Self-Supervised Wavelet-Based Attention Network for Semantic Segmentation of MRI Brain Tumor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36904923
PubMed Central
PMC10007092
DOI
10.3390/s23052719
PII: s23052719
Knihovny.cz E-zdroje
- Klíčová slova
- Wavelet transform, attention mechanisms, self-supervised attention block (SSAB), self-supervised wavelet-based attention network (SSW-AN), semantic image segmentation,
- MeSH
- algoritmy MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nádory mozku * MeSH
- počítačové zpracování obrazu metody MeSH
- sémantika * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
To determine the appropriate treatment plan for patients, radiologists must reliably detect brain tumors. Despite the fact that manual segmentation involves a great deal of knowledge and ability, it may sometimes be inaccurate. By evaluating the size, location, structure, and grade of the tumor, automatic tumor segmentation in MRI images aids in a more thorough analysis of pathological conditions. Due to the intensity differences in MRI images, gliomas may spread out, have low contrast, and are therefore difficult to detect. As a result, segmenting brain tumors is a challenging process. In the past, several methods for segmenting brain tumors in MRI scans were created. However, because of their susceptibility to noise and distortions, the usefulness of these approaches is limited. Self-Supervised Wavele- based Attention Network (SSW-AN), a new attention module with adjustable self-supervised activation functions and dynamic weights, is what we suggest as a way to collect global context information. In particular, this network's input and labels are made up of four parameters produced by the two-dimensional (2D) Wavelet transform, which makes the training process simpler by neatly segmenting the data into low-frequency and high-frequency channels. To be more precise, we make use of the channel attention and spatial attention modules of the self-supervised attention block (SSAB). As a result, this method may more easily zero in on crucial underlying channels and spatial patterns. The suggested SSW-AN has been shown to outperform the current state-of-the-art algorithms in medical image segmentation tasks, with more accuracy, more promising dependability, and less unnecessary redundancy.
Department of R and D Bond Marine Consultancy London EC1V 2NX UK
Vellore Institute of Technology Chennai Campus Chennai 600127 India
Zobrazit více v PubMed
Li S., Zhang C., He X. Medical Image Computing and Computer Assisted Intervention—MICCAI 2020. Springer International Publishing; Cham, Switzerland: 2020. Shape-aware semi-supervised 3D semantic segmentation for medical images; pp. 552–561.
Jin K., Huang X., Zhou J., Li Y., Yan Y., Sun Y., Zhang Q., Wang Y., Ye J. FIVES: A fundus image dataset for artificial intelligence based vessel segmentation. Sci. Data. 2022;9:475. doi: 10.1038/s41597-022-01564-3. PubMed DOI PMC
Xie B., Li S., Li M., Liu C.H., Huang G., Wang G. SePiCo: Semantic-guided pixel contrast for domain adaptive semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2023:1–17. doi: 10.1109/TPAMI.2023.3237740. PubMed DOI
Asgari Taghanaki S., Abhishek K., Cohen J.P., Cohen-Adad J., Hamarneh G. Deep semantic segmentation of natural and medical images: A review. Artif. Intell. Rev. 2021;54:137–178. doi: 10.1007/s10462-020-09854-1. DOI
Liu L., Wu F.-X., Wang Y.-P., Wang J. Multi-receptive-field CNN for semantic segmentation of medical images. IEEE J. Biomed. Health Inform. 2020;24:3215–3225. doi: 10.1109/JBHI.2020.3016306. PubMed DOI
Ban Y., Wang Y., Liu S., Yang B., Liu M., Yin L., Zheng W. 2D/3D multimode medical image alignment based on spatial histograms. Appl. Sci. 2022;12:8261. doi: 10.3390/app12168261. DOI
Cheng Z., Qu A., He X. Contour-aware semantic segmentation network with spatial attention mechanism for medical image. Vis. Comput. 2022;38:749–762. doi: 10.1007/s00371-021-02075-9. PubMed DOI PMC
Lu H., Wang H., Zhang Q., Yoon S.W., Won D. A 3D convolutional neural network for volumetric image semantic segmentation. Procedia Manuf. 2019;39:422–428. doi: 10.1016/j.promfg.2020.01.386. DOI
Alalwan N., Abozeid A., ElHabshy A.A., Alzahrani A. Efficient 3D deep learning model for medical image semantic segmentation. Alex. Eng. J. 2021;60:1231–1239. doi: 10.1016/j.aej.2020.10.046. DOI
Fang K., Li W.-J. Medical Image Computing and Computer Assisted Intervention—MICCAI 2020. Springer International Publishing; Cham, Switzerland: 2020. DMNet: Difference minimization network for semi-supervised segmentation in medical images; pp. 532–541.
