Monitoring COVID-19 spread in selected Prague's schools based on the presence of SARS-CoV-2 RNA in wastewater
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
36731569
PubMed Central
PMC9886433
DOI
10.1016/j.scitotenv.2023.161935
PII: S0048-9697(23)00550-8
Knihovny.cz E-resources
- Keywords
- COVID-19 epidemic, Prague, RT-mqPCR, SARS-CoV-2, Sewer network, Wastewater-based epidemiology,
- MeSH
- COVID-19 * epidemiology MeSH
- Humans MeSH
- Wastewater MeSH
- Pandemics MeSH
- RNA, Viral MeSH
- SARS-CoV-2 genetics MeSH
- Schools MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Wastewater MeSH
- RNA, Viral MeSH
The COVID-19 pandemic has demanded a broad range of techniques to better monitor its extent. Owing to its consistency, non-invasiveness, and cost effectiveness, wastewater-based epidemiology has emerged as a relevant approach to monitor the pandemic's course. In this work, we analyzed the extent of the COVID-19 pandemic in five primary schools in Prague, the Czech Republic, and how different preventive measures impact the presence of SARS-CoV-2 RNA copy numbers in wastewaters. Copy numbers were measured by reverse transcription-multiplex quantitative real-time PCR. These copy numbers were compared to the number of infected individuals in each school identified through regular clinical tests. Each school had a different monitoring regime and subsequent application of preventive measures to thwart the spread of COVID-19. The schools that constantly identified and swiftly quarantined infected individuals exhibited persistently low amounts of SARS-CoV-2 RNA copies in their wastewaters. In one school, a consistent monitoring of infected individuals, coupled with a delayed action to quarantine, allowed for the estimation of a linear model to predict the number of infected individuals based on the presence of SARS-CoV-2 RNA in the wastewater. The results show the importance of case detection and quarantining to stop the spread of the pandemic and its impact on the presence of SARS-CoV-2 RNA in wastewaters. This work also shows that wastewater-based epidemiological models can be reliably used even in small water catchments, but difficulties arise to fit models due to the nonconstant input of viral particles into the wastewater systems.
Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Czechia
Department of Biotechnology University of Chemistry and Technology Prague Czechia
See more in PubMed
Acer P.T., Kelly L.M., Lover A.A., Butler C.S. Quantifying the relationship between SARS-CoV-2 wastewater concentrations and building-level COVID-19 prevalence at an isolation residence: a passive sampling approach. Int. J. Environ. Res. Public Health. 2022;19(18):11245. PubMed PMC
Ahmed W., Bertsch P.M., Angel N., Bibby K., Bivins A., Dierens L., Edson J., Ehret J., Gyawali P., Hamilton K.A., Hosegood I., Hugenholtz P., Jiang G., Kitajima M., Sichani H.T., Shi J., Shimko K.M., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Zaugg J., Mueller J.F. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 2020;27(5) PubMed PMC
Albastaki A., Naji M., Lootah R., Almeheiri R., Almulla H., Almarri I., Alreyami A., Aden A., Alghafri R. First confirmed detection of SARS-COV-2 in untreated municipal and aircraft wastewater in Dubai, UAE: the use of wastewater based epidemiology as an early warning tool to monitor the prevalence of COVID-19. Sci. Total Environ. 2021;760 PubMed PMC
