Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NCT05270278
AstzaZeneca Czech Republic
PubMed
36982789
PubMed Central
PMC10052006
DOI
10.3390/ijms24065716
PII: ijms24065716
Knihovny.cz E-zdroje
- Klíčová slova
- asthma, biological therapy, biomarkers, eosinophils, immunophenotype,
- MeSH
- alergie * metabolismus MeSH
- biologické markery metabolismus MeSH
- bronchiální astma * farmakoterapie MeSH
- eozinofily metabolismus MeSH
- lidé MeSH
- počet leukocytů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
The existence of eosinophils was documented histopathologically in the first half of the 19th century. However, the term "eosinophils" was first used by Paul Ehrlich in 1878. Since their discovery and description, their existence has been associated with asthma, allergies, and antihelminthic immunity. Eosinophils may also be responsible for various possible tissue pathologies in many eosinophil-associated diseases. Since the beginning of the 21st century, the understanding of the nature of this cell population has undergone a fundamental reassessment, and in 2010, J. J. Lee proposed the concept of "LIAR" (Local Immunity And/or Remodeling/Repair), underlining the extensive immunoregulatory functions of eosinophils in the context of health and disease. It soon became apparent that mature eosinophils (in line with previous morphological studies) are not structurally, functionally, or immunologically homogeneous cell populations. On the contrary, these cells form subtypes characterized by their further development, immunophenotype, sensitivity to growth factors, localization, role and fate in tissues, and contribution to the pathogenesis of various diseases, including asthma. The eosinophil subsets were recently characterized as resident (rEos) and inflammatory (iEos) eosinophils. During the last 20 years, the biological therapy of eosinophil diseases, including asthma, has been significantly revolutionized. Treatment management has been improved through the enhancement of treatment effectiveness and a decrease in the adverse events associated with the formerly ultimately used systemic corticosteroids. However, as we observed from real-life data, the global treatment efficacy is still far from optimal. A fundamental condition, "sine qua non", for correct treatment management is a thorough evaluation of the inflammatory phenotype of the disease. We believe that a better understanding of eosinophils would lead to more precise diagnostics and classification of asthma subtypes, which could further improve treatment outcomes. The currently validated asthma biomarkers (eosinophil count, production of NO in exhaled breath, and IgE synthesis) are insufficient to unveil super-responders among all severe asthma patients and thus give only a blurred picture of the adepts for treatment. We propose an emerging approach consisting of a more precise characterization of pathogenic eosinophils in terms of the definition of their functional status or subset affiliation by flow cytometry. We believe that the effort to find new eosinophil-associated biomarkers and their rational use in treatment algorithms may ameliorate the response rate to biological therapy in patients with severe asthma.
Zobrazit více v PubMed
Lee J.J., Jacobsen E.A., McGarry M.P., Schleimer R.P., Lee N.A. Eosinophils in health and disease: The LIAR hypothesis. Clin. Exp. Allergy. 2010;40:563–575. doi: 10.1111/j.1365-2222.2010.03484.x. PubMed DOI PMC
Van Hulst G., Bureau F., Desmet C.J. Eosinophils as drivers of severe eosinophilic asthma: Endotypes or plasticity? Int. J. Mol. Sci. 2021;22:10150. doi: 10.3390/ijms221810150. PubMed DOI PMC
Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol. 2019;25:3503–3526. doi: 10.3748/wjg.v25.i27.3503. PubMed DOI PMC
Qiu Y., Nguyen K.D., Odegaard J.I., Cui X., Tian X., Locksley R.M., Palmiter R.D., Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–1308. doi: 10.1016/j.cell.2014.03.066. PubMed DOI PMC
Mesnil C., Raulier S., Paulissen G., Xiao X., Birrell M.A., Pirottin D., Janss T., Starkl P., Ramery E., Henket M., et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 2016;126:3279–3295. doi: 10.1172/JCI85664. PubMed DOI PMC
Rothenberg M.E. A hidden residential cell in the lung. J. Clin. Investig. 2016;126:3185–3187. doi: 10.1172/JCI89768. PubMed DOI PMC
Marichal T., Mesnil C., Bureau F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017;4:101. doi: 10.3389/fmed.2017.00101. PubMed DOI PMC
Abdala-Valencia H., Coden M.E., Chiarella S.E., Jacobsen E.A., Bochner B.S., Lee J.J., Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 2018;104:95–108. doi: 10.1002/JLB.1MR1117-442RR. PubMed DOI PMC
Klion A.D., Ackerman S.J., Bochner B.S. Contributions of Eosinophils to Human Health and Disease. Annu. Rev. Pathol. Mech. Dis. 2020;15:179–209. doi: 10.1146/annurev-pathmechdis-012419-032756. PubMed DOI PMC
Rühle P.F., Fietkau R., Gaipl U.S., Frey B. Development of a modular assay for detailed immunophenotyping of peripheral human whole blood samples by multicolor flow cytometry. Int. J. Mol. Sci. 2016;17:1316. doi: 10.3390/ijms17081316. PubMed DOI PMC
