Spitz Tumor With SQSTM1::NTRK2 Fusion: A Clinicopathological Study of 5 Cases
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36939120
DOI
10.1097/dad.0000000000002410
PII: 00000372-202305000-00003
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- epiteloidní a vřetenobuněčný névus * genetika MeSH
- hybridizace in situ fluorescenční MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory kůže * patologie MeSH
- protoonkogenní proteiny genetika MeSH
- sekvestosom 1 genetika MeSH
- tyrosinkinasové receptory genetika MeSH
- tyrosinkinasy genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protoonkogenní proteiny MeSH
- sekvestosom 1 MeSH
- SQSTM1 protein, human MeSH Prohlížeč
- tyrosinkinasové receptory MeSH
- tyrosinkinasy MeSH
Spitz tumors are melanocytic neoplasms characterized by specific, mutually exclusive driver molecular events, namely genomic rearrangements involving the threonine kinase BRAF and the tyrosine kinase receptors ALK , NTRK1 , NTRK2 , NTRK3 , MET , RET , ROS1 , and MAP3K8 or less commonly, mutations in HRAS or MAP2K1 . We hereby report 5 Spitz tumors with a SQSTM1::NTRK2 fusion. All patients were woman with the ages at diagnosis ranging from 30 to 50 years. Locations included the lower extremity (n = 3), forearm, and back (one each). All the neoplasms were superficial melanocytic proliferation with a flat to dome-shaped silhouette, in which junctional spindled and polygonal dendritic melanocytes were mainly arranged as horizontal nests associated with conspicuous lentiginous involvement of the follicular epithelium. Only one case showed heavily pigmented, vertically oriented melanocytic nests resembling Reed nevus. A superficial intradermal component observed in 2 cases appeared as small nests with a back-to-back configuration. In all lesions, next-generation sequencing analysis identified a SQSTM1::NTRK2 fusion. A single case studied with fluorescence in situ hybridization for copy number changes in melanoma-related genes proved negative. No further molecular alterations were detected, including TERT-p hotspot mutations.
Department of Pathology Fondazione Policlinico Universitario Campus Bio Medico Roma Italy
Department of Pathology Umeå University Umeå Sweden; and
IDP Institut für Dermatohistopathologie Pathologie Institut Enge Zürich Switzerland
Zobrazit více v PubMed
Zedek DC, McCalmont TH. Spitz nevi, atypical spitzoid neoplasms, and spitzoid melanoma. Clin Lab Med. 2011;31:311–320.
Elder DE, Massi D, Scolyer RA, et al. WHO Classification of Skin Tumours. 4th ed Lyon, France: International Agency for Research on Cancer (IARC); 2018.
SPITZ S. Melanomas of childhood. Am J Pathol. 1948;24:591–609.
Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157:967–972.
Bastian BC, Wesselmann U, Pinkel D, et al. Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol. 1999;113:1065–1069.
Fullen DR, Poynter JN, Lowe L, et al. BRAF and NRAS mutations in spitzoid melanocytic lesions. Mod Pathol. 2006;19:1324–1332.
Gerami P, Busam KJ. Cytogenetic and mutational analyses of melanocytic tumors. Dermatol Clin. 2012;30:555–566.
Gerami P, Scolyer RA, Xu X, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. Am J Surg Pathol. 2013;37:676–684.
Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.
Dal Pozzo CA, Cappellesso R. The morpho-molecular landscape of spitz neoplasms. Int J Mol Sci. 2022;23:4211.
Yeh I, Busam KJ, McCalmont TH, et al. Filigree-like rete ridges, lobulated nests, rosette-like structures, and exaggerated maturation characterize spitz tumors with NTRK1 fusion. Am J Surg Pathol. 2019;43:737–746.
Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–381.
Busam KJ, Kutzner H, Cerroni L, et al. Clinical and pathologic findings of Spitz nevi and atypical Spitz tumors with ALK fusions. Am J Surg Pathol. 2014;38:925–933.
Yeh I, de la Fouchardiere A, Pissaloux D, et al. Clinical, histopathologic, and genomic features of Spitz tumors with ALK fusions. Am J Surg Pathol. 2015;39:581–591.
VandenBoom T, Quan VL, Zhang B, et al. Genomic fusions in pigmented spindle cell nevus of reed. Am J Surg Pathol. 2018;42:1042–1051.
Goto K, Pissaloux D, Tirode F, et al. Spitz nevus with a novel TFG-NTRK2 fusion: the first case report of NTRK2-rearranged Spitz/Reed nevus. J Cutan Pathol. 2021;48:1193–1196.
