Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review

. 2023 Feb 05 ; 15 (4) : . [epub] 20230205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu systematický přehled, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36839176

Grantová podpora
Acta0037Proy151TG Dynamical Business & Science Society - DBSS International SAS

It is estimated that three to five million sports injuries occur worldwide each year. The highest incidence is reported during competition periods with mainly affectation of the musculoskeletal tissue. For appropriate nutritional management and correct use of nutritional supplements, it is important to individualize based on clinical effects and know the adaptive response during the rehabilitation phase after a sports injury in athletes. Therefore, the aim of this PRISMA in Exercise, Rehabilitation, Sport Medicine and Sports Science PERSiST-based systematic integrative review was to perform an update on nutritional strategies during the rehabilitation phase of musculoskeletal injuries in elite athletes. After searching the following databases: PubMed/Medline, Scopus, PEDro, and Google Scholar, a total of 18 studies met the inclusion criteria (Price Index: 66.6%). The risk of bias assessment for randomized controlled trials was performed using the RoB 2.0 tool while review articles were evaluated using the AMSTAR 2.0 items. Based on the main findings of the selected studies, nutritional strategies that benefit the rehabilitation process in injured athletes include balanced energy intake, and a high-protein and carbohydrate-rich diet. Supportive supervision should be provided to avoid low energy availability. The potential of supplementation with collagen, creatine monohydrate, omega-3 (fish oils), and vitamin D requires further research although the effects are quite promising. It is worth noting the lack of clinical research in injured athletes and the higher number of reviews in the last 10 years. After analyzing the current quantitative and non-quantitative evidence, we encourage researchers to conduct further clinical research studies evaluating doses of the discussed nutrients during the rehabilitation process to confirm findings, but also follow international guidelines at the time to review scientific literature.

Zobrazit více v PubMed

Wall B.T., van Loon L.J. Nutritional strategies to attenuate muscle disuse atrophy. Nutr. Rev. 2013;71:195–208. doi: 10.1111/nure.12019. PubMed DOI

Seki K., Taniguchi Y., Narusawa M. Effects of joint immobilization on firing rate modulation of human motor units. J. Physiol. 2001;530:507–519. doi: 10.1111/j.1469-7793.2001.0507k.x. PubMed DOI PMC

Shackelford L., LeBlanc A., Driscoll T., Evans H., Rianon N., Smith S., Spector E., Feeback D., Lai D. Resistance exercise as a countermeasure to disuse-induced bone loss. J. Appl. Physiol. 2004;97:119–129. doi: 10.1152/japplphysiol.00741.2003. PubMed DOI

Capelli C., Antonutto G., Kenfack M.A., Cautero M., Lador F., Moia C., Tam E., Ferretti G. Factors determining the time course of VO2(max) decay during bedrest: Implications for VO2(max) limitation. Eur. J. Appl. Physiol. 2006;98:152–160. doi: 10.1007/s00421-006-0252-3. PubMed DOI

McGuire D.K., Levine B.D., Williamson J.W., Snell P.G., Blomqvist C.G., Saltin B., Mitchell J.H. A 30-year follow-up of the Dallas Bedrest and Training Study: I. Effect of age on the cardiovascular response to exercise. Circulation. 2001;104:1350–1357. doi: 10.1161/circ.104.12.1350. PubMed DOI

Dirks M.L., Wall B.T., van de Valk B., Holloway T.M., Holloway G.P., Chabowski A., Goossens G.H., van Loon L.J. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes. 2016;65:2862–2875. doi: 10.2337/db15-1661. PubMed DOI

Abadi A., Glover E.I., Isfort R.J., Raha S., Safdar A., Yasuda N., Kaczor J.J., Melov S., Hubbard A., Qu X., et al. Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS ONE. 2009;4:e6518. doi: 10.1371/journal.pone.0006518. PubMed DOI PMC

Ferrando A.A., Lane H.W., Stuart C.A., Davis-Street J., Wolfe R.R. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis. Am. J. Physiol. 1996;270:E627–E633. doi: 10.1152/ajpendo.1996.270.4.E627. PubMed DOI

Ryan J.L., Pracht E.E., Orban B.L. Inpatient and emergency department costs from sports injuries among youth aged 5-18 years. BMJ Open Sport Exerc. Med. 2019;5 doi: 10.1136/bmjsem-2018-000491. PubMed DOI PMC

Papadopoulou S.K., Mantzorou M., Kondyli-Sarika F., Alexandropoulou I., Papathanasiou J., Voulgaridou G., Nikolaidis P.T. The Key Role of Nutritional Elements on Sport Rehabilitation and the Effects of Nutrients Intake. Sports. 2022;10:84. doi: 10.3390/sports10060084. PubMed DOI PMC

Tipton K.D., Phillips S.M. Limits of Human Endurance. Volume 76. Karger Publishers; Basel, Switzerland: 2013. Dietary protein for muscle hypertrophy; pp. 73–84. (Nestle Nutr Inst Workshop Series). PubMed

