Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment

. 2023 Mar 16 ; 24 (6) : . [epub] 20230316

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36982789

Grantová podpora
NCT05270278 AstzaZeneca Czech Republic

The existence of eosinophils was documented histopathologically in the first half of the 19th century. However, the term "eosinophils" was first used by Paul Ehrlich in 1878. Since their discovery and description, their existence has been associated with asthma, allergies, and antihelminthic immunity. Eosinophils may also be responsible for various possible tissue pathologies in many eosinophil-associated diseases. Since the beginning of the 21st century, the understanding of the nature of this cell population has undergone a fundamental reassessment, and in 2010, J. J. Lee proposed the concept of "LIAR" (Local Immunity And/or Remodeling/Repair), underlining the extensive immunoregulatory functions of eosinophils in the context of health and disease. It soon became apparent that mature eosinophils (in line with previous morphological studies) are not structurally, functionally, or immunologically homogeneous cell populations. On the contrary, these cells form subtypes characterized by their further development, immunophenotype, sensitivity to growth factors, localization, role and fate in tissues, and contribution to the pathogenesis of various diseases, including asthma. The eosinophil subsets were recently characterized as resident (rEos) and inflammatory (iEos) eosinophils. During the last 20 years, the biological therapy of eosinophil diseases, including asthma, has been significantly revolutionized. Treatment management has been improved through the enhancement of treatment effectiveness and a decrease in the adverse events associated with the formerly ultimately used systemic corticosteroids. However, as we observed from real-life data, the global treatment efficacy is still far from optimal. A fundamental condition, "sine qua non", for correct treatment management is a thorough evaluation of the inflammatory phenotype of the disease. We believe that a better understanding of eosinophils would lead to more precise diagnostics and classification of asthma subtypes, which could further improve treatment outcomes. The currently validated asthma biomarkers (eosinophil count, production of NO in exhaled breath, and IgE synthesis) are insufficient to unveil super-responders among all severe asthma patients and thus give only a blurred picture of the adepts for treatment. We propose an emerging approach consisting of a more precise characterization of pathogenic eosinophils in terms of the definition of their functional status or subset affiliation by flow cytometry. We believe that the effort to find new eosinophil-associated biomarkers and their rational use in treatment algorithms may ameliorate the response rate to biological therapy in patients with severe asthma.

Zobrazit více v PubMed

Lee J.J., Jacobsen E.A., McGarry M.P., Schleimer R.P., Lee N.A. Eosinophils in health and disease: The LIAR hypothesis. Clin. Exp. Allergy. 2010;40:563–575. doi: 10.1111/j.1365-2222.2010.03484.x. PubMed DOI PMC

Van Hulst G., Bureau F., Desmet C.J. Eosinophils as drivers of severe eosinophilic asthma: Endotypes or plasticity? Int. J. Mol. Sci. 2021;22:10150. doi: 10.3390/ijms221810150. PubMed DOI PMC

Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol. 2019;25:3503–3526. doi: 10.3748/wjg.v25.i27.3503. PubMed DOI PMC

Qiu Y., Nguyen K.D., Odegaard J.I., Cui X., Tian X., Locksley R.M., Palmiter R.D., Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–1308. doi: 10.1016/j.cell.2014.03.066. PubMed DOI PMC

Mesnil C., Raulier S., Paulissen G., Xiao X., Birrell M.A., Pirottin D., Janss T., Starkl P., Ramery E., Henket M., et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 2016;126:3279–3295. doi: 10.1172/JCI85664. PubMed DOI PMC

Rothenberg M.E. A hidden residential cell in the lung. J. Clin. Investig. 2016;126:3185–3187. doi: 10.1172/JCI89768. PubMed DOI PMC

Marichal T., Mesnil C., Bureau F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017;4:101. doi: 10.3389/fmed.2017.00101. PubMed DOI PMC

Abdala-Valencia H., Coden M.E., Chiarella S.E., Jacobsen E.A., Bochner B.S., Lee J.J., Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 2018;104:95–108. doi: 10.1002/JLB.1MR1117-442RR. PubMed DOI PMC

Klion A.D., Ackerman S.J., Bochner B.S. Contributions of Eosinophils to Human Health and Disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:179–209. doi: 10.1146/annurev-pathmechdis-012419-032756. PubMed DOI PMC

Rühle P.F., Fietkau R., Gaipl U.S., Frey B. Development of a modular assay for detailed immunophenotyping of peripheral human whole blood samples by multicolor flow cytometry. Int. J. Mol. Sci. 2016;17:1316. doi: 10.3390/ijms17081316. PubMed DOI PMC

Rosenberg H.F., Phipps S., Foster P.S. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol. 2007;119:1303–1310. doi: 10.1016/j.jaci.2007.03.048. PubMed DOI

Kouro T., Takatsu K. IL-5- and eosinophil-mediated inflammation: From discovery to therapy. Int. Immunol. 2009;21:1303–1309. doi: 10.1093/intimm/dxp102. PubMed DOI

Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A., Marshall R.P., Bradding P., Green R.H., Wardlaw A.J., et al. Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. N. Engl. J. Med. 2009;360:973–984. doi: 10.1056/NEJMoa0808991. PubMed DOI PMC

Roufosse F. Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. Front. Med. 2018;5:49. doi: 10.3389/fmed.2018.00049. PubMed DOI PMC

Hassani M., Koenderman L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: An overview. Allergy Eur. J. Allergy Clin. Immunol. 2018;73:1979–1988. doi: 10.1111/all.13451. PubMed DOI PMC

Gao J., Chen Y.H., Peterson L.A.C. GATA family transcriptional factors: Emerging suspects in hematologic disorders. Exp. Hematol. Oncol. 2015;4:1–7. doi: 10.1186/s40164-015-0024-z. PubMed DOI PMC

Bochner B.S. The eosinophil: For better or worse, in sickness and in health. Ann. Allergy Asthma Immunol. 2018;121:150–155. doi: 10.1016/j.anai.2018.02.031. PubMed DOI PMC