Bitter L.C., Kibbee R., Jiménez G.C., Örmeci B. Wastewater surveillance of SARS-CoV-2 at a Canadian university campus and the impact of wastewater characteristics on viral RNA detection. ACS ES&T Water. 2022;2(11):2034–2046. PubMed
Castro-Gutierrez V., Hassard F., Vu M., Leitao R., Burczynska B., Wildeboer D., Stanton I., Rahimzadeh S., Baio G., Garelick H., Hofman J., Kasprzyk-Hordern B., Kwiatkowska R., Majeed A., Priest S., Grimsley J., Lundy L., Singer A.C., Di Cesare M. Monitoring occurrence of SARS-CoV-2 in school populations: a wastewater-based approach. PLOS ONE. 2022;17(6) PubMed PMC
Ciuca I.M. COVID-19 in children: an ample review. Risk Manag. Healthc. Policy. 2020;13:661–669. PubMed PMC
Colosi L.M., Barry K.E., Kotay S.M., Porter M.D., Poulter M.D., Ratliff C., Simmons W., Steinberg L.I., Wilson D.D., Morse R., Zmick P., Mathers A.J., Drake H.L. Development of wastewater pooled surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from congregate living settings. Applied and Environmental Microbiology. 2021;87(13) PubMed PMC
Crowe J., Schnaubelt A.T., SchmidtBonne S., Angell K., Bai J., Eske T., Nicklin M., Pratt C., White B., Crotts-Hannibal B., Staffend N., Herrera V., Cobb J., Conner J., Carstens J., Tempero J., Bouda L., Ray M., Lawler J.V., Campbell W.S., Lowe J.-M., Santarpia J., Bartelt-Hunt S., Wiley M., Brett-Major D., Logan C., Broadhurst M.J. Assessment of a program for SARS-CoV-2 screening and environmental monitoring in an urban public school district. JAMA Netw. Open. 2021;4(9):e2126447. PubMed PMC
Feng L., Zhang W., Li X. Monitoring of regional drug abuse through wastewater-based epidemiology—a critical review. Sci. China Earth Sci. 2018;61(3):239–255.
Fielding-Miller R., Karthikeyan S., Gaines T., Garfein R.S., Salido R., Cantu V., Kohn L., Martin N.K., Wijaya C., Flores M., Omaleki V., Majnoonian A., Gonzalez-Zuniga P., Nguyen M., Vo A.V., Le T., Duong D., Hassani A., Dahl A., Tweeten S., Jepsen K., Henson B., Hakim A., Birmingham A., Mark A.M., Nasamran C.A., Rosenthal S.B., Moshiri N., Fisch K.M., Humphrey G., Farmer S., Tubb H.M., Valles T., Morris J., Kang J., Khaleghi B., Young C., Akel A.D., Eilert S., Eno J., Curewitz K., Laurent L.C., Rosing T., Knight R. medRxiv; 2021. Wastewater and Surface Monitoring to Detect COVID-19 in Elementary School Settings: The Safer at School Early Alert Project. 2021.2010.2019.21265226. PubMed PMC
George A.D., Kaya D., Layton B.A., Bailey K., Mansell S., Kelly C., Williamson K.J., Radniecki T.S. Impact of sampling type, frequency, and scale of the collection system on SARS-CoV-2 quantification Fidelity. Environ. Sci. Technol. Lett. 2022;9(2):160–165. PubMed
Gonzalez R., Curtis K., Bivins A., Bibby K., Weir M.H., Yetka K., Thompson H., Keeling D., Mitchell J., Gonzalez D. COVID-19 surveillance in southeastern Virginia using wastewater-based epidemiology. Water Res. 2020;186 PubMed PMC
Hougs L., Gatto F., Goerlich O., Grohmann L., Lieske K., Mazzara M., Narendja F., Ovesna J., Papazova N., Scholtens I. CRC Press; 2019. Testing and Analysis of GMO-containing Foods and Feed; pp. 245–266.
Choi P.M., Tscharke B.J., Donner E., O'Brien J.W., Grant S.C., Kaserzon S.L., Mackie R., O'Malley E., Crosbie N.D., Thomas K.V., Mueller J.F. Wastewater-based epidemiology biomarkers: past, present and future. TrAC Trends Anal. Chem. 2018;105:453–469.