Owoeye O.B.A., VanderWey M.J., Pike I. Reducing Injuries in Soccer (Football): An Umbrella Review of Best Evidence Across the Epidemiological Framework for Prevention. Sports Med Open. 2020;6:46. doi: 10.1186/s40798-020-00274-7. PubMed DOI PMC

Close G.L., Sale C., Baar K., Bermon S. Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019;29:189–197. doi: 10.1123/ijsnem.2018-0290. PubMed DOI

Wall B.T., Dirks M.L., van Loon L.J. Skeletal muscle atrophy during short-term disuse: Implications for age-related sarcopenia. Ageing Res. Rev. 2013;12:898–906. doi: 10.1016/j.arr.2013.07.003. PubMed DOI

Jackson T.J., Starkey C., McElhiney D., Domb B.G. Epidemiology of Hip Injuries in the National Basketball Association: A 24-Year Overview. Orthop. J. Sports Med. 2013;1:2325967113499130. doi: 10.1177/2325967113499130. PubMed DOI PMC

Phillips S.M. Physiologic and molecular bases of muscle hypertrophy and atrophy: Impact of resistance exercise on human skeletal muscle (protein and exercise dose effects) Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2009;34:403–410. doi: 10.1139/H09-042. PubMed DOI

Tipton K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015;45((Suppl. S1)):S93–S104. doi: 10.1007/s40279-015-0398-4. PubMed DOI PMC

Tipton K.D. Dietary strategies to attenuate muscle loss during recovery from injury. Nestle Nutr. Inst. Workshop Ser. 2013;75:51–61. doi: 10.1159/000345818. PubMed DOI

Phillips S.M. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014;44((Suppl. S1)):S71–S77. doi: 10.1007/s40279-014-0152-3. PubMed DOI PMC

Tooth C., Gofflot A., Schwartz C., Croisier J.L., Beaudart C., Bruyère O., Forthomme B. Risk Factors of Overuse Shoulder Injuries in Overhead Athletes: A Systematic Review. Sports Health. 2020;12:478–487. doi: 10.1177/1941738120931764. PubMed DOI PMC

Toresdahl B.G., McElheny K., Metzl J., Ammerman B., Chang B., Kinderknecht J. A Randomized Study of a Strength Training Program to Prevent Injuries in Runners of the New York City Marathon. Sports Health. 2020;12:74–79. doi: 10.1177/1941738119877180. PubMed DOI PMC

Minghelli B., Cadete J. Epidemiology of musculoskeletal injuries in tennis players: Risk factors. J. Sports Med. Phys. Fit. 2019;59:2045–2052. PubMed

Frankenfield D. Energy expenditure and protein requirements after traumatic injury. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2006;21:430–437. doi: 10.1177/0115426506021005430. PubMed DOI

Wolfe R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006;84:475–482. doi: 10.1093/ajcn/84.3.475. PubMed DOI

Moreno-Pérez V., Ruiz J., Vazquez-Guerrero J., Rodas G., Del Coso J. Training and competition injury epidemiology in professional basketball players: A prospective observational study. Physician Sportsmed. 2021;17:1–8. doi: 10.1080/00913847.2021.2000325. PubMed DOI

Gravina L., Ruiz F., Diaz E., Lekue J.A., Badiola A., Irazusta J., Gil S.M. Influence of nutrient intake on antioxidant capacity, muscle damage and white blood cell count in female soccer players. J. Int. Soc. Sports Nutr. 2012;9:32. doi: 10.1186/1550-2783-9-32. PubMed DOI PMC

Peeling P., Binnie M.J., Goods P.S., Sim M., Burke L.M. Evidence-based supplements for the enhancement of athletic performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:178–187. doi: 10.1123/ijsnem.2017-0343. PubMed DOI

Grondin J., Crenn V., Gernigon M., Quinette Y., Louguet B., Menu P., Fouasson-Chailloux A., Dauty M. Relevant Strength Parameters to Allow Return to Running after Primary Anterior Cruciate Ligament Reconstruction with Hamstring Tendon Autograft. Int. J. Environ. Res. Public Health. 2022;19:8245. doi: 10.3390/ijerph19148245. PubMed DOI PMC

Vélez-Gutiérrez J.M., Petro J.L., Aburto-Corona J.A., Vargas-Molina S., Kreider R.B., Bonilla D.A. Cortical Changes as a Result of Sports Injuries: A Short Commentary. Cuerpo Cult. Y Mov. 2022;12:7884. doi: 10.15332/2422474X.7884. DOI

Pasiakos S.M., Vislocky L.M., Carbone J.W., Altieri N., Konopelski K., Freake H.C., Anderson J.M., Ferrando A.A., Wolfe R.R., Rodriguez N.R. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J. Nutr. 2010;140:745–751. doi: 10.3945/jn.109.118372. PubMed DOI

