• This record comes from PubMed

High pre-transplant Mucosal Associated Invariant T Cell (MAIT) count predicts favorable course of myeloid aplasia

. 2024 Jun ; 168 (2) : 139-146. [epub] 20230310

Language English Country Czech Republic Media print-electronic

Document type Journal Article

AIMS: Mucosal Associated Invariant T (MAIT) cells are unconventional T cells with anti-infective potential. MAIT cells detect and fight against microbes on mucosal surfaces and in peripheral tissues. Previous works suggested that MAIT cells survive exposure to cytotoxic drugs in these locations. We sought to determine if they maintain their anti-infective functions after myeloablative chemotherapy. METHODS: We correlated the amount of MAIT cells (measured by flow cytometry) in the peripheral blood of 100 adult patients before the start of myeloablative conditioning plus autologous stem cell transplantation with the clinical and laboratory outcomes of aplasia. RESULTS: The amount of MAIT cells negatively correlated with peak C-reactive protein level and the amount of red blood cell transfusion units resulting in earlier discharge of patients with the highest amount of MAIT cells. CONCLUSION: This work suggests the anti-infectious potential of MAIT cells is maintained during myeloid aplasia.

See more in PubMed

Godfrey DI, Koay HF, McCluskey J, Gherardin NA. The biology and functional importance of MAIT cells. Nat Immunol 2019;20(9):1110-28. doi: 10.1038/s41590-019-0444-8 PubMed DOI

Provine NM, Klenerman P. MAIT Cells in Health and Disease. Annu Rev Immunol 2020;38:203-28. doi: 10.1146/annurev-immunol-080719-015428 PubMed DOI

Lantz O, Legoux F. MAIT cells: an historical and evolutionary perspective. Immunol Cell Biol 2018;96(6):564-72. doi: 10.1111/imcb.1034 PubMed DOI

Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O'Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012;491(7426):717-23. doi: 10.1038/nature11605 PubMed DOI

Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003;422(6928):164-9. doi: 10.1038/nature01433 Erratum in: Nature. 2003 Jun 26;423(6943):1018 PubMed DOI

Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 1993;178(1):1-16. doi: 10.1084/jem.178.1.1 PubMed DOI

Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, de la Salle H, Bendelac A, Bonneville M, Lantz O. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med;189(12):1907-21. doi: 10.1084/jem.189.12.1907 PubMed DOI

Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011;117(4):1250-9. doi: 10.1182/blood-2010-08-303339 PubMed DOI

Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 2010;8(6):e1000407. doi: 10.1371/journal.pbio.1000407 PubMed DOI

Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, Lévy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 2010;11(8):701-8. doi: 10.1038/ni.1890. Erratum in: Nat Immunol 2010;11(10):969. Huang, Xhouxiong [added] PubMed DOI

Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C, Ouaaz F, Milder M, Louis D, Chiche JD, Mira JP, Lantz O, Pène F. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med 2014;40(2):192-201. doi: 10.1007/s00134-013-3163-x PubMed DOI

Novak J, Dobrovolny J, Brozova J, Novakova L, Kozak T. Recovery of mucosal-associated invariant T cells after myeloablative chemotherapy and autologous peripheral blood stem cell transplantation. Clin Exp Med 2016;16(4):529-37. doi: 10.1007/s10238-015-0384-z PubMed DOI

Gherardin NA, Loh L, Admojo L, Davenport AJ, Richardson K, Rogers A, Darcy PK, Jenkins MR, Prince HM, Harrison SJ, Quach H, Fairlie DP, Kedzierska K, McCluskey J, Uldrich AP, Neeson PJ, Ritchie DS, Godfrey DI. Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma. Sci Rep 2018;8(1):4159. doi: 10.1038/s41598-018-22130-1 PubMed DOI

Mitchell J, Kvedaraite E, von Bahr Greenwood T, Henter JI, Pellicci DG, Berzins SP, Kannourakis G. Altered Populations of Unconventional T Cell Lineages in Patients with Langerhans Cell Histiocytosis. Sci Rep 2018;8(1):16506. doi: 10.1038/s41598-018-34873-y PubMed DOI

Basile D, Di Nardo P, Corvaja C, Garattini SK, Pelizzari G, Lisanti C, Bortot L, Da Ros L, Bartoletti M, Borghi M, Gerratana L, Lombardi D, Puglisi F. Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside. Cancers (Basel). 2019;11(6):857. doi: 10.3390/cancers11060857 PubMed DOI

Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012;12(3):201-13. doi: 10.1038/nri3169 PubMed DOI

Holtan SG, Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Litzow MR, Gastineau DA, Markovic SN. Timing of autologous stem cell transplantation from last chemotherapy affects lymphocyte collection and survival in non-Hodgkin lymphoma. Br J Haematol 2006;133(6):628-33. doi: 10.1111/j.1365-2141.2006.06088.x PubMed DOI

Chihara D, Izutsu K, Kondo E, Sakai R, Mizuta S, Yokoyama K, Kaneko H, Kato K, Hasegawa Y, Chou T, Sugahara H, Henzan H, Sakamaki H, Suzuki R, Suzumiya J. High-dose chemotherapy with autologous stem cell transplantation for elderly patients with relapsed/refractory diffuse large B cell lymphoma: a nationwide retrospective study. Biol Blood Marrow Transplant 2014;20(5):684-9. doi: 10.1016/j.bbmt.2014.01.025 PubMed DOI