Rosenberg H.F., Phipps S., Foster P.S. Eosinophil trafficking in allergy and asthma. J. Allergy Clin. Immunol. 2007;119:1303–1310. doi: 10.1016/j.jaci.2007.03.048. PubMed DOI
Kouro T., Takatsu K. IL-5- and eosinophil-mediated inflammation: From discovery to therapy. Int. Immunol. 2009;21:1303–1309. doi: 10.1093/intimm/dxp102. PubMed DOI
Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A., Marshall R.P., Bradding P., Green R.H., Wardlaw A.J., et al. Mepolizumab and Exacerbations of Refractory Eosinophilic Asthma. N. Engl. J. Med. 2009;360:973–984. doi: 10.1056/NEJMoa0808991. PubMed DOI PMC
Roufosse F. Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. Front. Med. 2018;5:49. doi: 10.3389/fmed.2018.00049. PubMed DOI PMC
Hassani M., Koenderman L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: An overview. Allergy Eur. J. Allergy Clin. Immunol. 2018;73:1979–1988. doi: 10.1111/all.13451. PubMed DOI PMC
Gao J., Chen Y.H., Peterson L.A.C. GATA family transcriptional factors: Emerging suspects in hematologic disorders. Exp. Hematol. Oncol. 2015;4:1–7. doi: 10.1186/s40164-015-0024-z. PubMed DOI PMC
Bochner B.S. The eosinophil: For better or worse, in sickness and in health. Ann. Allergy Asthma Immunol. 2018;121:150–155. doi: 10.1016/j.anai.2018.02.031. PubMed DOI PMC
Tavernier J., Van der Heyden J., Verhee A., Brusselle G., Van Ostade X., Vandekerckhove J., North J., Rankin S.M., Kay A.B., Robinson D.S. Interleukin 5 regulates the isoform expression of its own receptor alpha-subunit. Blood. 2000;95:1600–1607. doi: 10.1182/blood.V95.5.1600.005k22_1600_1607. PubMed DOI
Sehmi R., Wardlaw A.J., Cromwell O., Kurihara K., Waltmann P., Kay A.B. Interleukin-5 selectively enhances the chemotactic response of eosinophils obtained from normal but not eosinophilic subjects. Blood. 1992;79:2952–2959. doi: 10.1182/blood.V79.11.2952.bloodjournal79112952. PubMed DOI
Melo R.C.N., Weller P.F. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 2018;104:85–93. doi: 10.1002/JLB.3MR1217-476R. PubMed DOI PMC
Munitz A., Levi-Schaffer F. Inhibitory receptors on eosinophils: A direct hit to a possible Achilles heel? J. Allergy Clin. Immunol. 2007;119:1382–1387. doi: 10.1016/j.jaci.2007.01.031. PubMed DOI
Rådinger M., Lötvall J. Eosinophil progenitors in allergy and asthma—Do they matter? Pharmacol. Ther. 2009;121:174–184. doi: 10.1016/j.pharmthera.2008.10.008. PubMed DOI
Smith S.G., Chen R., Kjarsgaard M., Huang C., Oliveria J.P., O’Byrne P.M., Gauvreau G.M., Boulet L.P., Lemiere C., Martin J., et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 2016;137:75–86.e8. doi: 10.1016/j.jaci.2015.05.037. PubMed DOI
Berdnikovs S. The twilight zone: Plasticity and mixed ontogeny of neutrophil and eosinophil granulocyte subsets. Semin. Immunopathol. 2021;43:337–346. doi: 10.1007/s00281-021-00862-z. PubMed DOI PMC
Wen T., Besse J.A., Mingler M.K., Fulkerson P.C., Rothenberg M.E. Eosinophil adoptive transfer system to directly evaluate pulmonary eosinophil trafficking in vivo. Proc. Natl. Acad. Sci. USA. 2013;110:6067–6072. doi: 10.1073/pnas.1220572110. PubMed DOI PMC
Winkel P., Statland B.E., Saunders A.M., Osborn H., Kupperman H. Within-day physiologic variation of leukocyte types in healthy subjects as assayed by two automated leukocyte differential analyzers. Am. J. Clin. Pathol. 1981;75:693–700. doi: 10.1093/ajcp/75.5.693. PubMed DOI
Kanda A., Yun Y., Van Bui D., Nguyen L.M., Kobayashi Y., Suzuki K., Mitani A., Sawada S., Hamada S., Asako M., et al. The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergol. Int. 2021;70:9–18. doi: 10.1016/j.alit.2020.11.001. PubMed DOI
Januskevicius A., Gosens R., Sakalauskas R., Vaitkiene S., Janulaityte I., Halayko A.J., Hoppenot D., Malakauskas K. Suppression of eosinophil integrins prevents remodeling of airway smooth muscle in asthma. Front. Physiol. 2017;7:680. doi: 10.3389/fphys.2016.00680. PubMed DOI PMC
Michail S., Mezoff E., Abernathy F. Role of selectins in the intestinal epithelial migration of eosinophils. Pediatr. Res. 2005;58:644–647. doi: 10.1203/01.PDR.0000180572.65751.F4. PubMed DOI
Rothenberg M.E. Eotaxin: An essential mediator of Eosinophil trafficking into mucosal tissues. Am. J. Respir. Cell Mol. Biol. 1999;21:291–295. doi: 10.1165/ajrcmb.21.3.f160. PubMed DOI
Castan L., Magnan A., Bouchaud G. Chemokine receptors in allergic diseases. Allergy Eur. J. Allergy Clin. Immunol. 2017;72:682–690. doi: 10.1111/all.13089. PubMed DOI
Park Y.M., Bochner B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010;2:87–101. doi: 10.4168/aair.2010.2.2.87. PubMed DOI PMC
Valent P., Klion A.D., Horny H.P., Roufosse F., Gotlib J., Weller P.F., Hellmann A., Metzgeroth G., Leiferman K.M., Arock M., et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 2012;130:607–612. doi: 10.1016/j.jaci.2012.02.019. PubMed DOI PMC
Kato M., Kephart G.M., Morikawa A., Gleich G.J. Eosinophil infiltration and degranulation in normal human tissues: Evidence for eosinophil degranulation in normal gastrointestinal tract. Int. Arch. Allergy Immunol. 2001;125:55–58. doi: 10.1159/000053855. PubMed DOI
Weller P.F., Spencer L.A. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 2017;17:746–760. doi: 10.1038/nri.2017.95. PubMed DOI PMC