Biolo G., Agostini F., Simunic B., Sturma M., Torelli L., Preiser J.C., Deby-Dupont G., Magni P., Strollo F., di Prampero P., et al. Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest. Am. J. Clin. Nutr. 2008;88:950–958. doi: 10.1093/ajcn/88.4.950. PubMed DOI

Bonilla D.A., Moreno Y., Petro J.L., Forero D.A., Vargas-Molina S., Odriozola-Martinez A., Orozco C.A., Stout J.R., Rawson E.S., Kreider R.B. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines. 2022;10:724. doi: 10.3390/biomedicines10030724. PubMed DOI PMC

McEwen B.S. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann. N. Y. Acad. Sci. 1998;840:33–44. doi: 10.1111/j.1749-6632.1998.tb09546.x. PubMed DOI

Krause J., DiPiro N., Saunders L., Newman S., Banik N., Park S. Allostatic Load and Spinal Cord Injury: Review of Existing Research and Preliminary Data. Top. Spinal Cord Inj. Rehabil. 2014;20:137–146. doi: 10.1310/sci2002-137. PubMed DOI PMC

Whittemore R., Knafl K. The integrative review: Updated methodology. J. Adv. Nurs. 2005;52:546–553. doi: 10.1111/j.1365-2648.2005.03621.x. PubMed DOI

Bonilla D.A., Cardozo L.A., Velez-Gutierrez J.M., Arevalo-Rodriguez A., Vargas-Molina S., Stout J.R., Kreider R.B., Petro J.L. Exercise Selection and Common Injuries in Fitness Centers: A Systematic Integrative Review and Practical Recommendations. Int. J. Environ. Res. Public Health. 2022;19:2710. doi: 10.3390/ijerph191912710. PubMed DOI PMC

Hopia H., Latvala E., Liimatainen L. Reviewing the methodology of an integrative review. Scand. J. Caring Sci. 2016;30:662–669. doi: 10.1111/scs.12327. PubMed DOI

Ardern C.L., Büttner F., Andrade R., Weir A., Ashe M.C., Holden S., Impellizzeri F.M., Delahunt E., Dijkstra H.P., Mathieson S.J. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: The PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br. J. Sports Med. 2022;56:175–195. PubMed PMC

Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; Hoboken, NJ, USA: 2019. PubMed

Sterne J.A.C., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.Y., Corbett M.S., Eldridge S.M., et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898. PubMed DOI

Büttner F., Winters M., Delahunt E., Elbers R., Lura C.B., Khan K.M., Weir A., Ardern C.L. Identifying the ‘incredible’! Part 2: Spot the difference-a rigorous risk of bias assessment can alter the main findings of a systematic review. Br. J. Sports Med. 2020;54:801–808. doi: 10.1136/bjsports-2019-101675. PubMed DOI

Shea B., Grimshaw J., Wells G., Boers M., Andersson N., Hamel C., Porter A., Tugwell P., Moher D., Bouter L.J.H. AMSTAR: Assessing Methodological Quality of Systematic Reviews. McMaster University; Hamilton, ON, Canada: 2011. PubMed

Shea B.J., Reeves B.C., Wells G., Thuku M., Hamel C., Moran J., Moher D., Tugwell P., Welch V., Kristjansson E. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. doi: 10.1136/bmj.j4008. PubMed DOI PMC

Lundy B., Suni V., Drew M., Trease L., Burke L.M. Nutrition factors associated with rib stress injury history in elite rowers. J. Sci. Med. Sport. 2022;25:979–985. doi: 10.1016/j.jsams.2022.08.017. PubMed DOI

Burton I., McCormack A. Nutritional Supplements in the Clinical Management of Tendinopathy: A Scoping Review. SportRχiv. 2022 doi: 10.51224/SRXIV.137. pre-print . PubMed DOI

Turnagol H.H., Kosar S.N., Guzel Y., Aktitiz S., Atakan M.M. Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients. 2021;14:53. doi: 10.3390/nu14010053. PubMed DOI PMC

Khatri M., Naughton R.J., Clifford T., Harper L.D., Corr L. The effects of collagen peptide supplementation on body composition, collagen synthesis, and recovery from joint injury and exercise: A systematic review. Amino Acids. 2021;53:1493–1506. doi: 10.1007/s00726-021-03072-x. PubMed DOI PMC

Smith-Ryan A.E., Hirsch K.R., Saylor H.E., Gould L.M., Blue M.N.M. Nutritional Considerations and Strategies to Facilitate Injury Recovery and Rehabilitation. J. Athl. Train. 2020;55:918–930. doi: 10.4085/1062-6050-550-19. PubMed DOI PMC

Papadopoulou S.K. Rehabilitation Nutrition for Injury Recovery of Athletes: The Role of Macronutrient Intake. Nutrients. 2020;12:2449. doi: 10.3390/nu12082449. PubMed DOI PMC