Tavernier J., Van der Heyden J., Verhee A., Brusselle G., Van Ostade X., Vandekerckhove J., North J., Rankin S.M., Kay A.B., Robinson D.S. Interleukin 5 regulates the isoform expression of its own receptor alpha-subunit. Blood. 2000;95:1600–1607. doi: 10.1182/blood.V95.5.1600.005k22_1600_1607. PubMed DOI

Sehmi R., Wardlaw A.J., Cromwell O., Kurihara K., Waltmann P., Kay A.B. Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood. 1992;79:2952–2959. doi: 10.1182/blood.V79.11.2952.bloodjournal79112952. PubMed DOI

Melo R.C.N., Weller P.F. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 2018;104:85–93. doi: 10.1002/JLB.3MR1217-476R. PubMed DOI PMC

Munitz A., Levi-Schaffer F. Inhibitory receptors on eosinophils: A direct hit to a possible Achilles heel? J. Allergy Clin. Immunol. 2007;119:1382–1387. doi: 10.1016/j.jaci.2007.01.031. PubMed DOI

Rådinger M., Lötvall J. Eosinophil progenitors in allergy and asthma—Do they matter? Pharmacol. Ther. 2009;121:174–184. doi: 10.1016/j.pharmthera.2008.10.008. PubMed DOI

Smith S.G., Chen R., Kjarsgaard M., Huang C., Oliveria J.P., O’Byrne P.M., Gauvreau G.M., Boulet L.P., Lemiere C., Martin J., et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 2016;137:75–86.e8. doi: 10.1016/j.jaci.2015.05.037. PubMed DOI

Berdnikovs S. The twilight zone: Plasticity and mixed ontogeny of neutrophil and eosinophil granulocyte subsets. Semin. Immunopathol. 2021;43:337–346. doi: 10.1007/s00281-021-00862-z. PubMed DOI PMC

Wen T., Besse J.A., Mingler M.K., Fulkerson P.C., Rothenberg M.E. Eosinophil adoptive transfer system to directly evaluate pulmonary eosinophil trafficking in vivo. Proc. Natl. Acad. Sci. USA. 2013;110:6067–6072. doi: 10.1073/pnas.1220572110. PubMed DOI PMC

Winkel P., Statland B.E., Saunders A.M., Osborn H., Kupperman H. Within-day physiologic variation of leukocyte types in healthy subjects as assayed by two automated leukocyte differential analyzers. Am. J. Clin. Pathol. 1981;75:693–700. doi: 10.1093/ajcp/75.5.693. PubMed DOI

Kanda A., Yun Y., Van Bui D., Nguyen L.M., Kobayashi Y., Suzuki K., Mitani A., Sawada S., Hamada S., Asako M., et al. The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergol. Int. 2021;70:9–18. doi: 10.1016/j.alit.2020.11.001. PubMed DOI

Januskevicius A., Gosens R., Sakalauskas R., Vaitkiene S., Janulaityte I., Halayko A.J., Hoppenot D., Malakauskas K. Suppression of eosinophil integrins prevents remodeling of airway smooth muscle in asthma. Front. Physiol. 2017;7:680. doi: 10.3389/fphys.2016.00680. PubMed DOI PMC

Michail S., Mezoff E., Abernathy F. Role of selectins in the intestinal epithelial migration of eosinophils. Pediatr. Res. 2005;58:644–647. doi: 10.1203/01.PDR.0000180572.65751.F4. PubMed DOI

Rothenberg M.E. Eotaxin: An essential mediator of Eosinophil trafficking into mucosal tissues. Am. J. Respir. Cell Mol. Biol. 1999;21:291–295. doi: 10.1165/ajrcmb.21.3.f160. PubMed DOI

Castan L., Magnan A., Bouchaud G. Chemokine receptors in allergic diseases. Allergy Eur. J. Allergy Clin. Immunol. 2017;72:682–690. doi: 10.1111/all.13089. PubMed DOI

Park Y.M., Bochner B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010;2:87–101. doi: 10.4168/aair.2010.2.2.87. PubMed DOI PMC

Valent P., Klion A.D., Horny H.P., Roufosse F., Gotlib J., Weller P.F., Hellmann A., Metzgeroth G., Leiferman K.M., Arock M., et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 2012;130:607–612. doi: 10.1016/j.jaci.2012.02.019. PubMed DOI PMC

Kato M., Kephart G.M., Morikawa A., Gleich G.J. Eosinophil infiltration and degranulation in normal human tissues: Evidence for eosinophil degranulation in normal gastrointestinal tract. Int. Arch. Allergy Immunol. 2001;125:55–58. doi: 10.1159/000053855. PubMed DOI

Weller P.F., Spencer L.A. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 2017;17:746–760. doi: 10.1038/nri.2017.95. PubMed DOI PMC

Huang L., Beiting D.P., Gebreselassie N.G., Gagliardo L.F., Ruyechan M.C., Lee N.A., Lee J.J., Appleton J.A. Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathog. 2015;11:e1005347. doi: 10.1371/journal.ppat.1005347. PubMed DOI PMC

Stein L.H., Redding K.M., Lee J.J., Nolan T.J., Schad G.A., Lok J.B., Abraham D. Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode strongyloides stercoralis. J. Innate Immun. 2009;1:618–630. doi: 10.1159/000233235. PubMed DOI PMC

Fabre V., Beiting D.P., Bliss S.K., Gebreselassie N.G., Gagliardo L.F., Lee N.A., Lee J.J., Appleton J.A. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J. Immunol. 2009;182:1577–1583. doi: 10.4049/jimmunol.182.3.1577. PubMed DOI PMC

Rosenberg H.F., Dyer K.D., Foster P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol. 2013;13:9–22. doi: 10.1038/nri3341. PubMed DOI PMC

McBrien C.N., Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front. Med. 2017;4:93. doi: 10.3389/fmed.2017.00093. PubMed DOI PMC

Acharya K.R., Ackerman S.J. Eosinophil granule proteins: Form and function. J. Biol. Chem. 2014;289:17406–17415. doi: 10.1074/jbc.R113.546218. PubMed DOI PMC