Huang L., Beiting D.P., Gebreselassie N.G., Gagliardo L.F., Ruyechan M.C., Lee N.A., Lee J.J., Appleton J.A. Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathog. 2015;11:e1005347. doi: 10.1371/journal.ppat.1005347. PubMed DOI PMC
Stein L.H., Redding K.M., Lee J.J., Nolan T.J., Schad G.A., Lok J.B., Abraham D. Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode strongyloides stercoralis. J. Innate Immun. 2009;1:618–630. doi: 10.1159/000233235. PubMed DOI PMC
Fabre V., Beiting D.P., Bliss S.K., Gebreselassie N.G., Gagliardo L.F., Lee N.A., Lee J.J., Appleton J.A. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J. Immunol. 2009;182:1577–1583. doi: 10.4049/jimmunol.182.3.1577. PubMed DOI PMC
Rosenberg H.F., Dyer K.D., Foster P.S. Eosinophils: Changing perspectives in health and disease. Nat. Rev. Immunol. 2013;13:9–22. doi: 10.1038/nri3341. PubMed DOI PMC
McBrien C.N., Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front. Med. 2017;4:93. doi: 10.3389/fmed.2017.00093. PubMed DOI PMC
Acharya K.R., Ackerman S.J. Eosinophil granule proteins: Form and function. J. Biol. Chem. 2014;289:17406–17415. doi: 10.1074/jbc.R113.546218. PubMed DOI PMC
Stone K.D., Prussin C., Metcalfe D.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010;125:S73–S80. doi: 10.1016/j.jaci.2009.11.017. PubMed DOI PMC
Persson C., Uller L. Theirs but to die and do: Primary lysis of eosinophils and free eosinophil granules in asthma. Am. J. Respir. Crit. Care Med. 2014;189:628–633. doi: 10.1164/rccm.201311-2069OE. PubMed DOI
Mukherjee M., Bulir D.C., Radford K., Kjarsgaard M., Huang C.M., Jacobsen E.A., Ochkur S.I., Catuneanu A., Lamothe-Kipnes H., Mahony J., et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2018;141:1269–1279. doi: 10.1016/j.jaci.2017.06.033. PubMed DOI
Nair P., Ochkur S.I., Protheroe C., Radford K., Efthimiadis A., Lee N.A., Lee J.J. Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy Eur. J. Allergy Clin. Immunol. 2013;68:1177–1184. doi: 10.1111/all.12206. PubMed DOI PMC
Mukherjee M., Thomas S.R., Radford K., Dvorkin-Gheva A., Davydchenko S., Kjarsgaard M., Svenningsen S., Almas S., Felix L.C., Stearns J., et al. Sputum Antineutrophil Cytoplasmic Antibodies in Serum Antineutrophil Cytoplasmic Antibody-Negative Eosinophilic Granulomatosis with Polyangiitis. Am. J. Respir. Crit. Care Med. 2019;199:158–170. doi: 10.1164/rccm.201804-0809OC. PubMed DOI
Klion A.D., Nutman T.B. The role of eosinophils in host defense against helminth parasites. J. Allergy Clin. Immunol. 2004;113:30–37. doi: 10.1016/j.jaci.2003.10.050. PubMed DOI
Drake M.G., Bivins-Smith E.R., Proskocil B.J., Nie Z., Scott G.D., Lee J.J., Lee N.A., Fryer A.D., Jacoby D.B. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am. J. Respir. Cell Mol. Biol. 2016;55:387–394. doi: 10.1165/rcmb.2015-0405OC. PubMed DOI PMC
Ramirez G.A., Yacoub M.R., Ripa M., Mannina D., Cariddi A., Saporiti N., Ciceri F., Castagna A., Colombo G., Dagna L. Eosinophils from Physiology to Disease: A Comprehensive Review. Biomed. Res. Int. 2018;2018:28. doi: 10.1155/2018/9095275. PubMed DOI PMC
Mukherjee M., Lacy P., Ueki S. Eosinophil extracellular traps and inflammatory pathologies-untangling the web! Front. Immunol. 2018;9:2763. doi: 10.3389/fimmu.2018.02763. PubMed DOI PMC
Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008;14:949–953. doi: 10.1038/nm.1855. PubMed DOI
Long H., Liao W., Wang L., Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus. Med. Hemotherapy. 2016;43:96–108. doi: 10.1159/000445215. PubMed DOI PMC
Padigel U.M., Lee J.J., Nolan T.J., Schad G.A., Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect. Immun. 2006;74:3232–3238. doi: 10.1128/IAI.02067-05. PubMed DOI PMC
Mathur S.K., Fichtinger P.S., Kelly J.T., Lee W.M., Gern J.E., Jarjour N.N. Interaction between allergy and innate immunity: Model for eosinophil regulation of epithelial cell interferon expression. Ann. Allergy Asthma Immunol. 2013;111:25–31.e1. doi: 10.1016/j.anai.2013.05.010. PubMed DOI PMC
Prehn A., Seger R.A., Faber J., Torresani T., Molinari L., Gerber A., Sennhauser F.H. The relationship of serum-eosinophil cationic protein and eosinophil count to disease activity in children with bronchial asthma. Pediatr. Allergy Immunol. 1998;9:197–203. doi: 10.1111/j.1399-3038.1998.tb00373.x. PubMed DOI
Rodriguez L., Pekkarinen P.T., Lakshmikanth T., Tan Z., Consiglio C.R., Pou C., Chen Y., Mugabo C.H., Nguyen N.A., Nowlan K., et al. Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Rep. Med. 2020;1:100078. doi: 10.1016/j.xcrm.2020.100078. PubMed DOI PMC
Poznanski S.M., Mukherjee M., Zhao N., Huang C., Radford K., Ashkar A.A., Nair P. Asthma exacerbations on benralizumab are largely non-eosinophilic. Allergy Eur. J. Allergy Clin. Immunol. 2021;76:375–379. doi: 10.1111/all.14514. PubMed DOI
Varricchi G., Bagnasco D., Borriello F., Heffler E., Canonica G.W. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: Evidence and unmet needs. Curr. Opin. Allergy Clin. Immunol. 2016;16:186–200. doi: 10.1097/ACI.0000000000000251. PubMed DOI PMC