Quintero K.J., Resende A.d.S., Leite G.S.F., Lancha Junior A.H. An overview of nutritional strategies for recovery process in sports-related muscle injuries. Nutrire. 2018;43:27. doi: 10.1186/s41110-018-0084-z. DOI

Kahn D.S., Shuler F.D., Qazi Z.N., Belmaggio T.D., Mehta S.P.J.C.R.i.P., Medicine R. The emerging role of vitamin D in sports physical therapy: A review. Crit. Rev. Phys. Rehabil. Med. 2015;27:1–10. doi: 10.1615/CritRevPhysRehabilMed.2015013808. DOI

Wall B.T., Morton J.P., Van Loon L.J. Strategies to maintain skeletal muscle mass in the injured athlete: Nutritional considerations and exercise mimetics. Eur. J. Sport Sci. 2015;15:53–62. doi: 10.1080/17461391.2014.936326. PubMed DOI

Pyne D.B., Verhagen E.A., Mountjoy M. Nutrition, illness, and injury in aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014;24:460–469. doi: 10.1123/ijsnem.2014-0008. PubMed DOI

Laboute E., France J., Trouve P., Puig P.-L., Boireau M., Blanchard A.J.A.o.P., Medicine R. Rehabilitation and leucine supplementation as possible contributors to an athlete’s muscle strength in the reathletization phase following anterior cruciate ligament surgery. Ann. Phys. Rehabil. Med. 2013;56:102–112. doi: 10.1016/j.rehab.2012.11.002. PubMed DOI

Eraslan A., Ulkar B. Glucosamine supplementation after anterior cruciate ligament reconstruction in athletes: A randomized placebo-controlled trial. Res. Sports Med. 2015;23:14–26. doi: 10.1080/15438627.2014.975809. PubMed DOI

Flueck J.L., Schlaepfer M.W., Perret C.J.N. Effect of 12-week vitamin D supplementation on 25 [OH] D status and performance in athletes with a spinal cord injury. Nutrients. 2016;8:586. doi: 10.3390/nu8100586. PubMed DOI PMC

Juhasz I., Kopkane J.P., Hajdu P., Szalay G., Kopper B., Tihanyi J. Creatine Supplementation Supports the Rehabilitation of Adolescent Fin Swimmers in Tendon Overuse Injury Cases. J. Sports Sci. Med. 2018;17:279–288. PubMed PMC

Collins J., Maughan R.J., Gleeson M., Bilsborough J., Jeukendrup A., Morton J.P., Phillips S.M., Armstrong L., Burke L.M., Close G.L., et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021;55:416. doi: 10.1136/bjsports-2019-101961. PubMed DOI

Sánchez-Gómez Á., Jurado-Castro J.M., Mata F., Sánchez-Oliver A.J., Domínguez R. Effects of β-Hydroxy β-Methylbutyric Supplementation in Combination with Conservative Non-Invasive Treatments in Athletes with Patellar Tendinopathy: A Pilot Study. Int. J. Environ. Res. Public Heal. 2022;19:471. doi: 10.3390/ijerph19010471. PubMed DOI PMC

Hotfiel T., Mayer I., Huettel M., Hoppe M.W., Engelhardt M., Lutter C., Pöttgen K., Heiss R., Kastner T., Grim C. Accelerating Recovery from Exercise-Induced Muscle Injuries in Triathletes: Considerations for Olympic Distance Races. Sports. 2019;7:143. doi: 10.3390/sports7060143. PubMed DOI PMC

Aasa U., Svartholm I., Andersson F., Berglund L. Injuries among weightlifters and powerlifters: A systematic review. Br. J. Sports Med. 2017;51:211. doi: 10.1136/bjsports-2016-096037. PubMed DOI

Baron J.E., Parker E.A., Duchman K.R., Westermann R.W. Perioperative and Postoperative Factors Influence Quadriceps Atrophy and Strength After ACL Reconstruction: A Systematic Review. Orthop. J. Sports Med. 2020;8:2325967120930296. doi: 10.1177/2325967120930296. PubMed DOI PMC

Lynch M., Marinov G.K. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA. 2015;112:15690–15695. doi: 10.1073/pnas.1514974112. PubMed DOI PMC

DeWane G., Salvi A.M., DeMali K.A. Fueling the cytoskeleton–links between cell metabolism and actin remodeling. J. Cell Sci. 2021;134:jcs248385. doi: 10.1242/jcs.248385. PubMed DOI PMC

Bobba-Alves N., Juster R.-P., Picard M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology. 2022;146:105951. doi: 10.1016/j.psyneuen.2022.105951. PubMed DOI PMC

Areta J.L., Taylor H.L., Koehler K. Low energy availability: History, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur. J. Appl. Physiol. 2021;121:1–21. doi: 10.1007/s00421-020-04516-0. PubMed DOI PMC

