Nam S.; Aluru N. R.; Bashir R. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543.10.1038/s41467-020-15330-9. PubMed DOI PMC