Humbles A.A., Lloyd C.M., McMillan S.J., Friend D.S., Xanthou G., McKenna E.E., Ghiran S., Gerard N.P., Yu C., Orkin S.H., et al. A Critical Role for Eosinophils in Allergic Airways Remodeling. Science. 2004;305:1776–1779. doi: 10.1126/science.1100283. PubMed DOI
Brusselle G.G., Maes T., Bracke K.R. Eosinophilic airway inflammation in nonallergic asthma. Nat. Med. 2013;19:977–979. doi: 10.1038/nm.3300. PubMed DOI
Brusselle G.G., Koppelman G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022;386:157–171. doi: 10.1056/NEJMra2032506. PubMed DOI
Terl M., Sedlák V., Cap P., Dvořáková R., Kašák V., Kočí T., Novotna B., Seberova E., Panzner P., Zindr V. Asthma management: A new phenotype-based approach using presence of eosinophilia and allergy. Allergy Eur. J. Allergy Clin. Immunol. 2017;72:1279–1287. doi: 10.1111/all.13165. PubMed DOI
Bousquet J., Chanez P., Lacoste J.Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N. Engl. J. Med. 1990;323:1033–1039. doi: 10.1056/NEJM199010113231505. PubMed DOI
Saglani S., Lloyd C.M. Novel concepts in airway inflammation and remodelling in asthma. Eur. Respir. J. 2015;46:1796–1804. doi: 10.1183/13993003.01196-2014. PubMed DOI
Wardlaw A.J., Dunnette S., Gleich G.J., Collins J.V., Kay A.B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am. Rev. Respir. Dis. 1988;137:62–69. doi: 10.1164/ajrccm/137.1.62. PubMed DOI
Oddera S., Silvestri M., Balbo A., Jovovich B.O., Penna R., Crimi E., Rossi G.A. Airway eosinophilic inflammation, epithelial damage, and bronchial hyperresponsiveness in patients with mild-moderate, stable asthma. Allergy. 1996;51:100–107. PubMed
Jatakanon A., Lim S., Barnes P.J. Changes in sputum eosinophils predict loss of asthma control. Am. J. Respir. Crit. Care Med. 2000;161:64–72. doi: 10.1164/ajrccm.161.1.9809100. PubMed DOI
Pizzichini M.M.M., Pizzichini E., Clelland L., Efthimiadis A., Pavord I., Dolovich J., Hargreave F.E. Prednisone-dependent asthma: Inflammatory indices in induced sputum. Eur. Respir. J. 1999;13:15–21. doi: 10.1183/09031936.99.13101599. PubMed DOI
Berry M., Morgan A., Shaw D.E., Parker D., Green R., Brightling C., Bradding P., Wardlaw A.J., Pavord I.D. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62:1043–1049. doi: 10.1136/thx.2006.073429. PubMed DOI PMC
Parameswaran K., Leigh R., Hargreave F.E. Sputum eosinophil count to assess compliance with corticosteroid therapy in asthma. J. Allergy Clin. Immunol. 1999;104:502–503. doi: 10.1016/S0091-6749(99)70402-1. PubMed DOI
Global Strategy for Asthma Management and Prevention (2022 Update) Global Initiative for Asthma; Fontana, WI, USA: 2022. [(accessed on 7 January 2022)]. pp. 1–186. Available online: https://ginasthma.org/wp-content/uploads/2022/07/GINA-Main-Report-2022-FINAL-22-07-01-WMS.pdf.
Global Initiative for Asthma (GINA) Difficult-to-Treat Severe Asthma in Adolescent and Adult Patients GINA Pocket Guide for Health Professionals Diagnosis and Management. 2019. [(accessed on 30 April 2019)]. Available online: https://ginasthma.org/wp-content/uploads/2019/04/GINA-Severe-asthma-Pocket-Guide-v2.0-wms-1.pdf.
Arron J.R., Choy D.F., Scheerens H., Matthews J.G. Noninvasive biomarkers that predict treatment benefit from biologic therapies in asthma. Ann. Am. Thorac. Soc. 2013;10:S206–S213. doi: 10.1513/AnnalsATS.201303-047AW. PubMed DOI
Hastie A.T., Moore W.C., Li H., Rector B.M., Ortega V.E., Pascual R.M., Peters S.P., Meyers D.A., Bleecker E.R. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J. Allergy Clin. Immunol. 2013;132:72–80. doi: 10.1016/j.jaci.2013.03.044. PubMed DOI PMC
Leckie M.J., ten Brinke A., Khan J., Diamant Z., O’Connor B.J., Walls C.M., Mathur A.K., Cowley H.C., Chung K.F., Djukanovic R., et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–2148. doi: 10.1016/S0140-6736(00)03496-6. PubMed DOI
Haldar P., Pavord I.D., Shaw D.E., Berry M.A., Thomas M., Brightling C.E., Wardlaw A.J., Green R.H. Cluster analysis and clinical asthma phenotypes. Am. J. Respir. Crit. Care Med. 2008;178:218–224. doi: 10.1164/rccm.200711-1754OC. PubMed DOI PMC
Nair P., Pizzichini M.M.M., Kjarsgaard M., Inman M.D., Efthimiadis A., Pizzichini E., Hargreave F.E., O’Byrne P.M. Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. N. Engl. J. Med. 2009;360:985–993. doi: 10.1056/NEJMoa0805435. PubMed DOI
Pavord I.D., Haldar P., Bradding P., Wardlaw A.J. Mepolizumab in refractory eosinophilic asthma. Thorax. 2010;65:370. doi: 10.1136/thx.2009.122697. PubMed DOI
Ortega H.G., Liu M.C., Pavord I.D., Brusselle G.G., FitzGerald J.M., Chetta A., Humbert M., Katz L.E., Keene O.N., Yancey S.W., et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014;371:1198–1207. doi: 10.1056/NEJMoa1403290. PubMed DOI
Nair P., O’Byrne P.M. Measuring Eosinophils to Make Treatment Decisions in Asthma. Chest. 2016;150:485–487. doi: 10.1016/j.chest.2016.07.009. PubMed DOI
Pignatti P., Visca D., Cherubino F., Zampogna E., Lucini E., Saderi L., Sotgiu G., Spanevello A. Do blood eosinophils strictly reflect airway inflammation in COPD? Comparison with asthmatic patients. Respir. Res. 2019;20:145. doi: 10.1186/s12931-019-1111-1. PubMed DOI PMC