Wasserfurth P., Palmowski J., Hahn A., Krüger K. Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Prevention. Sports Med.–Open. 2020;6:44. doi: 10.1186/s40798-020-00275-6. PubMed DOI PMC

Dave S.C., Fisher M. Relative energy deficiency in sport (RED–S) Curr. Probl. Pediatr. Adolesc. Health Care. 2022;52 doi: 10.1016/j.cppeds.2022.101242. PubMed DOI

Mountjoy M., Sundgot-Borgen J., Burke L., Ackerman K.E., Blauwet C., Constantini N., Lebrun C., Lundy B., Melin A., Meyer N.J., et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018;28:316–331. doi: 10.1123/ijsnem.2018-0136. PubMed DOI

Loucks A.B., Verdun M., Heath E.M. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol. 1998;84:37–46. doi: 10.1152/jappl.1998.84.1.37. PubMed DOI

Holtzman B., Ackerman K. Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sports Med. 2021;51((Suppl. 1)):43–57. doi: 10.1007/s40279-021-01508-8. PubMed DOI PMC

Heikura I.A., Uusitalo A.L.T., Stellingwerff T., Bergland D., Mero A.A., Burke L.M. Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:403–411. doi: 10.1123/ijsnem.2017-0313. PubMed DOI

Hutson M.J., O’Donnell E., Brooke-Wavell K., Sale C., Blagrove R.C. Effects of Low Energy Availability on Bone Health in Endurance Athletes and High-Impact Exercise as A Potential Countermeasure: A Narrative Review. Sports Med. 2021;51:391–403. doi: 10.1007/s40279-020-01396-4. PubMed DOI PMC

Torres-McGehee T.M., Pritchett K.L., Zippel D., Minton D.M., Cellamare A., Sibilia M.J. Sports nutrition knowledge among collegiate athletes, coaches, athletic trainers, and strength and conditioning specialists. J. Athl. Train. 2012;47:205–211. doi: 10.4085/1062-6050-47.2.205. PubMed DOI PMC

Mountjoy M., Sundgot-Borgen J., Burke L., Carter S., Constantini N., Lebrun C., Meyer N., Sherman R., Steffen K., Budgett R.J. The IOC consensus statement: Beyond the female athlete triad—Relative energy deficiency in sport (RED-S) Br. J. Sports Med. 2014;48:491–497. doi: 10.1136/bjsports-2014-093502. PubMed DOI

Shamim B., Hawley J.A., Camera D.M. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med. 2018;48:1329–1343. doi: 10.1007/s40279-018-0883-7. PubMed DOI

Jäger R., Kerksick C.M., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A.A., Arent S.M.J. International society of sports nutrition position stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8. PubMed DOI PMC

Hector A.J., Phillips S.M. Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:170–177. doi: 10.1123/ijsnem.2017-0273. PubMed DOI

Mettler S., Mitchell N., Tipton K.D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 2010;42:326–337. doi: 10.1249/MSS.0b013e3181b2ef8e. PubMed DOI

Baum J.I., Kim I.Y., Wolfe R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients. 2016;8:359. doi: 10.3390/nu8060359. PubMed DOI PMC

Paddon-Jones D., Rasmussen B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care. 2009;12:86–90. doi: 10.1097/MCO.0b013e32831cef8b. PubMed DOI PMC

Mamerow M.M., Mettler J.A., English K.L., Casperson S.L., Arentson-Lantz E., Sheffield-Moore M., Layman D.K., Paddon-Jones D. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J. Nutr. 2014;144:876–880. doi: 10.3945/jn.113.185280. PubMed DOI PMC

Tipton K.D. Nutritional Support for Injuries Requiring Reduced Activity. Sports Sci. Exch. 2017;28:1–6.

Bonilla D.A., Perez-Idarraga A., Odriozola-Martinez A., Kreider R.B. The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. Int. J. Environ. Res. Public Health. 2020;18:103. doi: 10.3390/ijerph18010103. PubMed DOI PMC

Kreider R.B., Jager R., Purpura M. Bioavailability, Efficacy, Safety, and Regulatory Status of Creatine and Related Compounds: A Critical Review. Nutrients. 2022;14:1035. doi: 10.3390/nu14051035. PubMed DOI PMC

Bonilla D.A., Kreider R.B., Stout J.R., Forero D.A., Kerksick C.M., Roberts M.D., Rawson E.S.J.N. Metabolic basis of creatine in health and disease: A Bioinformatics-assisted review. Nutrients. 2021;13:1238. doi: 10.3390/nu13041238. PubMed DOI PMC

Wax B., Kerksick C.M., Jagim A.R., Mayo J.J., Lyons B.C., Kreider R.B.J.N. Creatine for exercise and sports performance, with recovery considerations for healthy populations. Nutrients. 2021;13:1915. doi: 10.3390/nu13061915. PubMed DOI PMC