Stone K.D., Prussin C., Metcalfe D.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010;125:S73–S80. doi: 10.1016/j.jaci.2009.11.017. PubMed DOI PMC

Persson C., Uller L. Theirs but to die and do: Primary lysis of eosinophils and free eosinophil granules in asthma. Am. J. Respir. Crit. Care Med. 2014;189:628–633. doi: 10.1164/rccm.201311-2069OE. PubMed DOI

Mukherjee M., Bulir D.C., Radford K., Kjarsgaard M., Huang C.M., Jacobsen E.A., Ochkur S.I., Catuneanu A., Lamothe-Kipnes H., Mahony J., et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2018;141:1269–1279. doi: 10.1016/j.jaci.2017.06.033. PubMed DOI

Nair P., Ochkur S.I., Protheroe C., Radford K., Efthimiadis A., Lee N.A., Lee J.J. Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy Eur. J. Allergy Clin. Immunol. 2013;68:1177–1184. doi: 10.1111/all.12206. PubMed DOI PMC

Mukherjee M., Thomas S.R., Radford K., Dvorkin-Gheva A., Davydchenko S., Kjarsgaard M., Svenningsen S., Almas S., Felix L.C., Stearns J., et al. Sputum Antineutrophil Cytoplasmic Antibodies in Serum Antineutrophil Cytoplasmic Antibody-Negative Eosinophilic Granulomatosis with Polyangiitis. Am. J. Respir. Crit. Care Med. 2019;199:158–170. doi: 10.1164/rccm.201804-0809OC. PubMed DOI

Klion A.D., Nutman T.B. The role of eosinophils in host defense against helminth parasites. J. Allergy Clin. Immunol. 2004;113:30–37. doi: 10.1016/j.jaci.2003.10.050. PubMed DOI

Drake M.G., Bivins-Smith E.R., Proskocil B.J., Nie Z., Scott G.D., Lee J.J., Lee N.A., Fryer A.D., Jacoby D.B. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am. J. Respir. Cell Mol. Biol. 2016;55:387–394. doi: 10.1165/rcmb.2015-0405OC. PubMed DOI PMC

Ramirez G.A., Yacoub M.R., Ripa M., Mannina D., Cariddi A., Saporiti N., Ciceri F., Castagna A., Colombo G., Dagna L. Eosinophils from Physiology to Disease: A Comprehensive Review. Biomed. Res. Int. 2018;2018:28. doi: 10.1155/2018/9095275. PubMed DOI PMC

Mukherjee M., Lacy P., Ueki S. Eosinophil extracellular traps and inflammatory pathologies-untangling the web! Front. Immunol. 2018;9:2763. doi: 10.3389/fimmu.2018.02763. PubMed DOI PMC

Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008;14:949–953. doi: 10.1038/nm.1855. PubMed DOI

Long H., Liao W., Wang L., Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus. Med. Hemotherapy. 2016;43:96–108. doi: 10.1159/000445215. PubMed DOI PMC

Padigel U.M., Lee J.J., Nolan T.J., Schad G.A., Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect. Immun. 2006;74:3232–3238. doi: 10.1128/IAI.02067-05. PubMed DOI PMC

Mathur S.K., Fichtinger P.S., Kelly J.T., Lee W.M., Gern J.E., Jarjour N.N. Interaction between allergy and innate immunity: Model for eosinophil regulation of epithelial cell interferon expression. Ann. Allergy Asthma Immunol. 2013;111:25–31.e1. doi: 10.1016/j.anai.2013.05.010. PubMed DOI PMC

Prehn A., Seger R.A., Faber J., Torresani T., Molinari L., Gerber A., Sennhauser F.H. The relationship of serum-eosinophil cationic protein and eosinophil count to disease activity in children with bronchial asthma. Pediatr. Allergy Immunol. 1998;9:197–203. doi: 10.1111/j.1399-3038.1998.tb00373.x. PubMed DOI

Rodriguez L., Pekkarinen P.T., Lakshmikanth T., Tan Z., Consiglio C.R., Pou C., Chen Y., Mugabo C.H., Nguyen N.A., Nowlan K., et al. Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Rep. Med. 2020;1:100078. doi: 10.1016/j.xcrm.2020.100078. PubMed DOI PMC

Poznanski S.M., Mukherjee M., Zhao N., Huang C., Radford K., Ashkar A.A., Nair P. Asthma exacerbations on benralizumab are largely non-eosinophilic. Allergy Eur. J. Allergy Clin. Immunol. 2021;76:375–379. doi: 10.1111/all.14514. PubMed DOI

Varricchi G., Bagnasco D., Borriello F., Heffler E., Canonica G.W. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: Evidence and unmet needs. Curr. Opin. Allergy Clin. Immunol. 2016;16:186–200. doi: 10.1097/ACI.0000000000000251. PubMed DOI PMC

Humbles A.A., Lloyd C.M., McMillan S.J., Friend D.S., Xanthou G., McKenna E.E., Ghiran S., Gerard N.P., Yu C., Orkin S.H., et al. A Critical Role for Eosinophils in Allergic Airways Remodeling. Science. 2004;305:1776–1779. doi: 10.1126/science.1100283. PubMed DOI

Brusselle G.G., Maes T., Bracke K.R. Eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 2013;19:977–979. doi: 10.1038/nm.3300. PubMed DOI

Brusselle G.G., Koppelman G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022;386:157–171. doi: 10.1056/NEJMra2032506. PubMed DOI

Terl M., Sedlák V., Cap P., Dvořáková R., Kašák V., Kočí T., Novotna B., Seberova E., Panzner P., Zindr V. Asthma management: A new phenotype-based approach using presence of eosinophilia and allergy. Allergy Eur. J. Allergy Clin. Immunol. 2017;72:1279–1287. doi: 10.1111/all.13165. PubMed DOI

Bousquet J., Chanez P., Lacoste J.Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N. Engl. J. Med. 1990;323:1033–1039. doi: 10.1056/NEJM199010113231505. PubMed DOI

Saglani S., Lloyd C.M. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J. 2015;46:1796–1804. doi: 10.1183/13993003.01196-2014. PubMed DOI

