GPU-Based Parallel Processing Techniques for Enhanced Brain Magnetic Resonance Imaging Analysis: A Review of Recent Advances

. 2024 Feb 29 ; 24 (5) : . [epub] 20240229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38475138

Grantová podpora
UHK-FIM-GE-2024 Grant Agency of Excellence

The approach of using more than one processor to compute in order to overcome the complexity of different medical imaging methods that make up an overall job is known as GPU (graphic processing unit)-based parallel processing. It is extremely important for several medical imaging techniques such as image classification, object detection, image segmentation, registration, and content-based image retrieval, since the GPU-based parallel processing approach allows for time-efficient computation by a software, allowing multiple computations to be completed at once. On the other hand, a non-invasive imaging technology that may depict the shape of an anatomy and the biological advancements of the human body is known as magnetic resonance imaging (MRI). Implementing GPU-based parallel processing approaches in brain MRI analysis with medical imaging techniques might be helpful in achieving immediate and timely image capture. Therefore, this extended review (the extension of the IWBBIO2023 conference paper) offers a thorough overview of the literature with an emphasis on the expanding use of GPU-based parallel processing methods for the medical analysis of brain MRIs with the imaging techniques mentioned above, given the need for quicker computation to acquire early and real-time feedback in medicine. Between 2019 and 2023, we examined the articles in the literature matrix that include the tasks, techniques, MRI sequences, and processing results. As a result, the methods discussed in this review demonstrate the advancements achieved until now in minimizing computing runtime as well as the obstacles and problems still to be solved in the future.

Zobrazit více v PubMed

Scholl I., Aach T., Deserno T.M., Kuhlen T. Challenges of Medical Image Processing. Comput. Sci. Res. Dev. 2011;26:5–13. doi: 10.1007/s00450-010-0146-9. DOI

Sancho J., Sutradhar P., Rosa G., Chavarrías M., Perez-Nuñez A., Salvador R., Lagares A., Juárez E., Sanz C. GoRG: Towards a GPU-Accelerated Multiview Hyperspectral Depth Estimation Tool for Medical Applications. Sensors. 2021;21:4091. doi: 10.3390/s21124091. PubMed DOI PMC

Alsmirat M.A., Jararweh Y., Al-Ayyoub M., Shehab M.A., Gupta B.B. Accelerating Compute Intensive Medical Imaging Segmentation Algorithms Using Hybrid CPU-GPU Implementations. Multimed. Tools Appl. 2017;76:3537–3555. doi: 10.1007/s11042-016-3884-2. DOI

Ait Ali N., Cherradi B., El Abbassi A., Bouattane O., Youssfi M. GPU Fuzzy C-Means Algorithm Implementations: Performance Analysis on Medical Image Segmentation. Multimed. Tools Appl. 2018;77:21221–21243. doi: 10.1007/s11042-017-5589-6. DOI

Graca C., Falcao G., Figueiredo I.N., Kumar S. Hybrid Multi-GPU Computing: Accelerated Kernels for Segmentation and Object Detection with Medical Image Processing Applications. J. Real-Time Image Process. 2017;13:227–244. doi: 10.1007/s11554-015-0517-3. DOI

De A., Zhang Y., Guo C. A Parallel Adaptive Segmentation Method Based on SOM and GPU with Application to MRI Image Processing. Neurocomputing. 2016;198:180–189. doi: 10.1016/j.neucom.2015.10.129. DOI

Çelik B., Gul S., Çelik M. A Stochastic Programming Approach to Surgery Scheduling under Parallel Processing Principle. Omega. 2023;115:102799. doi: 10.1016/j.omega.2022.102799. DOI

Kalaiselvi T., Sriramakrishnan P., Somasundaram K. Survey of Using GPU CUDA Programming Model in Medical Image Analysis. Inform. Med. Unlocked. 2017;9:133–144. doi: 10.1016/j.imu.2017.08.001. DOI

Eklund A., Dufort P., Forsberg D., LaConte S.M. Medical Image Processing on the GPU–Past, Present and Future. Med. Image Anal. 2013;17:1073–1094. doi: 10.1016/j.media.2013.05.008. PubMed DOI

Laiton-Bonadiez C., Sanchez-Torres G., Branch-Bedoya J. Deep 3D Neural Network for Brain Structures Segmentation Using Self-Attention Modules in MRI Images. Sensors. 2022;22:2559. doi: 10.3390/s22072559. PubMed DOI PMC