Bonilla D.A., Moreno Y., Rawson E.S., Forero D.A., Stout J.R., Kerksick C.M., Roberts M.D., Kreider R.B.J.N. A convergent functional genomics analysis to identify biological regulators mediating effects of creatine supplementation. Nutrients. 2021;13:2521. doi: 10.3390/nu13082521. PubMed DOI PMC

Wallimann T., Tokarska-Schlattner M., Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40:1271–1296. doi: 10.1007/s00726-011-0877-3. PubMed DOI PMC

Marshall R.P., Droste J.-N., Giessing J., Kreider R.B.J.N. Role of creatine supplementation in conditions involving mitochondrial dysfunction: A narrative review. Nutrients. 2022;14:529. doi: 10.3390/nu14030529. PubMed DOI PMC

Harmon K.K., Stout J.R., Fukuda D.H., Pabian P.S., Rawson E.S., Stock M.S.J.N. The application of creatine supplementation in medical rehabilitation. Nutrients. 2021;13:1825. doi: 10.3390/nu13061825. PubMed DOI PMC

MacDougall J.D., Ward G.R., Sale D.G., Sutton J.R. Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977;43:700–703. doi: 10.1152/jappl.1977.43.4.700. PubMed DOI

Rawson E.S., Miles M.P., Larson-Meyer D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:188–199. doi: 10.1123/ijsnem.2017-0340. PubMed DOI

Padilha C.S., Cella P.S., Salles L.R., Deminice R. Oral creatine supplementation attenuates muscle loss caused by limb immobilization: A systematic review. Fisioter. Mov. 2017;30:831–838. doi: 10.1590/1980-5918.030.004.ar01. DOI

Op ‘t Eijnde B., Urso B., Richter E.A., Greenhaff P.L., Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50:18–23. doi: 10.2337/diabetes.50.1.18. PubMed DOI

Johnston A.P., Burke D.G., MacNeil L.G., Candow D.G. Effect of creatine supplementation during cast-induced immobilization on the preservation of muscle mass, strength, and endurance. J. Strength Cond. Res. 2009;23:116–120. doi: 10.1519/JSC.0b013e31818efbcc. PubMed DOI

Backx E.M.P., Hangelbroek R., Snijders T., Verscheijden M.L., Verdijk L.B., de Groot L., van Loon L.J.C. Creatine Loading Does Not Preserve Muscle Mass or Strength During Leg Immobilization in Healthy, Young Males: A Randomized Controlled Trial. Sports Med. 2017;47:1661–1671. doi: 10.1007/s40279-016-0670-2. PubMed DOI PMC

Hespel P., Op’t Eijnde B., Van Leemputte M., Urso B., Greenhaff P.L., Labarque V., Dymarkowski S., Van Hecke P., Richter E.A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J. Physiol. 2001;536:625–633. doi: 10.1111/j.1469-7793.2001.0625c.xd. PubMed DOI PMC

Hirsch K.R., Wolfe R.R., Ferrando A.A. Pre- and Post-Surgical Nutrition for Preservation of Muscle Mass, Strength, and Functionality Following Orthopedic Surgery. Nutrients. 2021;13:1675. doi: 10.3390/nu13051675. PubMed DOI PMC

Mistry D., Gee T.I., Lee P. Systematic Review for Protein and Creatine Supplements in Peri-operative Period in Elective Musculoskeletal Surgery Knee and Hip Replacement. J. Arthritis. 2022;11:1–6. doi: 10.4172/2167-7921.2022.11.056. DOI

Smith C., Kruger M.J., Smith R.M., Myburgh K.H. The inflammatory response to skeletal muscle injury: Illuminating complexities. Sports Med. 2008;38:947–969. doi: 10.2165/00007256-200838110-00005. PubMed DOI

Tidball J.G. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 2017;17:165–178. doi: 10.1038/nri.2016.150. PubMed DOI PMC

Peake J.M., Neubauer O., Della Gatta P.A., Nosaka K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017;122:559–570. doi: 10.1152/japplphysiol.00971.2016. PubMed DOI

Patsalos A., Pap A., Varga T., Trencsenyi G., Contreras G.A., Garai I., Papp Z., Dezso B., Pintye E., Nagy L. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J. Physiol. 2017;595:5815–5842. doi: 10.1113/JP274361. PubMed DOI PMC

Calder P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017;45:1105–1115. doi: 10.1042/BST20160474. PubMed DOI

Tachtsis B., Camera D., Lacham-Kaplan O. Potential roles of n-3 PUFAs during skeletal muscle growth and regeneration. Nutrients. 2018;10:309. doi: 10.3390/nu10030309. PubMed DOI PMC

Maughan R.J., Burke L.M., Dvorak J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H., et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018;28:104–125. doi: 10.1123/ijsnem.2018-0020. PubMed DOI