Kimura S, Akahoshi Y, Nakano H, Ugai T, Wada H, Yamasaki R, Ishihara Y, Kawamura K, Sakamoto K, Ashizawa M, Sato M, Terasako-Saito K, Nakasone H, Kikuchi M, Yamazaki R, Kako S, Kanda J, Tanihara A, Nishida J, Kanda Y. Antibiotic prophylaxis in hematopoietic stem cell transplantation. A meta-analysis of randomized controlled trials. J Infect 2014;69(1):13-25. doi: 10.1016/j.jinf.2014.02.013 PubMed DOI

Linch DC, Milligan DW, Winfield DA, Kelsey SM, Johnson SA, Littlewood TJ, Smith GM, Hutchinson RM, Goldstone AH, Fielding AK, Vaughan Hudson G. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Br J Haematol 1997;99(4):933-8. doi: 10.1046/j.1365-2141.1997.4703274.x PubMed DOI

Klumpp TR, Mangan KF, Goldberg SL, Pearlman ES, Macdonald JS. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol 1995;13(6):1323-7. doi: 10.1200/JCO.1995.13.6.1323 PubMed DOI

Spitzer G, Adkins DR, Spencer V, Dunphy FR, Petruska PJ, Velasquez WS, Bowers CE, Kronmueller N, Niemeyer R, McIntyre W. Randomized study of growth factors post-peripheral-blood stem-cell transplant: neutrophil recovery is improved with modest clinical benefit. J Clin Oncol 1994;12(4):661-70. doi: 10.1200/JCO.1994.12.4.661 PubMed DOI

Lee SE, Yahng SA, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Cho SG, Kim DW, Lee JW, Min WS, Park CW, Min CK. Lymphocyte subset analysis for the assessment of treatment-related complications after autologous stem cell transplantation in multiple myeloma. Cytotherapy 2012;14(4):505-12. doi: 10.3109/14653249.2012.655421 PubMed DOI

Lee SE, Lim JY, Ryu DB, Kim TW, Jeon YW, Yoon JH, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Cho SG, Kim DW, Lee JW, Min WS, Min CK. Circulating CD3+CD4+CD161+ Cells Are Associated with Early Complications after Autologous Stem Cell Transplantation in Multiple Myeloma. Biomed Res Int 2018;2018:5097325. doi: 10.1155/2018/5097325 PubMed DOI

Gérart S, Sibéril S, Martin E, Lenoir C, Aguilar C, Picard C, Lantz O, Fischer A, Latour S. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 2013;121(4):614-23. doi: 10.1182/blood-2012-09-456095 PubMed DOI

Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, Carassiti D, Reynolds R, Salvetti M, Calabresi PA, Coles AJ, Battistini L, Martin R, Burt RK, Muraro PA. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 2013;136(Pt 9):2888-903. doi: 10.1093/brain/awt182 PubMed DOI

Bhattacharyya A, Hanafi LA, Sheih A, Golob JL, Srinivasan S, Boeckh MJ, Pergam SA, Mahmood S, Baker KK, Gooley TA, Milano F, Fredricks DN, Riddell SR, Turtle CJ. Graft-Derived Reconstitution of Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2018;24(2):242-51. doi: 10.1016/j.bbmt.2017.10.003 PubMed DOI

Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S, Mburu Y, Lambert M, Azarnoush S, Diana JS, Virlouvet AL, Peuchmaur M, Schmitz T, Dalle JH, Lantz O, Biran V, Caillat-Zucman S. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J Exp Med 2018;215(2):459-79. doi: 10.1084/jem.20171739 PubMed DOI

Kawaguchi K, Umeda K, Hiejima E, Iwai A, Mikami M, Nodomi S, Saida S, Kato I, Hiramatsu H, Yasumi T, Nishikomori R, Kondo T, Takaori-Kondo A, Heike T, Adachi S. Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. Int J Hematol 2018;108(1):66-75. doi: 10.1007/s12185-018-2442-2 PubMed DOI

Konuma T, Kohara C, Watanabe E, Takahashi S, Ozawa G, Suzuki K, Mizukami M, Nagai E, Jimbo K, Kaito Y, Isobe M, Kato S, Takahashi S, Chiba A, Miyake S, Tojo A. Reconstitution of Circulating Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation: Its Association with the Riboflavin Synthetic Pathway of Gut Microbiota in Cord Blood Transplant Recipients. J Immunol 2020;204(6):1462-73. doi: 10.4049/jimmunol.1900681 PubMed DOI

Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP. Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous hematopoietic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2008;14(1):116-24. doi: 10.1016/j.bbmt.2007.08.051 PubMed DOI

Novak J, Dobrovolny J, Novakova L, Kozak T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol 2014;80(4):271-5. doi: 10.1111/sji.12193 PubMed DOI

Lukasik Z, Elewaut D, Venken K. MAIT Cells Come to the Rescue in Cancer Immunotherapy? Cancers (Basel) 2020;12(2):413. doi: 10.3390/cancers12020413 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...