Chlumský J., Striz I., Terl M., Vondracek J. Strategy aimed at reduction of sputum eosinophils decreases exacerbation rate in patients with asthma. J. Int. Med. Res. 2006;34:129–139. doi: 10.1177/147323000603400202. PubMed DOI
Castro M., Corren J., Pavord I.D., Maspero J., Wenzel S., Rabe K.F., Busse W.W., Ford L., Sher L., FitzGerald J.M., et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018;378:2486–2496. doi: 10.1056/NEJMoa1804092. PubMed DOI
Menzella F., Montanari G., Patricelli G., Cavazza A., Galeone C., Ruggiero P., Bagnasco D., Facciolongo N. A case of chronic eosinophilic pneumonia in a patient treated with dupilumab. Ther. Clin. Risk Manag. 2019;15:869–875. doi: 10.2147/TCRM.S207402. PubMed DOI PMC
Mukherjee M., Nair P. Blood or sputum eosinophils to guide asthma therapy? Lancet Respir. Med. 2015;3:824–825. doi: 10.1016/S2213-2600(15)00419-1. PubMed DOI
Pavlidis S., Takahashi K., Kwong F.N.K., Xie J., Hoda U., Sun K., Elyasigomari V., Agapow P., Loza M., Baribaud F., et al. “T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur. Respir. J. 2019;53:1800938. doi: 10.1183/13993003.00938-2018. PubMed DOI
Kostikas K., Brindicci C., Patalano F. Blood Eosinophils as Biomarkers to Drive Treatment Choices in Asthma and COPD. Curr. Drug Targets. 2018;19:1882–1896. doi: 10.2174/1389450119666180212120012. PubMed DOI PMC
Price D.B., Rigazio A., Campbell J.D., Bleecker E.R., Corrigan C.J., Thomas M., Wenzel S.E., Wilson A.M., Small M.B., Gopalan G., et al. Blood eosinophil count and prospective annual asthma disease burden: A UK cohort study. Lancet Respir. Med. 2015;3:849–858. doi: 10.1016/S2213-2600(15)00367-7. PubMed DOI
Terl M., Pohunek P., Kuhn M., Bystron J. Four seasons of Czech asthma study: Asthma characteristics and management reality in the Czech Republic. J. Asthma. 2020;57:898–910. doi: 10.1080/02770903.2019.1619082. PubMed DOI
Hekking P.P.W., Wener R.R., Amelink M., Zwinderman A.H., Bouvy M.L., Bel E.H. The prevalence of severe refractory asthma. J. Allergy Clin. Immunol. 2015;135:896–902. doi: 10.1016/j.jaci.2014.08.042. PubMed DOI
FitzGerald M., Bateman E.D., Boulet L.-P., Cruz A.A., Haahtela T., Levy M.L., O’Byrne P., Paggiaro P., Pedersen S.E., Soto-Quiroz M., et al. Global Strategy for Asthma Management and Prevention (GINA 2015) 2015. [(accessed on 30 July 2015)]. Available online: https://ginasthma.org/wp-content/uploads/2016/01/GINA_Report_2015_Aug11-1.pdf.
Menzella F., Galeone C., Ruggiero P., Bagnasco D., Catellani C., Facciolongo N. Biologics and Bronchial Thermoplasty for severe refractory asthma treatment: From eligibility criteria to real practice. A cross-sectional study. Pulm. Pharmacol. Ther. 2020;60:101874. doi: 10.1016/j.pupt.2019.101874. PubMed DOI
Chand N., Harrison J.E., Rooney S., Pillar J., Jakubicki R., Nolan K., Diamantis W., Duane Sofia R. Anti-IL-5 monoclonal antibody inhibits allergic late phase bronchial eosinophilia in guinea pigs: A therapeutic approach. Eur. J. Pharmacol. 1992;211:121–123. doi: 10.1016/0014-2999(92)90273-7. PubMed DOI
Pavord I.D., Korn S., Howarth P., Bleecker E.R., Buhl R., Keene O.N., Ortega H., Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380:651–659. doi: 10.1016/S0140-6736(12)60988-X. PubMed DOI
Bel E.H., Wenzel S.E., Thompson P.J., Prazma C.M., Keene O.N., Yancey S.W., Ortega H.G., Pavord I.D. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N. Engl. J. Med. 2014;371:1189–1197. doi: 10.1056/NEJMoa1403291. PubMed DOI
Chupp G.L., Bradford E.S., Albers F.C., Bratton D.J., Wang-Jairaj J., Nelsen L.M., Trevor J.L., Magnan A., ten Brinke A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): A randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir. Med. 2017;5:390–400. doi: 10.1016/S2213-2600(17)30125-X. PubMed DOI
Khatri S., Moore W., Gibson P.G., Leigh R., Bourdin A., Maspero J., Barros M., Buhl R., Howarth P., Albers F.C., et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2019;143:1742–1751.e7. doi: 10.1016/j.jaci.2018.09.033. PubMed DOI
Lugogo N., Domingo C., Chanez P., Leigh R., Gilson M.J., Price R.G., Yancey S.W., Ortega H.G. Long-term Efficacy and Safety of Mepolizumab in Patients With Severe Eosinophilic Asthma: A Multi-center, Open-label, Phase IIIb Study. Clin. Ther. 2016;38:2058–2070.e1. doi: 10.1016/j.clinthera.2016.07.010. PubMed DOI
Galkin D., Liu M.C., Chipps B.E., Chapman K.R., Muñoz X., Angel Bergna M., Azmi J., Mouneimne D., Joksaite S., Albers F.C. Efficacy and Safety of Mepolizumab in Uncontrolled Patients with Severe Eosinophilic Asthma Following a Switch from Omalizumab (OSMO Study): Exacerbation and Safety Outcomes. J. Allergy Clin. Immunol. 2018;141:AB409. doi: 10.1016/j.jaci.2017.12.965. DOI
Han J.K., Bachert C., Fokkens W., Desrosiers M., Wagenmann M., Lee S.E., Smith S.G., Martin N., Mayer B., Yancey S.W., et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021;9:1141–1153. doi: 10.1016/S2213-2600(21)00097-7. PubMed DOI
Moiseev S., Zagvozdkina E., Kazarina V., Bulanov N., Novikov P. Mepolizumab in patients with eosinophilic granulomatosis with polyangiitis. J. Allergy Clin. Immunol. 2019;144:621. doi: 10.1016/j.jaci.2019.03.030. PubMed DOI