Wardlaw A.J., Dunnette S., Gleich G.J., Collins J.V., Kay A.B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am. Rev. Respir. Dis. 1988;137:62–69. doi: 10.1164/ajrccm/137.1.62. PubMed DOI

Oddera S., Silvestri M., Balbo A., Jovovich B.O., Penna R., Crimi E., Rossi G.A. Airway eosinophilic inflammation, epithelial damage, and bronchial hyperresponsiveness in patients with mild-moderate, stable asthma. Allergy. 1996;51:100–107. PubMed

Jatakanon A., Lim S., Barnes P.J. Changes in sputum eosinophils predict loss of asthma control. Am. J. Respir. Crit. Care Med. 2000;161:64–72. doi: 10.1164/ajrccm.161.1.9809100. PubMed DOI

Pizzichini M.M.M., Pizzichini E., Clelland L., Efthimiadis A., Pavord I., Dolovich J., Hargreave F.E. Prednisone-dependent asthma: Inflammatory indices in induced sputum. Eur. Respir. J. 1999;13:15–21. doi: 10.1183/09031936.99.13101599. PubMed DOI

Berry M., Morgan A., Shaw D.E., Parker D., Green R., Brightling C., Bradding P., Wardlaw A.J., Pavord I.D. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62:1043–1049. doi: 10.1136/thx.2006.073429. PubMed DOI PMC

Parameswaran K., Leigh R., Hargreave F.E. Sputum eosinophil count to assess compliance with corticosteroid therapy in asthma. J. Allergy Clin. Immunol. 1999;104:502–503. doi: 10.1016/S0091-6749(99)70402-1. PubMed DOI

Global Strategy for Asthma Management and Prevention (2022 Update) Global Initiative for Asthma; Fontana, WI, USA: 2022. [(accessed on 7 January 2022)]. pp. 1–186. Available online: https://ginasthma.org/wp-content/uploads/2022/07/GINA-Main-Report-2022-FINAL-22-07-01-WMS.pdf.

Global Initiative for Asthma (GINA) Difficult-to-Treat Severe Asthma in Adolescent and Adult Patients GINA Pocket Guide for Health Professionals Diagnosis and Management. 2019. [(accessed on 30 April 2019)]. Available online: https://ginasthma.org/wp-content/uploads/2019/04/GINA-Severe-asthma-Pocket-Guide-v2.0-wms-1.pdf.

Arron J.R., Choy D.F., Scheerens H., Matthews J.G. Noninvasive biomarkers that predict treatment benefit from biologic therapies in asthma. Ann. Am. Thorac. Soc. 2013;10:S206–S213. doi: 10.1513/AnnalsATS.201303-047AW. PubMed DOI

Hastie A.T., Moore W.C., Li H., Rector B.M., Ortega V.E., Pascual R.M., Peters S.P., Meyers D.A., Bleecker E.R. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J. Allergy Clin. Immunol. 2013;132:72–80. doi: 10.1016/j.jaci.2013.03.044. PubMed DOI PMC

Leckie M.J., ten Brinke A., Khan J., Diamant Z., O’Connor B.J., Walls C.M., Mathur A.K., Cowley H.C., Chung K.F., Djukanovic R., et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–2148. doi: 10.1016/S0140-6736(00)03496-6. PubMed DOI

Haldar P., Pavord I.D., Shaw D.E., Berry M.A., Thomas M., Brightling C.E., Wardlaw A.J., Green R.H. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008;178:218–224. doi: 10.1164/rccm.200711-1754OC. PubMed DOI PMC

Nair P., Pizzichini M.M.M., Kjarsgaard M., Inman M.D., Efthimiadis A., Pizzichini E., Hargreave F.E., O’Byrne P.M. Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. N. Engl. J. Med. 2009;360:985–993. doi: 10.1056/NEJMoa0805435. PubMed DOI

Pavord I.D., Haldar P., Bradding P., Wardlaw A.J. Mepolizumab in refractory eosinophilic asthma. Thorax. 2010;65:370. doi: 10.1136/thx.2009.122697. PubMed DOI

Ortega H.G., Liu M.C., Pavord I.D., Brusselle G.G., FitzGerald J.M., Chetta A., Humbert M., Katz L.E., Keene O.N., Yancey S.W., et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014;371:1198–1207. doi: 10.1056/NEJMoa1403290. PubMed DOI

Nair P., O’Byrne P.M. Measuring Eosinophils to Make Treatment Decisions in Asthma. Chest. 2016;150:485–487. doi: 10.1016/j.chest.2016.07.009. PubMed DOI

Pignatti P., Visca D., Cherubino F., Zampogna E., Lucini E., Saderi L., Sotgiu G., Spanevello A. Do blood eosinophils strictly reflect airway inflammation in COPD? Comparison with asthmatic patients. Respir. Res. 2019;20:145. doi: 10.1186/s12931-019-1111-1. PubMed DOI PMC

Chlumský J., Striz I., Terl M., Vondracek J. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J. Int. Med. Res. 2006;34:129–139. doi: 10.1177/147323000603400202. PubMed DOI

Castro M., Corren J., Pavord I.D., Maspero J., Wenzel S., Rabe K.F., Busse W.W., Ford L., Sher L., FitzGerald J.M., et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018;378:2486–2496. doi: 10.1056/NEJMoa1804092. PubMed DOI

Menzella F., Montanari G., Patricelli G., Cavazza A., Galeone C., Ruggiero P., Bagnasco D., Facciolongo N. A case of chronic eosinophilic pneumonia in a patient treated with dupilumab. Ther. Clin. Risk Manag. 2019;15:869–875. doi: 10.2147/TCRM.S207402. PubMed DOI PMC

Mukherjee M., Nair P. Blood or sputum eosinophils to guide asthma therapy? Lancet Respir. Med. 2015;3:824–825. doi: 10.1016/S2213-2600(15)00419-1. PubMed DOI

Pavlidis S., Takahashi K., Kwong F.N.K., Xie J., Hoda U., Sun K., Elyasigomari V., Agapow P., Loza M., Baribaud F., et al. “T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur. Respir. J. 2019;53:1800938. doi: 10.1183/13993003.00938-2018. PubMed DOI