Iacobucci G. Covid-19: runny nose, headache, and fatigue are commonest symptoms of omicron, early data show. BMJ. 2021;375 PubMed
JRC D.F.-H., Consumers and Reference Materials (Geel) European Commission Joint Research Center . 2020. Reference Material, Product Information Sheet, EURM-019, Geel, Belgium.
Komenda M., Panoška P., Bulhart V., Žofka J., Brauner T., Hak J., Jarkovský J., Mužík J., Blaha M., Kubát J., Klimeš D., Langhammer P., Daňková Š., Májek O., Bartůňková M., Dušek L. Ministry of Health of the Czech Republic; Prague: 2020. COVID-19: Přehled aktuální situace v ČR. Onemocnění aktuálně.
Kotay S.M., Tanabe K.O., Colosi L.M., Poulter M.D., Barry K.E., Holstege C.P., Mathers A.J., Porter M.D. Building-level wastewater surveillance for SARS-CoV-2 in occupied university dormitories as an outbreak forecasting tool: one year case study. ACS ES&T Water. 2022;2(11):2094–2104. PubMed
Langan L.M., O’Brien M., Rundell Z.C., Back J.A., Ryan B.J., Chambliss C.K., Norman R.S., Brooks B.W. Comparative analysis of RNA-extraction approaches and associated influences on RT-qPCR of the SARS-CoV-2 RNA in a university residence hall and quarantine location. ACS ES&T Water. 2022;2(11):1929–1943. PubMed
Liu P., Ibaraki M., VanTassell J., Geith K., Cavallo M., Kann R., Guo L., Moe C.L. A sensitive, simple, and low-cost method for COVID-19 wastewater surveillance at an institutional level. Sci. Total Environ. 2022;807 PubMed PMC
Lu E., Ai Y., Davis A., Straathof J., Halloran K., Hull N., Winston R., Weir M.H., Soller J., Bohrerova Z., Oglesbee M., Lee J. Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. Environ. Res. 2022;212 PubMed PMC
Mazumder P., Dash S., Honda R., Sonne C., Kumar M. Sewage surveillance for SARS-CoV-2: molecular detection, quantification, and normalization factors. Curr. Opin. Environ. Sci. Health. 2022;28 PubMed PMC
McMahan C.S., Self S., Rennert L., Kalbaugh C., Kriebel D., Graves D., Colby C., Deaver J.A., Popat S.C., Karanfil T., Freedman D.L. COVID-19 wastewater epidemiology: a model to estimate infected populations. Lancet Planet. Health. 2021;5(12):e874–e881. PubMed PMC
Mousazadeh M., Ashoori R., Paital B., Kabdaşlı I., Frontistis Z., Hashemi M., Sandoval M.A., Sherchan S., Das K., Emamjomeh M.M. Wastewater based epidemiology perspective as a faster protocol for detecting coronavirus RNA in human populations: a review with specific reference to SARS-CoV-2 virus. Pathogens. 2021;10(8):1008. PubMed PMC
Ng O.T., Marimuthu K., Koh V., Pang J., Linn K.Z., Sun J., De Wang L., Chia W.N., Tiu C., Chan M., Ling L.M., Vasoo S., Abdad M.Y., Chia P.Y., Lee T.H., Lin R.J., Sadarangani S.P., Chen M.I.C., Said Z., Kurupatham L., Pung R., Wang L.-F., Cook A.R., Leo Y.-S., Lee V.J.M. SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study. Lancet Infect. Dis. 2021;21(3):333–343. PubMed PMC
Olesen S.W., Imakaev M., Duvallet C. Making waves: defining the lead time of wastewater-based epidemiology for COVID-19. Water Res. 2021;202 PubMed PMC
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2020. R: A Language and Environment for Statistical Computing.