Wechsler M.E., Akuthota P., Jayne D., Khoury P., Klion A., Langford C.A., Merkel P.A., Moosig F., Specks U., Cid M.C., et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N. Engl. J. Med. 2017;376:1921–1932. doi: 10.1056/NEJMoa1702079. PubMed DOI PMC
Roufosse F., Kahn J.-E., Rothenberg M.E., Wardlaw A.J., Klion A.D., Kirby S.Y., Gilson M.J., Bentley J.H., Bradford E.S., Yancey S.W., et al. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: A phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2020;146:1397–1405. doi: 10.1016/j.jaci.2020.08.037. PubMed DOI PMC
Bjermer L., Lemiere C., Maspero J., Weiss S., Zangrilli J., Germinaro M. Reslizumab for Inadequately Controlled Asthma With Elevated Blood Eosinophil Levels: A Randomized Phase 3 Study. Chest. 2016;150:789–798. doi: 10.1016/j.chest.2016.03.032. PubMed DOI
Corren J., Weinstein S., Janka L., Zangrilli J., Garin M. Phase 3 Study of Reslizumab in Patients With Poorly Controlled Asthma: Effects Across a Broad Range of Eosinophil Counts. Chest. 2016;150:799–810. doi: 10.1016/j.chest.2016.03.018. PubMed DOI
Castro M., Mathur S., Hargreave F., Boulet L.P., Xie F., Young J., Jeffrey Wilkins H., Henkel T., Nair P. Reslizumab for poorly controlled, eosinophilic asthma: A randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011;184:1125–1132. doi: 10.1164/rccm.201103-0396OC. PubMed DOI
Castro M., Zangrilli J., Wechsler M.E., Bateman E.D., Brusselle G.G., Bardin P., Murphy K., Maspero J.F., O’Brien C., Korn S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015;3:355–366. doi: 10.1016/S2213-2600(15)00042-9. PubMed DOI
Maselli D.J., Velez M.I., Rogers L. Reslizumab in the management of poorly controlled asthma: The data so far. J. Asthma Allergy. 2016;9:155–162. doi: 10.2147/JAA.S94164. PubMed DOI PMC
Sahota J., Robinson D.S. Update on new biologics for intractable eosinophilic asthma: Impact of reslizumab. Drug Des. Devel. Ther. 2018;12:1173–1181. doi: 10.2147/DDDT.S109489. PubMed DOI PMC
Fahy J.V. Type 2 inflammation in asthma—Present in most, absent in many. Nat. Rev. Immunol. 2015;15:57–65. doi: 10.1038/nri3786. PubMed DOI PMC
Kolbeck R., Kozhich A., Koike M., Peng L., Andersson C.K., Damschroder M.M., Reed J.L., Woods R., Dall’Acqua W.W., Stephens G.L., et al. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 2010;125:1344–1353.e2. doi: 10.1016/j.jaci.2010.04.004. PubMed DOI
Laviolette M., Gossage D.L., Gauvreau G., Leigh R., Olivenstein R., Katial R., Busse W.W., Wenzel S., Wu Y., Datta V., et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 2013;132:1086–1096. doi: 10.1016/j.jaci.2013.05.020. PubMed DOI PMC
Nowak R.M., Parker J.M., Silverman R.A., Rowe B.H., Smithline H., Khan F., Fiening J.P., Kim K., Molfino N.A. A randomized trial of benralizumab, an antiinterleukin 5 receptor α monoclonal antibody, after acute asthma. Am. J. Emerg. Med. 2015;33:14–20. doi: 10.1016/j.ajem.2014.09.036. PubMed DOI
Pham T.H., Damera G., Newbold P., Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir. Med. 2016;111:21–29. doi: 10.1016/j.rmed.2016.01.003. PubMed DOI
Busse W.W., Katial R., Gossage D., Sari S., Wang B., Kolbeck R., Coyle A.J., Koike M., Spitalny G.L., Kiener P.A., et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 2010;125:1237–1244. doi: 10.1016/j.jaci.2010.04.005. PubMed DOI
Bleecker E.R., FitzGerald J.M., Chanez P., Papi A., Weinstein S.F., Barker P., Sproule S., Gilmartin G., Aurivillius M., Werkström V., et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388:2115–2127. doi: 10.1016/S0140-6736(16)31324-1. PubMed DOI
FitzGerald J.M., Bleecker E.R., Nair P., Korn S., Ohta K., Lommatzsch M., Ferguson G.T., Busse W.W., Barker P., Sproule S., et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388:2128–2141. doi: 10.1016/S0140-6736(16)31322-8. PubMed DOI
Goldman M., Hirsch I., Zangrilli J.G., Newbold P., Xu X. The association between blood eosinophil count and benralizumab efficacy for patients with severe, uncontrolled asthma: Subanalyses of the Phase III SIROCCO and CALIMA studies. Curr. Med. Res. Opin. 2017;33:1605–1613. doi: 10.1080/03007995.2017.1347091. PubMed DOI
FitzGerald J.M., Bleecker E.R., Menzies-Gow A., Zangrilli J.G., Hirsch I., Metcalfe P., Newbold P., Goldman M. Predictors of enhanced response with benralizumab for patients with severe asthma: Pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir. Med. 2018;6:51–64. doi: 10.1016/S2213-2600(17)30344-2. PubMed DOI
Bleecker E.R., Wechsler M.E., Mark FitzGerald J., Menzies-Gow A., Wu Y., Hirsch I., Goldman M., Newbold P., Zangrilli J.G. Baseline Patient Factor Impact on the Clinical Efficacy of Benralizumab for Severe Asthma. Eur. Respir. J. 2018;52:1800936. doi: 10.1183/13993003.00936-2018. PubMed DOI PMC
Chipps B.E., Newbold P., Hirsch I., Trudo F., Goldman M. Benralizumab efficacy by atopy status and serum immunoglobulin E for patients with severe, uncontrolled asthma. Ann. Allergy Asthma Immunol. 2018;120:504–511.e4. doi: 10.1016/j.anai.2018.01.030. PubMed DOI
Nair P., Wenzel S., Rabe K.F., Bourdin A., Lugogo N.L., Kuna P., Barker P., Sproule S., Ponnarambil S., Goldman M. Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017;376:2448–2458. doi: 10.1056/NEJMoa1703501. PubMed DOI