Kostikas K., Brindicci C., Patalano F. Blood Eosinophils as Biomarkers to Drive Treatment Choices in Asthma and COPD. Curr. Drug Targets. 2018;19:1882–1896. doi: 10.2174/1389450119666180212120012. PubMed DOI PMC

Price D.B., Rigazio A., Campbell J.D., Bleecker E.R., Corrigan C.J., Thomas M., Wenzel S.E., Wilson A.M., Small M.B., Gopalan G., et al. Blood eosinophil count and prospective annual asthma disease burden: A UK cohort study. Lancet Respir. Med. 2015;3:849–858. doi: 10.1016/S2213-2600(15)00367-7. PubMed DOI

Terl M., Pohunek P., Kuhn M., Bystron J. Four seasons of Czech asthma study: Asthma characteristics and management reality in the Czech Republic. J. Asthma. 2020;57:898–910. doi: 10.1080/02770903.2019.1619082. PubMed DOI

Hekking P.P.W., Wener R.R., Amelink M., Zwinderman A.H., Bouvy M.L., Bel E.H. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015;135:896–902. doi: 10.1016/j.jaci.2014.08.042. PubMed DOI

FitzGerald M., Bateman E.D., Boulet L.-P., Cruz A.A., Haahtela T., Levy M.L., O’Byrne P., Paggiaro P., Pedersen S.E., Soto-Quiroz M., et al. Global Strategy for Asthma Management and Prevention (GINA 2015) 2015. [(accessed on 30 July 2015)]. Available online: https://ginasthma.org/wp-content/uploads/2016/01/GINA_Report_2015_Aug11-1.pdf.

Menzella F., Galeone C., Ruggiero P., Bagnasco D., Catellani C., Facciolongo N. Biologics and Bronchial Thermoplasty for severe refractory asthma treatment: From eligibility criteria to real practice. A cross-sectional study. Pulm. Pharmacol. Ther. 2020;60:101874. doi: 10.1016/j.pupt.2019.101874. PubMed DOI

Chand N., Harrison J.E., Rooney S., Pillar J., Jakubicki R., Nolan K., Diamantis W., Duane Sofia R. Anti-IL-5 monoclonal antibody inhibits allergic late phase bronchial eosinophilia in guinea pigs: A therapeutic approach. Eur. J. Pharmacol. 1992;211:121–123. doi: 10.1016/0014-2999(92)90273-7. PubMed DOI

Pavord I.D., Korn S., Howarth P., Bleecker E.R., Buhl R., Keene O.N., Ortega H., Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–659. doi: 10.1016/S0140-6736(12)60988-X. PubMed DOI

Bel E.H., Wenzel S.E., Thompson P.J., Prazma C.M., Keene O.N., Yancey S.W., Ortega H.G., Pavord I.D. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014;371:1189–1197. doi: 10.1056/NEJMoa1403291. PubMed DOI

Chupp G.L., Bradford E.S., Albers F.C., Bratton D.J., Wang-Jairaj J., Nelsen L.M., Trevor J.L., Magnan A., ten Brinke A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): A randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017;5:390–400. doi: 10.1016/S2213-2600(17)30125-X. PubMed DOI

Khatri S., Moore W., Gibson P.G., Leigh R., Bourdin A., Maspero J., Barros M., Buhl R., Howarth P., Albers F.C., et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2019;143:1742–1751.e7. doi: 10.1016/j.jaci.2018.09.033. PubMed DOI

Lugogo N., Domingo C., Chanez P., Leigh R., Gilson M.J., Price R.G., Yancey S.W., Ortega H.G. Long-term Efficacy and Safety of Mepolizumab in Patients With Severe Eosinophilic Asthma: A Multi-center, Open-label, Phase IIIb Study. Clin. Ther. 2016;38:2058–2070.e1. doi: 10.1016/j.clinthera.2016.07.010. PubMed DOI

Galkin D., Liu M.C., Chipps B.E., Chapman K.R., Muñoz X., Angel Bergna M., Azmi J., Mouneimne D., Joksaite S., Albers F.C. Efficacy and Safety of Mepolizumab in Uncontrolled Patients with Severe Eosinophilic Asthma Following a Switch from Omalizumab (OSMO Study): Exacerbation and Safety Outcomes. J. Allergy Clin. Immunol. 2018;141:AB409. doi: 10.1016/j.jaci.2017.12.965. DOI

Han J.K., Bachert C., Fokkens W., Desrosiers M., Wagenmann M., Lee S.E., Smith S.G., Martin N., Mayer B., Yancey S.W., et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021;9:1141–1153. doi: 10.1016/S2213-2600(21)00097-7. PubMed DOI

Moiseev S., Zagvozdkina E., Kazarina V., Bulanov N., Novikov P. Mepolizumab in patients with eosinophilic granulomatosis with polyangiitis. J. Allergy Clin. Immunol. 2019;144:621. doi: 10.1016/j.jaci.2019.03.030. PubMed DOI

Wechsler M.E., Akuthota P., Jayne D., Khoury P., Klion A., Langford C.A., Merkel P.A., Moosig F., Specks U., Cid M.C., et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N. Engl. J. Med. 2017;376:1921–1932. doi: 10.1056/NEJMoa1702079. PubMed DOI PMC

Roufosse F., Kahn J.-E., Rothenberg M.E., Wardlaw A.J., Klion A.D., Kirby S.Y., Gilson M.J., Bentley J.H., Bradford E.S., Yancey S.W., et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: A phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2020;146:1397–1405. doi: 10.1016/j.jaci.2020.08.037. PubMed DOI PMC

Bjermer L., Lemiere C., Maspero J., Weiss S., Zangrilli J., Germinaro M. Reslizumab for Inadequately Controlled Asthma With Elevated Blood Eosinophil Levels: A Randomized Phase 3 Study. Chest. 2016;150:789–798. doi: 10.1016/j.chest.2016.03.032. PubMed DOI