Cuñado-González Á., Martín-Pintado-Zugasti A., Rodríguez-Fernández Á.L.J.J.o.s.r. Prevalence and factors associated with injuries in elite Spanish volleyball. J. Sport Rehabil. 2019;28:796–802. doi: 10.1123/jsr.2018-0044. PubMed DOI

Whitehouse T., Orr R., Fitzgerald E., Harries S., McLellan C.P. The Epidemiology of Injuries in Australian Professional Rugby Union 2014 Super Rugby Competition. Orthop. J. Sports Med. 2016;4:2325967116634075. doi: 10.1177/2325967116634075. PubMed DOI PMC

Hess M.C., Swedler D.I., Collins C.S., Ponce B.A., Brabston E.W. Descriptive Epidemiology of Injuries in Professional Ultimate Frisbee Athletes. J. Athl. Train. 2020;55:195–204. doi: 10.4085/1062-6050-269-18. PubMed DOI PMC

Shaw G., Lee-Barthel A., Ross M.L., Wang B., Baar K. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017;105:136–143. doi: 10.3945/ajcn.116.138594. PubMed DOI PMC

McAlindon T.E., Nuite M., Krishnan N., Ruthazer R., Price L.L., Burstein D., Griffith J., Flechsenhar K. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: A pilot randomized controlled trial. Osteoarthr. Cartil. 2011;19:399–405. doi: 10.1016/j.joca.2011.01.001. PubMed DOI

Clark K.L., Sebastianelli W., Flechsenhar K.R., Aukermann D.F., Meza F., Millard R.L., Deitch J.R., Sherbondy P.S., Albert A. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr. Med. Res. Opin. 2008;24:1485–1496. doi: 10.1185/030079908X291967. PubMed DOI

Szczesniak K.A., Ostaszewski P., Fuller J.C., Jr., Ciecierska A., Sadkowski T. Dietary supplementation of beta-hydroxy-beta-methylbutyrate in animals—A review. J. Anim. Physiol. Anim. Nutr. 2015;99:405–417. doi: 10.1111/jpn.12234. PubMed DOI

Wilkinson D.J., Hossain T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. doi: 10.1113/jphysiol.2013.253203. PubMed DOI PMC

Rowlands D.S., Thomson J.S. Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: A meta-analysis. J. Strength Cond. Res. 2009;23:836–846. doi: 10.1519/JSC.0b013e3181a00c80. PubMed DOI

Sanchez-Martinez J., Santos-Lozano A., Garcia-Hermoso A., Sadarangani K.P., Cristi-Montero C. Effects of beta-hydroxy-beta-methylbutyrate supplementation on strength and body composition in trained and competitive athletes: A meta-analysis of randomized controlled trials. J. Sci. Med. Sport. 2018;21:727–735. doi: 10.1016/j.jsams.2017.11.003. PubMed DOI

Deutz N.E., Pereira S.L., Hays N.P., Oliver J.S., Edens N.K., Evans C.M., Wolfe R.R. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin. Nutr. 2013;32:704–712. doi: 10.1016/j.clnu.2013.02.011. PubMed DOI

Christakos S., Dhawan P., Liu Y., Peng X., Porta A. New insights into the mechanisms of vitamin D action. J. Cell. Biochem. 2003;88:695–705. doi: 10.1002/jcb.10423. PubMed DOI

Liu W., Zhang L., Xu H.J., Li Y., Hu C.M., Yang J.Y., Sun M.Y. The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int. J. Mol. Sci. 2018;19:2736. doi: 10.3390/ijms19092736. PubMed DOI PMC

Pike J.W., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. North Am. 2017;46:815–843. doi: 10.1016/j.ecl.2017.07.001. PubMed DOI PMC

Wyon M.A., Wolman R., Nevill A.M., Cloak R., Metsios G.S., Gould D., Ingham A., Koutedakis Y. Acute Effects of Vitamin D3 Supplementation on Muscle Strength in Judoka Athletes: A Randomized Placebo-Controlled, Double-Blind Trial. Clin. J. Sport Med. 2016;26:279–284. doi: 10.1097/JSM.0000000000000264. PubMed DOI

Ruohola J.P., Laaksi I., Ylikomi T., Haataja R., Mattila V.M., Sahi T., Tuohimaa P., Pihlajamaki H. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006;21:1483–1488. doi: 10.1359/jbmr.060607. PubMed DOI

Rebolledo B.J., Bernard J.A., Werner B.C., Finlay A.K., Nwachukwu B.U., Dare D.M., Warren R.F., Rodeo S.A., Surgery R. The association of vitamin D status in lower extremity muscle strains and core muscle injuries at the National Football League Combine. J. Arthrosc. Relat. Surg. 2018;34:1280–1285. doi: 10.1016/j.arthro.2017.10.005. PubMed DOI

Lappe J., Cullen D., Haynatzki G., Recker R., Ahlf R., Thompson K. Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008;23:741–749. doi: 10.1359/jbmr.080102. PubMed DOI