Pelaia C., Vatrella A., Bruni A., Terracciano R., Pelaia G. Benralizumab in the treatment of severe asthma: Design, development and potential place in therapy. Drug Des. Devel. Ther. 2018;12:619–628. doi: 10.2147/DDDT.S155307. PubMed DOI PMC
Ferguson G.T., FitzGerald J.M., Bleecker E.R., Laviolette M., Bernstein D., LaForce C., Mansfield L., Barker P., Wu Y., Jison M., et al. Benralizumab for patients with mild to moderate, persistent asthma (BISE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2017;5:568–576. doi: 10.1016/S2213-2600(17)30190-X. PubMed DOI
Matera M.G., Calzetta L., Rinaldi B., Cazzola M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 2017;13:1007–1013. doi: 10.1080/17425255.2017.1359253. PubMed DOI
Busse W.W., Bleecker E.R., FitzGerald J.M., Ferguson G.T., Barker P., Sproule S., Olsson R.F., Martin U.J., Goldman M., Yañez A., et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 2019;7:46–59. doi: 10.1016/S2213-2600(18)30406-5. PubMed DOI
Dunn J.L.M., Rothenberg M.E. 2021 Year in Review: Spotlight on Eosinophils. J. Allergy Clin. Immunol. 2021;149:517–524. doi: 10.1016/j.jaci.2021.11.012. PubMed DOI
Singh D., Fuhr R., Bird N.P., Mole S., Hardes K., Man Y.L., Cahn A., Yancey S.W., Pouliquen I.J. A Phase 1 study of the long-acting anti-IL-5 monoclonal antibody GSK3511294 in patients with asthma. Br. J. Clin. Pharmacol. 2022;88:702. doi: 10.1111/bcp.15002. PubMed DOI PMC
Bochner B.S. “siglec”ting the allergic response for therapeutic targeting. Glycobiology. 2016;26:546–552. doi: 10.1093/glycob/cww024. PubMed DOI PMC
O’Sullivan J.A., Chang A.T., Youngblood B.A., Bochner B.S. Eosinophil and mast cell Siglecs: From biology to drug target. J. Leukoc. Biol. 2020;108:73–81. doi: 10.1002/JLB.2MR0120-352RR. PubMed DOI PMC
Anesi S.D., Tauber J., Nguyen Q.D., Chang P., Berdy G.J., Lin C.C., Chu D.S., Levine H.T., Fernandez A.D., Roy N., et al. Lirentelimab for severe and chronic forms of allergic conjunctivitis. J. Allergy Clin. Immunol. 2022;150:631–639. doi: 10.1016/j.jaci.2022.03.021. PubMed DOI
Dellon E.S., Peterson K.A., Murray J.A., Falk G.W., Gonsalves N., Chehade M., Genta R.M., Leung J., Khoury P., Klion A.D., et al. Anti–Siglec-8 Antibody for Eosinophilic Gastritis and Duodenitis. N. Engl. J. Med. 2020;383:1624–1634. doi: 10.1056/NEJMoa2012047. PubMed DOI PMC
Walsh G.M. Eosinophil apoptosis and clearance in asthma. J. Cell Death. 2013;6:17–25. doi: 10.4137/JCD.S10818. PubMed DOI PMC
Jacobsen E.A., Jackson D.J., Heffler E., Mathur S.K., Bredenoord A.J., Pavord I.D., Akuthota P., Roufosse F., Rothenberg M.E. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu. Rev. Immunol. 2021;39:719–757. doi: 10.1146/annurev-immunol-093019-125918. PubMed DOI PMC
Prin L., Capron M., Tonnel A.B., Bletry O., Capron A. Heterogeneity of human peripheral blood eosinophils: Variability in cell density and cytotoxic ability in relation to the level and the origin of hypereosinophilia. Int. Arch. Allergy Immunol. 1983;72:336–346. doi: 10.1159/000234893. PubMed DOI
Kroegel C., Liu M.C., Hubbard W.C., Lichtenstein L.M., Bochner B.S. Blood and bronchoalveolar eosinophils in allergic subjects after segmental antigen challenge: Surface phenotype, density heterogeneity, and prostanoid production. J. Allergy Clin. Immunol. 1994;93:725–734. doi: 10.1016/0091-6749(94)90252-6. PubMed DOI
Kuo H.P., Yu T.R., Yu C.T. Hypodense eosinophil number relates to clinical severity, airway hyperresponsiveness and response to inhaled corticosteroids in asthmatic subjects. Eur. Respir. J. 1994;7:1452–1459. doi: 10.1183/09031936.94.07081452. PubMed DOI
Abdala Valencia H., Loffredo L.F., Misharin A.V., Berdnikovs S. Phenotypic plasticity and targeting of Siglec-FhighCD11clow eosinophils to the airway in a murine model of asthma. Allergy Eur. J. Allergy Clin. Immunol. 2016;71:267–271. doi: 10.1111/all.12776. PubMed DOI
Percopo C.M., Brenner T.A., Ma M., Kraemer L.S., Hakeem R.M.A., Lee J.J., Rosenberg H.F. SiglecF + Gr1 hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J. Leukoc. Biol. 2017;101:321–328. doi: 10.1189/jlb.3A0416-166R. PubMed DOI PMC
Matucci A., Nencini F., Maggiore G., Chiccoli F., Accinno M., Vivarelli E., Bruno C., Locatello L.G., Palomba A., Nucci E., et al. High proportion of inflammatory CD62L low eosinophils in blood and nasal polyps of severe asthma patients. Clin. Exp. Allergy. 2023;53:78–87. doi: 10.1111/cea.14153. PubMed DOI
Yun Y., Kanda A., Kobayashi Y., Van Bui D., Suzuki K., Sawada S., Baba K., Yagi M., Asako M., Okazaki H., et al. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol. Int. 2020;69:232–238. doi: 10.1016/j.alit.2019.11.002. PubMed DOI
Miyata J., Fukunaga K., Kawashima Y., Watanabe T., Saitoh A., Hirosaki T., Araki Y., Kikawada T., Betsuyaku T., Ohara O., et al. Dysregulated fatty acid metabolism in nasal polyp-derived eosinophils from patients with chronic rhinosinusitis. Allergy Eur. J. Allergy Clin. Immunol. 2019;74:1113–1124. doi: 10.1111/all.13726. PubMed DOI