Corren J., Weinstein S., Janka L., Zangrilli J., Garin M. Phase 3 Study of Reslizumab in Patients With Poorly Controlled Asthma: Effects Across a Broad Range of Eosinophil Counts. Chest. 2016;150:799–810. doi: 10.1016/j.chest.2016.03.018. PubMed DOI

Castro M., Mathur S., Hargreave F., Boulet L.P., Xie F., Young J., Jeffrey Wilkins H., Henkel T., Nair P. Reslizumab for poorly controlled, eosinophilic asthma: A randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011;184:1125–1132. doi: 10.1164/rccm.201103-0396OC. PubMed DOI

Castro M., Zangrilli J., Wechsler M.E., Bateman E.D., Brusselle G.G., Bardin P., Murphy K., Maspero J.F., O’Brien C., Korn S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015;3:355–366. doi: 10.1016/S2213-2600(15)00042-9. PubMed DOI

Maselli D.J., Velez M.I., Rogers L. Reslizumab in the management of poorly controlled asthma: The data so far. J. Asthma Allergy. 2016;9:155–162. doi: 10.2147/JAA.S94164. PubMed DOI PMC

Sahota J., Robinson D.S. Update on new biologics for intractable eosinophilic asthma: Impact of reslizumab. Drug Des. Devel. Ther. 2018;12:1173–1181. doi: 10.2147/DDDT.S109489. PubMed DOI PMC

Fahy J.V. Type 2 inflammation in asthma—Present in most, absent in many. Nat. Rev. Immunol. 2015;15:57–65. doi: 10.1038/nri3786. PubMed DOI PMC

Kolbeck R., Kozhich A., Koike M., Peng L., Andersson C.K., Damschroder M.M., Reed J.L., Woods R., Dall’Acqua W.W., Stephens G.L., et al. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 2010;125:1344–1353.e2. doi: 10.1016/j.jaci.2010.04.004. PubMed DOI

Laviolette M., Gossage D.L., Gauvreau G., Leigh R., Olivenstein R., Katial R., Busse W.W., Wenzel S., Wu Y., Datta V., et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 2013;132:1086–1096. doi: 10.1016/j.jaci.2013.05.020. PubMed DOI PMC

Nowak R.M., Parker J.M., Silverman R.A., Rowe B.H., Smithline H., Khan F., Fiening J.P., Kim K., Molfino N.A. A randomized trial of benralizumab, an antiinterleukin 5 receptor α monoclonal antibody, after acute asthma. Am. J. Emerg. Med. 2015;33:14–20. doi: 10.1016/j.ajem.2014.09.036. PubMed DOI

Pham T.H., Damera G., Newbold P., Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir. Med. 2016;111:21–29. doi: 10.1016/j.rmed.2016.01.003. PubMed DOI

Busse W.W., Katial R., Gossage D., Sari S., Wang B., Kolbeck R., Coyle A.J., Koike M., Spitalny G.L., Kiener P.A., et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 2010;125:1237–1244. doi: 10.1016/j.jaci.2010.04.005. PubMed DOI

Bleecker E.R., FitzGerald J.M., Chanez P., Papi A., Weinstein S.F., Barker P., Sproule S., Gilmartin G., Aurivillius M., Werkström V., et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388:2115–2127. doi: 10.1016/S0140-6736(16)31324-1. PubMed DOI

FitzGerald J.M., Bleecker E.R., Nair P., Korn S., Ohta K., Lommatzsch M., Ferguson G.T., Busse W.W., Barker P., Sproule S., et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388:2128–2141. doi: 10.1016/S0140-6736(16)31322-8. PubMed DOI

Goldman M., Hirsch I., Zangrilli J.G., Newbold P., Xu X. The association between blood eosinophil count and benralizumab efficacy for patients with severe, uncontrolled asthma: Subanalyses of the Phase III SIROCCO and CALIMA studies. Curr. Med. Res. Opin. 2017;33:1605–1613. doi: 10.1080/03007995.2017.1347091. PubMed DOI

FitzGerald J.M., Bleecker E.R., Menzies-Gow A., Zangrilli J.G., Hirsch I., Metcalfe P., Newbold P., Goldman M. Predictors of enhanced response with benralizumab for patients with severe asthma: Pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir. Med. 2018;6:51–64. doi: 10.1016/S2213-2600(17)30344-2. PubMed DOI

Bleecker E.R., Wechsler M.E., Mark FitzGerald J., Menzies-Gow A., Wu Y., Hirsch I., Goldman M., Newbold P., Zangrilli J.G. Baseline Patient Factor Impact on the Clinical Efficacy of Benralizumab for Severe Asthma. Eur. Respir. J. 2018;52:1800936. doi: 10.1183/13993003.00936-2018. PubMed DOI PMC

Chipps B.E., Newbold P., Hirsch I., Trudo F., Goldman M. Benralizumab efficacy by atopy status and serum immunoglobulin E for patients with severe, uncontrolled asthma. Ann. Allergy Asthma Immunol. 2018;120:504–511.e4. doi: 10.1016/j.anai.2018.01.030. PubMed DOI

Nair P., Wenzel S., Rabe K.F., Bourdin A., Lugogo N.L., Kuna P., Barker P., Sproule S., Ponnarambil S., Goldman M. Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017;376:2448–2458. doi: 10.1056/NEJMoa1703501. PubMed DOI

Pelaia C., Vatrella A., Bruni A., Terracciano R., Pelaia G. Benralizumab in the treatment of severe asthma: Design, development and potential place in therapy. Drug Des. Devel. Ther. 2018;12:619–628. doi: 10.2147/DDDT.S155307. PubMed DOI PMC

Ferguson G.T., FitzGerald J.M., Bleecker E.R., Laviolette M., Bernstein D., LaForce C., Mansfield L., Barker P., Wu Y., Jison M., et al. Benralizumab for patients with mild to moderate, persistent asthma (BISE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2017;5:568–576. doi: 10.1016/S2213-2600(17)30190-X. PubMed DOI

Matera M.G., Calzetta L., Rinaldi B., Cazzola M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 2017;13:1007–1013. doi: 10.1080/17425255.2017.1359253. PubMed DOI