Maroon J.C., Mathyssek C.M., Bost J.W., Amos A., Winkelman R., Yates A.P., Duca M.A., Norwig J.A. Vitamin D profile in National Football League players. Am. J. Sports Med. 2015;43:1241–1245. doi: 10.1177/0363546514567297. PubMed DOI

Pilch W., Kita B., Piotrowska A., Tota Ł., Maciejczyk M., Czerwińska-Ledwig O., Sadowska-Krepa E., Kita S., Pałka T. The effect of vitamin D supplementation on the muscle damage after eccentric exercise in young men: A randomized, control trial. J. Int. Soc. Sports Nutr. 2020;17:1–10. doi: 10.1186/s12970-020-00386-1. PubMed DOI PMC

Barker T., Schneider E.D., Dixon B.M., Henriksen V.T., Weaver L.K. Supplemental vitamin D enhances the recovery in peak isometric force shortly after intense exercise. Nutr. Metab. 2013;10:69. doi: 10.1186/1743-7075-10-69. PubMed DOI PMC

Sikora-Klak J., Narvy S.J., Yang J., Makhni E., Kharrazi F.D., Mehran N. The Effect of Abnormal Vitamin D Levels in Athletes. Perm. J. 2018;22:17–216. doi: 10.7812/TPP/17-216. PubMed DOI PMC

Minshull C., Biant L.C., Ralston S.H., Gleeson N. A Systematic Review of the Role of Vitamin D on Neuromuscular Remodelling Following Exercise and Injury. Calcif. Tissue Int. 2016;98:426–437. doi: 10.1007/s00223-015-0099-x. PubMed DOI

Barker T., Henriksen V.T., Martins T.B., Hill H.R., Kjeldsberg C.R., Schneider E.D., Dixon B.M., Weaver L.K. Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients. 2013;5:1253–1275. doi: 10.3390/nu5041253. PubMed DOI PMC

Powers S.K. Can antioxidants protect against disuse muscle atrophy? Sports Med. 2014;44((Suppl. S2)):S155–S165. doi: 10.1007/s40279-014-0255-x. PubMed DOI PMC

Powers S.K., Nelson W.B., Hudson M.B. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic. Biol. Med. 2011;51:942–950. doi: 10.1016/j.freeradbiomed.2010.12.009. PubMed DOI

Shadel G.S., Horvath T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163:560–569. doi: 10.1016/j.cell.2015.10.001. PubMed DOI PMC

Scheele C., Nielsen S., Pedersen B.K. ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol. Metab.: TEM. 2009;20:95–99. doi: 10.1016/j.tem.2008.12.002. PubMed DOI

Niess A.M., Simon P. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species. Front. Biosci.: J. Virtual Libr. 2007;12:4826–4838. doi: 10.2741/2431. PubMed DOI

Nemes R., Koltai E., Taylor A.W., Suzuki K., Gyori F., Radak Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants. 2018;7:85. doi: 10.3390/antiox7070085. PubMed DOI PMC

Powers S.K., Smuder A.J., Judge A.R. Oxidative stress and disuse muscle atrophy: Cause or consequence? Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:240–245. doi: 10.1097/MCO.0b013e328352b4c2. PubMed DOI PMC

Barker T., Leonard S.W., Hansen J., Trawick R.H., Ingram R., Burdett G., Lebold K.M., Walker J.A., Traber M.G. Vitamin E and C supplementation does not ameliorate muscle dysfunction after anterior cruciate ligament surgery. Free Radic. Biol. Med. 2009;47:1611–1618. doi: 10.1016/j.freeradbiomed.2009.09.010. PubMed DOI

Close G.L., Jackson M.J. Antioxidants and exercise: A tale of the complexities of relating signalling processes to physiological function? J. Physiol. 2014;592:1721–1722. doi: 10.1113/jphysiol.2014.272294. PubMed DOI PMC

Hewlings S.J., Kalman D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017;6:92. doi: 10.3390/foods6100092. PubMed DOI PMC

Oh S.N., Myung S.K., Jho H.J. Analgesic Efficacy of Melatonin: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Trials. J. Clin. Med. 2020;9:1553. doi: 10.3390/jcm9051553. PubMed DOI PMC

Hong Y., Palaksha K.J., Park K., Park S., Kim H.D., Reiter R.J., Chang K.T. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury. J. Pineal Res. 2010;49:201–209. doi: 10.1111/j.1600-079X.2010.00786.x. PubMed DOI

Mendonca L.M., Schuermans J., Denolf S., Napier C., Bittencourt N.F.N., Romanuk A., Tak I., Thorborg K., Bizzini M., Ramponi C., et al. Sports injury prevention programmes from the sports physical therapist’s perspective: An international expert Delphi approach. Phys. Sport. 2022;55:146–154. doi: 10.1016/j.ptsp.2022.04.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...