Donati M, Kastnerova L, Martinek P, et al. Spitz tumors with ROS1 fusions: a clinicopathological study of 6 cases, including FISH for chromosomal copy number alterations and mutation analysis using next-generation sequencing. Am J Dermatopathol. 2020;42:92–102.
Gerami P, Jewell SS, Morrison LE, et al. Fluorescence in situ hybridization (FISH) as an ancillary diagnostic tool in the diagnosis of melanoma. Am J Surg Pathol. 2009;33:1146–1156.
Gerami P, Li G, Pouryazdanparast P, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. Am J Surg Pathol. 2012;36:808–817.
Lezcano C, Shoushtari AN, Ariyan C, et al. Primary and metastatic melanoma with NTRK fusions. Am J Surg Pathol. 2018;42:1052–1058.
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4:299–309.
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15:731–747.
Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5:25–34.
Coppola V, Barrick CA, Southon EA, et al. Ablation of TrkA function in the immune system causes B cell abnormalities. Development. 2004;131:5185–5195.
Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350:158–160.
Klein R, Jing SQ, Nanduri V, et al. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65:189–197.
Geiger TR, Song JY, Rosado A, et al. Functional characterization of human cancer-derived TRKB mutations. PLoS One. 2011;6:e16871.
Harada T, Yatabe Y, Takeshita M, et al. Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res. 2011;17:2638–2645.
Miranda C, Mazzoni M, Sensi M, et al. Functional characterization of NTRK1 mutations identified in melanoma. Genes Chromosomes Cancer. 2014;53:875–880.
Tacconelli A, Farina AR, Cappabianca L, et al. Alternative TrkAIII splicing: a potential regulated tumor-promoting switch and therapeutic target in neuroblastoma. Future Oncol. 2005;1:689–698.
Reuther GW, Lambert QT, Caligiuri MA, et al. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol. 2000;20:8655–8666.
Lagadec C, Meignan S, Adriaenssens E, et al. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene. 2009;28:1960–1970.
Solomon JP, Linkov I, Rosado A, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol. 2020;33:38–46.
Rea SL, Walsh JP, Ward L, et al. A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget's disease of bone with a severe phenotype. J Bone Miner Res. 2006;21:1136–1145.
Fecto F, Yan J, Vemula SP, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68:1440–1446.
Rubino E, Rainero I, Chio A, et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology. 2012;79:1556–1562.
Scott G, Leopardi S. The cAMP signaling pathway has opposing effects on Rac and Rho in B16F10 cells: implications for dendrite formation in melanocytic cells. Pigment Cell Res. 2003;16:139–148.
Yaar M, Eller MS, DiBenedetto P, et al. The Trk family of receptors mediates nerve growth factor and neurotrophin-3 effects in melanocytes. J Clin Invest. 1994;94:1550–1562.
de la Fouchardière A, Tee MK, Peternel S, et al. Fusion partners of NTRK3 affect subcellular localization of the fusion kinase and cytomorphology of melanocytes. Mod Pathol. 2021;34:735–747.
Kamino H, Misheloff E, Ackerman AB, et al. Eosinophilic globules in Spitz's nevi: new findings and a diagnostic sign. Am J Dermatopathol. 1979;1:323–324.
Wesselmann U, Becker LR, Bröcker EB, et al. Eosinophilic globules in spitz nevi: no evidence for apoptosis. Am J Dermatopathol. 1998;20:551–554.
Schmoeckel C, Stolz W, Burgeson R, et al. Identification of basement membrane components in eosinophilic globules in a case of Spitz's nevus. Am J Dermatopathol. 1990;12:272–274.
Kamino H, Jagirdar J. Fibronectin in eosinophilic globules of Spitz's nevi. Am J Dermatopathol. 1984;6:313–316.
Thyresson N, Moberger G. Cytologic studies in lichen ruber planus. Acta Derm Venereol. 1957;37:191–204.
Aractingi S, Chosidow O. Cutaneous graft-versus-host disease. Arch Dermatol. 1998;134:602–612.
Weyers W, Metze D. Histopathology of drug eruptions—general criteria, common patterns, and differential diagnosis. Dermatol Pract Concept. 2011;1:33–47.
Cloutier JM, Hsi A, Camacho C, et al. Necrotic keratinocytes are common in psoriasis and have a predilection to the upper epidermis: a quantitative and comparative analysis. Am J Dermatopathol. 2020;42:20–23.
Benz G, Hölzel D, Schmoeckel C. Inflammatory cellular infiltrates in melanocytic nevi. Am J Dermatopathol. 1991;13:538–542.