Busse W.W., Bleecker E.R., FitzGerald J.M., Ferguson G.T., Barker P., Sproule S., Olsson R.F., Martin U.J., Goldman M., Yañez A., et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 2019;7:46–59. doi: 10.1016/S2213-2600(18)30406-5. PubMed DOI

Dunn J.L.M., Rothenberg M.E. 2021 Year in Review: Spotlight on Eosinophils. J. Allergy Clin. Immunol. 2021;149:517–524. doi: 10.1016/j.jaci.2021.11.012. PubMed DOI

Singh D., Fuhr R., Bird N.P., Mole S., Hardes K., Man Y.L., Cahn A., Yancey S.W., Pouliquen I.J. A Phase 1 study of the long-acting anti-IL-5 monoclonal antibody GSK3511294 in patients with asthma. Br. J. Clin. Pharmacol. 2022;88:702. doi: 10.1111/bcp.15002. PubMed DOI PMC

Bochner B.S. “siglec”ting the allergic response for therapeutic targeting. Glycobiology. 2016;26:546–552. doi: 10.1093/glycob/cww024. PubMed DOI PMC

O’Sullivan J.A., Chang A.T., Youngblood B.A., Bochner B.S. Eosinophil and mast cell Siglecs: From biology to drug target. J. Leukoc. Biol. 2020;108:73–81. doi: 10.1002/JLB.2MR0120-352RR. PubMed DOI PMC

Anesi S.D., Tauber J., Nguyen Q.D., Chang P., Berdy G.J., Lin C.C., Chu D.S., Levine H.T., Fernandez A.D., Roy N., et al. Lirentelimab for severe and chronic forms of allergic conjunctivitis. J. Allergy Clin. Immunol. 2022;150:631–639. doi: 10.1016/j.jaci.2022.03.021. PubMed DOI

Dellon E.S., Peterson K.A., Murray J.A., Falk G.W., Gonsalves N., Chehade M., Genta R.M., Leung J., Khoury P., Klion A.D., et al. Anti–Siglec-8 Antibody for Eosinophilic Gastritis and Duodenitis. N. Engl. J. Med. 2020;383:1624–1634. doi: 10.1056/NEJMoa2012047. PubMed DOI PMC

Walsh G.M. Eosinophil apoptosis and clearance in asthma. J. Cell Death. 2013;6:17–25. doi: 10.4137/JCD.S10818. PubMed DOI PMC

Jacobsen E.A., Jackson D.J., Heffler E., Mathur S.K., Bredenoord A.J., Pavord I.D., Akuthota P., Roufosse F., Rothenberg M.E. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu. Rev. Immunol. 2021;39:719–757. doi: 10.1146/annurev-immunol-093019-125918. PubMed DOI PMC

Prin L., Capron M., Tonnel A.B., Bletry O., Capron A. Heterogeneity of human peripheral blood eosinophils: Variability in cell density and cytotoxic ability in relation to the level and the origin of hypereosinophilia. Int. Arch. Allergy Immunol. 1983;72:336–346. doi: 10.1159/000234893. PubMed DOI

Kroegel C., Liu M.C., Hubbard W.C., Lichtenstein L.M., Bochner B.S. Blood and bronchoalveolar eosinophils in allergic subjects after segmental antigen challenge: Surface phenotype, density heterogeneity, and prostanoid production. J. Allergy Clin. Immunol. 1994;93:725–734. doi: 10.1016/0091-6749(94)90252-6. PubMed DOI

Kuo H.P., Yu T.R., Yu C.T. Hypodense eosinophil number relates to clinical severity, airway hyperresponsiveness and response to inhaled corticosteroids in asthmatic subjects. Eur. Respir. J. 1994;7:1452–1459. doi: 10.1183/09031936.94.07081452. PubMed DOI

Abdala Valencia H., Loffredo L.F., Misharin A.V., Berdnikovs S. Phenotypic plasticity and targeting of Siglec-FhighCD11clow eosinophils to the airway in a murine model of asthma. Allergy Eur. J. Allergy Clin. Immunol. 2016;71:267–271. doi: 10.1111/all.12776. PubMed DOI

Percopo C.M., Brenner T.A., Ma M., Kraemer L.S., Hakeem R.M.A., Lee J.J., Rosenberg H.F. SiglecF + Gr1 hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J. Leukoc. Biol. 2017;101:321–328. doi: 10.1189/jlb.3A0416-166R. PubMed DOI PMC

Matucci A., Nencini F., Maggiore G., Chiccoli F., Accinno M., Vivarelli E., Bruno C., Locatello L.G., Palomba A., Nucci E., et al. High proportion of inflammatory CD62L low eosinophils in blood and nasal polyps of severe asthma patients. Clin. Exp. Allergy. 2023;53:78–87. doi: 10.1111/cea.14153. PubMed DOI

Yun Y., Kanda A., Kobayashi Y., Van Bui D., Suzuki K., Sawada S., Baba K., Yagi M., Asako M., Okazaki H., et al. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol. Int. 2020;69:232–238. doi: 10.1016/j.alit.2019.11.002. PubMed DOI

Miyata J., Fukunaga K., Kawashima Y., Watanabe T., Saitoh A., Hirosaki T., Araki Y., Kikawada T., Betsuyaku T., Ohara O., et al. Dysregulated fatty acid metabolism in nasal polyp-derived eosinophils from patients with chronic rhinosinusitis. Allergy Eur. J. Allergy Clin. Immunol. 2019;74:1113–1124. doi: 10.1111/all.13726. PubMed DOI

Mengelers H.J.J., Maikoe T., Hooibrink B., Kuypers T.W., Kreukniet J., Lammers J.W.J., Koenderman L. Down modulation of L-Selection expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin. Exp. Allergy. 1993;23:196–204. doi: 10.1111/j.1365-2222.1993.tb00882.x. PubMed DOI

Shah K., Ignacio A., McCoy K.D., Harris N.L. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. 2020;13:574–583. doi: 10.1038/s41385-020-0281-y. PubMed DOI

Farache Trajano L., Smart N. Immunomodulation for optimal cardiac regeneration: Insights from comparative analyses. npj Regen. Med. 2021;6:1–11. doi: 10.1038/s41536-021-00118-2. PubMed DOI PMC