Mengelers H.J.J., Maikoe T., Hooibrink B., Kuypers T.W., Kreukniet J., Lammers J.W.J., Koenderman L. Down modulation of L-Selection expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin. Exp. Allergy. 1993;23:196–204. doi: 10.1111/j.1365-2222.1993.tb00882.x. PubMed DOI
Shah K., Ignacio A., McCoy K.D., Harris N.L. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol. 2020;13:574–583. doi: 10.1038/s41385-020-0281-y. PubMed DOI
Farache Trajano L., Smart N. Immunomodulation for optimal cardiac regeneration: Insights from comparative analyses. npj Regen. Med. 2021;6:1–11. doi: 10.1038/s41536-021-00118-2. PubMed DOI PMC
Al-Shaikhly T., Murphy R.C., Parker A., Lai Y., Altman M.C., Larmore M., Altemeier W.A., Frevert C.W., Debley J.S., Piliponsky A.M., et al. Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. Eur. Respir. J. 2022;60:2101865. doi: 10.1183/13993003.01865-2021. PubMed DOI PMC
Fukuda T., Dunnette S.L., Reed C.E., Ackerman S.J., Peters M.S., Gleich G.J. Increased numbers of hypodense eosinophils in the blood of patients with bronchial asthma. Am. Rev. Respir. Dis. 1985;132:981–985. doi: 10.1164/ARRD.1985.132.5.981. PubMed DOI
Peters M.S., Gleich G.J., Dunnette S.L., Fukuda T. Ultrastructural study of eosinophils from patients with the hypereosinophilic syndrome: A morphological basis of hypodense eosinophils. Blood. 1988;71:780–785. doi: 10.1182/blood.V71.3.780.780. PubMed DOI
Januskevicius A., Jurkeviciute E., Janulaityte I., Kalinauskaite-Zukauske V., Miliauskas S., Malakauskas K. Blood Eosinophils Subtypes and Their Survivability in Asthma Patients. Cells. 2020;9:1248. doi: 10.3390/cells9051248. PubMed DOI PMC
Van Hulst G., Jorssen J., Jacobs N., Henket M., Louis R., Schleich F., Bureau F., Desmet C.J. Anti-IL5 mepolizumab minimally influences residual blood eosinophils in severe asthma. Eur. Respir. J. 2022;59:2100935. doi: 10.1183/13993003.00935-2021. PubMed DOI
Ijaz T., Pazdrak K., Kalita M., Konig R., Choudhary S., Tian B., Boldogh I., Brasier A.R. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ. J. 2014;7:13. doi: 10.1186/1939-4551-7-13. PubMed DOI PMC
Diver S., Sridhar S., Khalfaoui L.C., Russell R.J., Emson C., Griffiths J.M., de Los Reyes M., Yin D., Colice G., Brightling C.E. Feno differentiates epithelial gene expression clusters: Exploratory analysis from the MESOS randomized controlled trial. J. Allergy Clin. Immunol. 2022;150:830–840. doi: 10.1016/j.jaci.2022.04.024. PubMed DOI
Denton E., Price D.B., Tran T.N., Canonica G.W., Menzies-Gow A., FitzGerald J.M., Sadatsafavi M., Perez de Llano L., Christoff G., Quinton A., et al. Cluster Analysis of Inflammatory Biomarker Expression in the International Severe Asthma Registry. J. Allergy Clin. Immunol. Pract. 2021;9:2680–2688.e7. doi: 10.1016/j.jaip.2021.02.059. PubMed DOI
Chen M., Shepard K., Yang M., Raut P., Pazwash H., Holweg C.T.J., Choo E. Overlap of allergic, eosinophilic and type 2 inflammatory subtypes in moderate-to-severe asthma. Clin. Exp. Allergy. 2021;51:546–555. doi: 10.1111/cea.13790. PubMed DOI PMC
Corren J., Du E., Gubbi A., Vanlandingham R. Variability in Blood Eosinophil Counts in Patients with Eosinophilic Asthma. J. Allergy Clin. Immunol. Pract. 2021;9:1224–1231.e9. doi: 10.1016/j.jaip.2020.10.033. PubMed DOI
Kroes J.A., Zielhuis S.W., van Roon E.N., ten Brinke A. Prediction of response to biological treatment with monoclonal antibodies in severe asthma. Biochem. Pharmacol. 2020;179:113978. doi: 10.1016/j.bcp.2020.113978. PubMed DOI
Rogliani P., Calzetta L., Matera M.G., Laitano R., Ritondo B.L., Hanania N.A., Cazzola M. Severe Asthma and Biological Therapy: When, Which, and for Whom. Pulm. Ther. 2020;6:47–66. doi: 10.1007/s41030-019-00109-1. PubMed DOI PMC
Eger K., Kroes J.A., ten Brinke A., Bel E.H. Long-Term Therapy Response to Anti–IL-5 Biologics in Severe Asthma—A Real-Life Evaluation. J. Allergy Clin. Immunol. Pract. 2021;9:1194–1200. doi: 10.1016/j.jaip.2020.10.010. PubMed DOI
McDowell P.J., Diver S., Yang F., Borg C., Busby J., Brown V., Shrimanker R., Cox C., Brightling C.E., Chaudhuri R., et al. The inflammatory profile of exacerbations in patients with severe refractory eosinophilic asthma receiving mepolizumab (the MEX study): A prospective observational study. Lancet Respir. Med. 2021;9:1174–1184. doi: 10.1016/S2213-2600(21)00004-7. PubMed DOI
Nair P., O’Byrne P.M. Medical algorithms: Approach to adult asthma exacerbations. Allergy. 2021;76:3556–3559. doi: 10.1111/all.14976. PubMed DOI
Menzies-Gow A., Bafadhel M., Busse W.W., Casale T.B., Kocks J.W.H., Pavord I.D., Szefler S.J., Woodruff P.G., de Giorgio-Miller A., Trudo F., et al. An expert consensus framework for asthma remission as a treatment goal. J. Allergy Clin. Immunol. 2020;145:757–765. doi: 10.1016/j.jaci.2019.12.006. PubMed DOI
Menzies-Gow A., Szefler S.J., Busse W.W. The Relationship of Asthma Biologics to Remission for Asthma. J. Allergy Clin. Immunol. Pract. 2021;9:1090–1098. doi: 10.1016/j.jaip.2020.10.035. PubMed DOI
Maglio A., Vitale C., Pelaia C., D’Amato M., Ciampo L., Sferra E., Molino A., Pelaia G., Vatrella A. Severe Asthma Remissions Induced by Biologics Targeting IL5/IL5r: Results from a Multicenter Real-Life Study. Int. J. Mol. Sci. 2023;24:2455. doi: 10.3390/ijms24032455. PubMed DOI PMC