Rezaei M., Yang H., Harmuth K., Meinel C. Conditional generative adversarial refinement networks for unbalanced medical image semantic segmentation; Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV); Waikoloa Village, HI, USA. 7–11 January 2019.
Rezaei M., Yang H., Meinel C. Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation. Multimed. Tools Appl. 2020;79:15329–15348. doi: 10.1007/s11042-019-7305-1. DOI
Jiang F., Grigorev A., Rho S., Tian Z., Fu Y., Jifara W., Adil K., Liu S. Medical image semantic segmentation based on deep learning. Neural Comput. Appl. 2018;29:1257–1265. doi: 10.1007/s00521-017-3158-6. DOI
Petit O., Thome N., Charnoz A., Hostettler A., Soler L. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer International Publishing; Cham, Switzerland: 2018. Handling missing annotations for semantic segmentation with deep ConvNets; pp. 20–28.
Karayegen G., Aksahin M.F. Brain tumor prediction on MR images with semantic segmentation by using deep learning network and 3D imaging of tumor region. Biomed. Signal Process. Control. 2021;66:102458. doi: 10.1016/j.bspc.2021.102458. DOI
Xia Y., Zhang Y., Liu F., Shen W., Yuille A.L. Computer Vision—ECCV 2020. Springer International Publishing; Cham, Switzerland: 2020. Synthesize then compare: Detecting failures and anomalies for semantic segmentation; pp. 145–161.
Wang Z., Zheng J.-Q., Voiculescu I. Medical Image Understanding and Analysis. Springer International Publishing; Cham, Switzerland: 2022. An uncertainty-aware transformer for MRI cardiac semantic segmentation via mean teachers; pp. 494–507.
van Rijthoven M., Balkenhol M., Siliņa K., van der Laak J., Ciompi F. HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images. Med. Image Anal. 2021;68:101890. doi: 10.1016/j.media.2020.101890. PubMed DOI
Yang X., Yu L., Li S., Wen H., Luo D., Bian C., Qin J., Ni D., Heng P.-A. Towards automated semantic segmentation in prenatal volumetric ultrasound. IEEE Trans. Med. Imaging. 2019;38:180–193. doi: 10.1109/TMI.2018.2858779. PubMed DOI
Ali M., Gilani S.O., Waris A., Zafar K., Jamil M. Brain tumour image segmentation using deep networks. IEEE Access. 2020;8:153589–153598. doi: 10.1109/ACCESS.2020.3018160. DOI
Kumar D.M., Satyanarayana D., Prasad M.N.G. An improved Gabor wavelet transform and rough K-means clustering algorithm for MRI brain tumor image segmentation. Multimed. Tools Appl. 2021;80:6939–6957. doi: 10.1007/s11042-020-09635-6. DOI
Wang W., Chen C., Ding M., Yu H., Zha S., Li J. Medical Image Computing and Computer Assisted Intervention—MICCAI 2021. Springer International Publishing; Cham, Switzerland: 2021. TransBTS: Multimodal brain tumor segmentation using transformer; pp. 109–119.
Wadhwa A., Bhardwaj A., Singh Verma V. A review on brain tumor segmentation of MRI images. Magn. Reson. Imaging. 2019;61:247–259. doi: 10.1016/j.mri.2019.05.043. PubMed DOI
Zhao Y.-X., Zhang Y.-M., Liu C.-L. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing; Cham, Switzerland: 2020. Bag of tricks for 3D MRI brain tumor segmentation; pp. 210–220.