Al-Shaikhly T., Murphy R.C., Parker A., Lai Y., Altman M.C., Larmore M., Altemeier W.A., Frevert C.W., Debley J.S., Piliponsky A.M., et al. Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur. Respir. J. 2022;60:2101865. doi: 10.1183/13993003.01865-2021. PubMed DOI PMC

Fukuda T., Dunnette S.L., Reed C.E., Ackerman S.J., Peters M.S., Gleich G.J. Increased numbers of hypodense eosinophils in the blood of patients with bronchial asthma. Am. Rev. Respir. Dis. 1985;132:981–985. doi: 10.1164/ARRD.1985.132.5.981. PubMed DOI

Peters M.S., Gleich G.J., Dunnette S.L., Fukuda T. Ultrastructural study of eosinophils from patients with the hypereosinophilic syndrome: A morphological basis of hypodense eosinophils. Blood. 1988;71:780–785. doi: 10.1182/blood.V71.3.780.780. PubMed DOI

Januskevicius A., Jurkeviciute E., Janulaityte I., Kalinauskaite-Zukauske V., Miliauskas S., Malakauskas K. Blood Eosinophils Subtypes and Their Survivability in Asthma Patients. Cells. 2020;9:1248. doi: 10.3390/cells9051248. PubMed DOI PMC

Van Hulst G., Jorssen J., Jacobs N., Henket M., Louis R., Schleich F., Bureau F., Desmet C.J. Anti-IL5 mepolizumab minimally influences residual blood eosinophils in severe asthma. Eur. Respir. J. 2022;59:2100935. doi: 10.1183/13993003.00935-2021. PubMed DOI

Ijaz T., Pazdrak K., Kalita M., Konig R., Choudhary S., Tian B., Boldogh I., Brasier A.R. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ. J. 2014;7:13. doi: 10.1186/1939-4551-7-13. PubMed DOI PMC

Diver S., Sridhar S., Khalfaoui L.C., Russell R.J., Emson C., Griffiths J.M., de Los Reyes M., Yin D., Colice G., Brightling C.E. Feno differentiates epithelial gene expression clusters: Exploratory analysis from the MESOS randomized controlled trial. J. Allergy Clin. Immunol. 2022;150:830–840. doi: 10.1016/j.jaci.2022.04.024. PubMed DOI

Denton E., Price D.B., Tran T.N., Canonica G.W., Menzies-Gow A., FitzGerald J.M., Sadatsafavi M., Perez de Llano L., Christoff G., Quinton A., et al. Cluster Analysis of Inflammatory Biomarker Expression in the International Severe Asthma Registry. J. Allergy Clin. Immunol. Pract. 2021;9:2680–2688.e7. doi: 10.1016/j.jaip.2021.02.059. PubMed DOI

Chen M., Shepard K., Yang M., Raut P., Pazwash H., Holweg C.T.J., Choo E. Overlap of allergic, eosinophilic and type 2 inflammatory subtypes in moderate-to-severe asthma. Clin. Exp. Allergy. 2021;51:546–555. doi: 10.1111/cea.13790. PubMed DOI PMC

Corren J., Du E., Gubbi A., Vanlandingham R. Variability in Blood Eosinophil Counts in Patients with Eosinophilic Asthma. J. Allergy Clin. Immunol. Pract. 2021;9:1224–1231.e9. doi: 10.1016/j.jaip.2020.10.033. PubMed DOI

Kroes J.A., Zielhuis S.W., van Roon E.N., ten Brinke A. Prediction of response to biological treatment with monoclonal antibodies in severe asthma. Biochem. Pharmacol. 2020;179:113978. doi: 10.1016/j.bcp.2020.113978. PubMed DOI

Rogliani P., Calzetta L., Matera M.G., Laitano R., Ritondo B.L., Hanania N.A., Cazzola M. Severe Asthma and Biological Therapy: When, Which, and for Whom. Pulm. Ther. 2020;6:47–66. doi: 10.1007/s41030-019-00109-1. PubMed DOI PMC

Eger K., Kroes J.A., ten Brinke A., Bel E.H. Long-Term Therapy Response to Anti–IL-5 Biologics in Severe Asthma—A Real-Life Evaluation. J. Allergy Clin. Immunol. Pract. 2021;9:1194–1200. doi: 10.1016/j.jaip.2020.10.010. PubMed DOI

McDowell P.J., Diver S., Yang F., Borg C., Busby J., Brown V., Shrimanker R., Cox C., Brightling C.E., Chaudhuri R., et al. The inflammatory profile of exacerbations in patients with severe refractory eosinophilic asthma receiving mepolizumab (the MEX study): A prospective observational study. Lancet Respir. Med. 2021;9:1174–1184. doi: 10.1016/S2213-2600(21)00004-7. PubMed DOI

Nair P., O’Byrne P.M. Medical algorithms: Approach to adult asthma exacerbations. Allergy. 2021;76:3556–3559. doi: 10.1111/all.14976. PubMed DOI

Menzies-Gow A., Bafadhel M., Busse W.W., Casale T.B., Kocks J.W.H., Pavord I.D., Szefler S.J., Woodruff P.G., de Giorgio-Miller A., Trudo F., et al. An expert consensus framework for asthma remission as a treatment goal. J. Allergy Clin. Immunol. 2020;145:757–765. doi: 10.1016/j.jaci.2019.12.006. PubMed DOI

Menzies-Gow A., Szefler S.J., Busse W.W. The Relationship of Asthma Biologics to Remission for Asthma. J. Allergy Clin. Immunol. Pract. 2021;9:1090–1098. doi: 10.1016/j.jaip.2020.10.035. PubMed DOI

Maglio A., Vitale C., Pelaia C., D’Amato M., Ciampo L., Sferra E., Molino A., Pelaia G., Vatrella A. Severe Asthma Remissions Induced by Biologics Targeting IL5/IL5r: Results from a Multicenter Real-Life Study. Int. J. Mol. Sci. 2023;24:2455. doi: 10.3390/ijms24032455. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...