Pizarro R., Assemlal H.-E., De Nigris D., Elliott C., Antel S., Arnold D., Shmuel A. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases. Neuroinformatics. 2019;17:115–130. doi: 10.1007/s12021-018-9387-8. PubMed DOI

Xu Z., Wang S., Li Y., Zhu F., Huang J. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction. Neuroinformatics. 2018;16:425–430. doi: 10.1007/s12021-017-9354-9. PubMed DOI

Liu Y., Unsal H.S., Tao Y., Zhang N. Automatic Brain Extraction for Rodent MRI Images. Neuroinformatics. 2020;18:395–406. doi: 10.1007/s12021-020-09453-z. PubMed DOI PMC

Kontos D., Megalooikonomou V., Gee J.C. Morphometric Analysis of Brain Images with Reduced Number of Statistical Tests: A Study on the Gender-Related Differentiation of the Corpus Callosum. Artif. Intell. Med. 2009;47:75–86. doi: 10.1016/j.artmed.2009.05.007. PubMed DOI PMC

Munir K., Frezza F., Rizzi A. Deep Learning Hybrid Techniques for Brain Tumor Segmentation. Sensors. 2022;22:8201. doi: 10.3390/s22218201. PubMed DOI PMC

Widmann G., Henninger B., Kremser C., Jaschke W. MRI Sequences in Head & Neck Radiology–State of the Art. Fortschr. Röntgenstr. 2017;189:413–422. doi: 10.1055/s-0043-103280. PubMed DOI

Dong Q., Welsh R.C., Chenevert T.L., Carlos R.C., Maly-Sundgren P., Gomez-Hassan D.M., Mukherji S.K. Clinical Applications of Diffusion Tensor Imaging. Magn. Reson. Imaging. 2004;19:6–18. doi: 10.1002/jmri.10424. PubMed DOI

Sun L., Zu C., Shao W., Guang J., Zhang D., Liu M. Reliability-Based Robust Multi-Atlas Label Fusion for Brain MRI Segmentation. Artif. Intell. Med. 2019;96:12–24. doi: 10.1016/j.artmed.2019.03.004. PubMed DOI

Richard N., Dojat M., Garbay C. Automated Segmentation of Human Brain MR Images Using a Multi-Agent Approach. Artif. Intell. Med. 2004;30:153–176. doi: 10.1016/j.artmed.2003.11.006. PubMed DOI

González-Villà S., Oliver A., Valverde S., Wang L., Zwiggelaar R., Lladó X. A Review on Brain Structures Segmentation in Magnetic Resonance Imaging. Artif. Intell. Med. 2016;73:45–69. doi: 10.1016/j.artmed.2016.09.001. PubMed DOI

Cao R., Ning L., Zhou C., Wei P., Ding Y., Tan D., Zheng C. CFANet: Context Feature Fusion and Attention Mechanism Based Network for Small Target Segmentation in Medical Images. Sensors. 2023;23:8739. doi: 10.3390/s23218739. PubMed DOI PMC

Anusooya G., Bharathiraja S., Mahdal M., Sathyarajasekaran K., Elangovan M. Self-Supervised Wavelet-Based Attention Network for Semantic Segmentation of MRI Brain Tumor. Sensors. 2023;23:2719. doi: 10.3390/s23052719. PubMed DOI PMC

Lu F., Tang C., Liu T., Zhang Z., Li L. Multi-Attention Segmentation Networks Combined with the Sobel Operator for Medical Images. Sensors. 2023;23:2546. doi: 10.3390/s23052546. PubMed DOI PMC

Gyawali D. Comparative Analysis of CPU and GPU Profiling for Deep Learning Models. arXiv. 20232309.02521

Kirimtat A., Krejcar O. Role of Parallel Processing in Brain Magnetic Resonance Imaging. In: Rojas I., Valenzuela O., Rojas Ruiz F., Herrera L.J., Ortuño F., editors. International Work-Conference on Bioinformatics and Biomedical Engineering. Volume 13920 Springer; Cham, Switzerland: 2023. Lecture Notes in Computer Science.

Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., van der Laak J.A.W.M., van Ginneken B., Sánchez C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017;42:60–88. doi: 10.1016/j.media.2017.07.005. PubMed DOI

Brosch T., Tam R. The Alzheimer’s Disease Neuroimaging Initiative. Manifold Learning of Brain MRIs by Deep Learning. In: Salinesi C., Norrie M.C., Pastor Ó., editors. Advanced Information Systems Engineering. Volume 7908. Springer; Berlin/Heidelberg, Germany: 2013. pp. 633–640. Lecture Notes in Computer Science.

Plis S.M., Hjelm D.R., Salakhutdinov R., Allen E.A., Bockholt H.J., Long J.D., Johnson H.J., Paulsen J.S., Turner J.A., Calhoun V.D. Deep Learning for Neuroimaging: A Validation Study. Front. Neurosci. 2014;8:229. doi: 10.3389/fnins.2014.00229. PubMed DOI PMC

Suk H.-I., Shen D. Deep Learning-Based Feature Representation for AD/MCI Classification. In: Salinesi C., Norrie M.C., Pastor Ó., editors. Advanced Information Systems Engineering. Volume 7908. Springer; Berlin/Heidelberg, Germany: 2013. pp. 583–590. Lecture Notes in Computer Science.

Suk H.-I., Lee S.-W., Shen D. Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis. NeuroImage. 2014;101:569–582. doi: 10.1016/j.neuroimage.2014.06.077. PubMed DOI PMC

Lo S.-C.B., Lou S.-L.A., Lin J.-S., Freedman M.T., Chien M.V., Mun S.K. Artificial Convolution Neural Network Techniques and Applications for Lung Nodule Detection. IEEE Trans. Med. Imaging. 1995;14:711–718. doi: 10.1109/42.476112. PubMed DOI

Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N., Hornegger J., Wells W.M., Frangi A.F., editors. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Volume 9351. Springer International Publishing; Cham, Switzerland: 2015. pp. 234–241. Lecture Notes in Computer Science.

Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv. 20161606.06650

Wu G., Kim M., Wang Q., Gao Y., Liao S., Shen D. Unsupervised Deep Feature Learning for Deformable Registration of MR Brain Images. In: Salinesi C., Norrie M.C., Pastor Ó., editors. Advanced Information Systems Engineering. Volume 7908. Springer; Berlin/Heidelberg, Germany: 2013. pp. 649–656. Lecture Notes in Computer Science. PubMed PMC

Cheng X., Zhang L., Zheng Y. Deep Similarity Learning for Multimodal Medical Images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018;6:248–252. doi: 10.1080/21681163.2015.1135299. DOI

Simonovsky M., Gutiérrez-Becker B., Mateus D., Navab N., Komodakis N. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016. Springer International Publishing; Cham, Switzerland: 2016. A Deep Metric for Multimodal Registration.

Liu X., Tizhoosh H.R., Kofman J. Generating Binary Tags for Fast Medical Image Retrieval Based on Convolutional Nets and Radon Transform; Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN); Vancouver, BC, Canada. 24–29 July 2016.

Merigó J.M., Pedrycz W., Weber R., de la Sotta C. Fifty Years of Information Sciences: A Bibliometric Overview. Inf. Sci. 2018;432:245–268. doi: 10.1016/j.ins.2017.11.054. DOI

Marin D.B., Becciolini V., Santana L.S., Rossi G., Barbari M. State of the Art and Future Perspectives of Atmospheric Chemical Sensing Using Unmanned Aerial Vehicles: A Bibliometric Analysis. Sensors. 2023;23:8384. doi: 10.3390/s23208384. PubMed DOI PMC

Wang J., Kim H.-S. Visualizing the Landscape of Home IoT Research: A Bibliometric Analysis Using VOSviewer. Sensors. 2023;23:3086. doi: 10.3390/s23063086. PubMed DOI PMC

Denche-Zamorano A., Rodriguez-Redondo Y., Barrios-Fernandez S., Mendoza-Muñoz M., Castillo-Paredes A., Rojo-Ramos J., Garcia-Gordillo M.A., Adsuar J.C. Rehabilitation Is the Main Topic in Virtual and Augmented Reality and Physical Activity Research: A Bibliometric Analysis. Sensors. 2023;23:2987. doi: 10.3390/s23062987. PubMed DOI PMC