Liu X., Wang S., Lin J.C.-W., Liu S. An algorithm for overlapping chromosome segmentation based on region selection. Neural Comput. Appl. 2022:1–10. doi: 10.1007/s00521-022-07317-y. DOI
Bruno P., Calimeri F., Marte C., Manna M. Rules and Reasoning. Springer International Publishing; Cham, Switzerland: 2021. Combining deep learning and ASP-based models for the semantic segmentation of medical images; pp. 95–110.
Emara T., Munim H.E.A.E., Abbas H.M. LiteSeg: A novel lightweight ConvNet for semantic segmentation; Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA); Perth, Australia. 2–4 December 2019.
Qin Y., Kamnitsas K., Ancha S., Nanavati J., Cottrell G., Criminisi A., Nori A. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer International Publishing; Cham, Switzerland: 2018. Autofocus Layer for Semantic Segmentation; pp. 603–611.
Fang F., Yao Y., Zhou T., Xie G., Lu J. Self-supervised multi-modal hybrid fusion network for brain tumor segmentation. IEEE J. Biomed. Health Inform. 2022;26:5310–5320. doi: 10.1109/JBHI.2021.3109301. PubMed DOI
Ding Y., Gong L., Zhang M., Li C., Qin Z. A multi-path adaptive fusion network for multimodal brain tumor segmentation. Neurocomputing. 2020;412:19–30. doi: 10.1016/j.neucom.2020.06.078. DOI
Jiang Y., Ye M., Wang P., Huang D., Lu X. MRF-IUNet: A multiresolution fusion brain tumor segmentation network based on improved inception U-Net. Comput. Math. Methods Med. 2022;2022:6305748. doi: 10.1155/2022/6305748. PubMed DOI PMC
Zhou T., Ruan S., Guo Y., Canu S. A multi-modality fusion network based on attention mechanism for brain tumor segmentation; Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI); Iowa City, IA, USA. 3–7 April 2020.
Liu X., Xing F., El Fakhri G., Woo J. Self-semantic contour adaptation for cross modality brain tumor segmentation; Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI); Kolkata, India. 28–31 March 2022. PubMed PMC
Liu H., Liu M., Li D., Zheng W., Yin L., Wang R. Recent advances in pulse-coupled neural networks with applications in image processing. Electronics. 2022;11:3264. doi: 10.3390/electronics11203264. DOI
Kalinin A.A., Iglovikov V.I., Rakhlin A., Shvets A.A. Advances in Intelligent Systems and Computing. Springer Singapore; Singapore: 2020. Medical image segmentation using deep neural networks with pre-trained encoders; pp. 39–52.
Hatamizadeh A., Nath V., Tang Y., Yang D., Roth H.R., Xu D. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing; Cham, Switzerland: 2022. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images; pp. 272–284.
Jha D., Riegler M.A., Johansen D., Halvorsen P., Johansen H.D. DoubleU-net: A deep convolutional neural network for medical image segmentation; Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS); Rochester, MN, USA. 28–30 July 2020.
Nie D., Gao Y., Wang L., Shen D. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer International Publishing; Cham, Switzerland: 2018. ASDNet: Attention based semi-supervised deep networks for medical image segmentation; pp. 370–378.
Ni J., Wu J., Tong J., Chen Z., Zhao J. GC-Net: Global context network for medical image segmentation. Comput. Methods Programs Biomed. 2020;190:105121. doi: 10.1016/j.cmpb.2019.105121. PubMed DOI
Wang L., Chen R., Wang S., Zeng N., Huang X., Liu C. Nested dilation network (NDN) for multi-task medical image segmentation. IEEE Access. 2019;7:44676–44685. doi: 10.1109/ACCESS.2019.2908386. DOI
Siddique N., Paheding S., Elkin C.P., Devabhaktuni V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access. 2021;9:82031–82057. doi: 10.1109/ACCESS.2021.3086020. DOI