Rainey A.L., Buschang K., O’Connor A., Love D., Wormington A.M., Messcher R.L., Loeb J.C., Robinson S.E., Ponder H., Waldo S., Williams R., Shapiro J., McAlister E.B., Lauzardo M., Lednicky J.A., Maurelli A.T., Sabo-Attwood T., Bisesi J.H., Jr. ACS ES&T Water; 2022. Retrospective analysis of wastewater-based epidemiology of SARS-CoV-2 in residences on a large college campus: relationships between wastewater outcomes and COVID-19 cases across two semesters with different COVID-19 mitigation policies. PubMed
Sellers S.C., Gosnell E., Bryant D., Belmonte S., Self S., McCarter M.S.J., Kennedy K., Norman R.S. Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. Environ. Res. 2022;215 PubMed PMC
Sherchan S.P., Shahin S., Ward L.M., Tandukar S., Aw T.G., Schmitz B., Ahmed W., Kitajima M. First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci. Total Environ. 2020;743 PubMed PMC
Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. PubMed PMC
Wang Y., Liu P., Zhang H., Ibaraki M., VanTassell J., Geith K., Cavallo M., Kann R., Saber L., Kraft C.S., Lane M., Shartar S., Moe C. Early warning of a COVID-19 surge on a university campus based on wastewater surveillance for SARS-CoV-2 at residence halls. Sci. Total Environ. 2022;821 PubMed PMC
Wang Z., Zhou Q., Wang C., Shi Q., Lu S., Ma Y., Luo X., Xun Y., Li W., Baskota M., Yang Y., Zhai H., Fukuoka T., Ahn H.S., Lee M.S., Luo Z., Liu E., Chen Y., Evidence C., Recommendations Working Group O.B.O. Clinical characteristics of children with COVID-19: a rapid review and meta-analysis. Annals of Translational Medicine. 2020;8(10):620. PubMed PMC
Wartell B.A., Proano C., Bakalian L., Kaya D., Croft K., McCreary M., Lichtenstein N., Miske V., Arcellana P., Boyer J., Benschoten I.V., Anderson M., Crabb A., Gilson S., Gourley A., Wheeler T., Trest B., Bowman G., Kjellerup B.V. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: lessons learned. Water Environ. Res. 2022;94(11) PubMed PMC
Wickham H. Springer-Verlag; New York: 2016. ggplot2: Elegant Graphics for Data Analysis.
Wu F., Lee W.L., Chen H., Gu X., Chandra F., Armas F., Xiao A., Leifels M., Rhode S.F., Wuertz S., Thompson J., Alm E.J. Making waves: wastewater surveillance of SARS-CoV-2 in an endemic future. Water Res. 2022;219 PubMed PMC
Xie Y., Challis J.K., Oloye F.F., Asadi M., Cantin J., Brinkmann M., McPhedran K.N., Hogan N., Sadowski M., Jones P.D., Landgraff C., Mangat C., Servos M.R., Giesy J.P. RNA in municipal wastewater reveals magnitudes of COVID-19 outbreaks across four waves driven by SARS-CoV-2 variants of concern. ACS ES&T Water. 2022;2(11):1852–1862. PubMed
Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y., Guo Q., Sun X., Zhao D., Shen J., Zhang H., Liu H., Xia H., Tang J., Zhang K., Gong S. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020;26(4):502–505. PubMed PMC
Zambrana W., Catoe D., Coffman M.M., Kim S., Anand A., Solis D., Sahoo M.K., Pinsky B.A., Bhatt A.S., Boehm A.B., Wolfe M.K. SARS-CoV-2 RNA and N antigen quantification via wastewater at the campus level, building cluster level, and individual-building level. ACS ES&T Water. 2022;2(11):2025–2033. PubMed
Zdenkova K., Bartackova J., Cermakova E., Demnerova K., Dostalkova A., Janda V., Jarkovsky J., Lopez Marin M.A., Novakova Z., Rumlova M., Ambrozova J.R., Skodakova K., Swierczkova I., Sykora P., Vejmelkova D., Wanner J., Bartacek J. Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network. Water Res. 2022;216 PubMed PMC