Huang H., Yang Q., Wang J., Zhang P., Cai S., Cai C. High-Efficient Bloch Simulation of Magnetic Resonance Imaging Sequences Based on Deep Learning. Phys. Med. Biol. 2023;68:085002. doi: 10.1088/1361-6560/acc4a6. PubMed DOI

Hamdaoui F., Sakly A. Automatic Diagnostic System for Segmentation of 3D/2D Brain MRI Images Based on a Hardware Architecture. Microprocess. Microsyst. 2023;98:104814. doi: 10.1016/j.micpro.2023.104814. DOI

Jo J.W., Gahm J.K. G-RMOS: GPU-Accelerated Riemannian Metric Optimization on Surfaces. Comput. Biol. Med. 2022;150:106167. doi: 10.1016/j.compbiomed.2022.106167. PubMed DOI

Kim D.H.C., Williams L.J., Hernandez-Fernandez M., Bjornson B.H. Comparison of CPU and GPU Bayesian Estimates of Fibre Orientations from Diffusion MRI. PLoS ONE. 2022;17:e0252736. doi: 10.1371/journal.pone.0252736. PubMed DOI PMC

Islam S.R., Maity S.P., Ray A.K. Compressed Sensing Regularized Calibrationless Parallel Magnetic Resonance Imaging via Deep Learning. Biomed. Signal Process. Control. 2021;66:102399. doi: 10.1016/j.bspc.2020.102399. DOI

Ni Q., Zhang Y., Wen T., Li L. A Sparse Volume Reconstruction Method for Fetal Brain MRI Using Adaptive Kernel Regression. BioMed Res. Int. 2021;2021:6685943. doi: 10.1155/2021/6685943. PubMed DOI PMC

Wojtkiewicz S., Liebert A. Parallel, Multi-Purpose Monte Carlo Code for Simulation of Light Propagation in Segmented Tissues. Biocybern. Biomed. Eng. 2021;41:1303–1321. doi: 10.1016/j.bbe.2021.03.001. DOI

Valsalan P., Sriramakrishnan P., Sridhar S., Latha G.C.P., Priya A., Ramkumar S., Singh A.R., Rajendran T. Knowledge Based Fuzzy C-Means Method for Rapid Brain Tissues Segmentation of Magnetic Resonance Imaging Scans with CUDA Enabled GPU Machine. J. Ambient. Intell. Humaniz. Comput. 2020 doi: 10.1007/s12652-020-02132-6. DOI

Pantoja M., Weyrich M., Fernández-Escribano G. Acceleration of MRI Analysis Using Multicore and Manycore Paradigms. J. Supercomput. 2020;76:8679–8690. doi: 10.1007/s11227-020-03154-9. DOI

Chang H.-H., Lin Y.-J., Zhuang A.H. An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images. J. Digit. Imaging. 2019;32:148–161. doi: 10.1007/s10278-018-0110-y. PubMed DOI PMC

Chang H.-H., Li C.-Y. An Automatic Restoration Framework Based on GPU-Accelerated Collateral Filtering in Brain MR Images. BMC Med. Imaging. 2019;19:8. doi: 10.1186/s12880-019-0305-9. PubMed DOI PMC

Hernandez-Fernandez M., Reguly I., Jbabdi S., Giles M., Smith S., Sotiropoulos S.N. Using GPUs to Accelerate Computational Diffusion MRI: From Microstructure Estimation to Tractography and Connectomes. NeuroImage. 2019;188:598–615. doi: 10.1016/j.neuroimage.2018.12.015. PubMed DOI PMC

Zhang H., Hung C.-L., Min G., Guo J.-P., Liu M., Hu X. GPU-Accelerated GLRLM Algorithm for Feature Extraction of MRI. Sci. Rep. 2019;9:10883. doi: 10.1038/s41598-019-46622-w. PubMed DOI PMC

Wang J., Sun Z., Ji H., Zhang X., Wang T., Shen Y. A Fast 3D Brain Extraction and Visualization Framework Using Active Contour and Modern OpenGL Pipelines. IEEE Access. 2019;7:156097–156109. doi: 10.1109/ACCESS.2019.2948621. DOI

Lai J., Li H., Tian Z., Zhang Y. A Multi-GPU Parallel Algorithm in Hypersonic Flow Computations. Math. Probl. Eng. 2019;2019:2053156. doi: 10.1155/2019/2053156. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...