Evaluation of the cytochrome P450 2C19 and 3A4 inhibition potential of the complement factor 5a receptor 1 antagonist ACT-1014-6470 in vitro and in vivo
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37042126
PubMed Central
PMC10339695
DOI
10.1111/cts.13525
Knihovny.cz E-zdroje
- MeSH
- cytochrom P-450 CYP3A * MeSH
- cytochrom P450 CYP2C19 MeSH
- faktor Va * MeSH
- lékové interakce MeSH
- lidé MeSH
- midazolam farmakokinetika MeSH
- omeprazol farmakokinetika MeSH
- systém (enzymů) cytochromů P-450 MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACT-1014-6470 MeSH Prohlížeč
- cytochrom P-450 CYP3A * MeSH
- cytochrom P450 CYP2C19 MeSH
- faktor Va * MeSH
- midazolam MeSH
- omeprazol MeSH
- systém (enzymů) cytochromů P-450 MeSH
ACT-1014-6470 is an orally available complement factor 5a receptor 1 antagonist and a novel treatment option in auto-inflammatory diseases. The in vitro inhibition potential of ACT-1014-6470 on cytochrome P450 isozymes (CYPs) and its effect on the pharmacokinetics (PK) of the CYP2C19 and CYP3A4 substrates omeprazole and midazolam, respectively, in humans were assessed. In vitro assays were conducted with isoform-specific substrates in human liver microsomes. In an open-label, two-period, fixed-sequence cocktail study, single doses of 20 mg omeprazole and 2 mg midazolam were administered concomitantly to 20 healthy male subjects alone (treatment A) and after a single dose of 100 mg ACT-1014-6470 (treatment B) under fed conditions. Safety and PK assessments were performed. Geometric mean ratios (GMRs) and 90% confidence intervals (CIs) of noncompartmental PK parameters of treatment B versus treatment A were calculated. In vitro, no time-dependent inhibition was observed and the lowest inhibition constant of 4.3 μM ACT-1014-6470 was recorded for CYP2C19. In humans, GMRs (90% CI) of omeprazole PK were 1.9 (1.5-2.5) for maximum plasma concentration (Cmax ) and 1.9 (1.5-2.3) for area under the plasma concentration-time curve from 0 to 12 h (AUC0-12 h ). Midazolam PK showed GMRs (90% CI) of 1.1 (1.1-1.2) for Cmax and 1.5 (1.4-1.6) for AUC0-24 h . All treatments were well-tolerated. In line with in vitro results and regulatory risk factor calculation, the increased exposure to omeprazole and midazolam in humans after concomitant administration with a single dose of 100 mg ACT-1014-6470 reflected a weak inhibition of CYP2C19 and CYP3A4.
CEPHA s r o Pilsen Czech Republic
Department of Clinical Pharmacology Idorsia Pharmaceuticals Ltd Allschwil Switzerland
Zobrazit více v PubMed
Anliker‐Ort M, Dingemanse J, van den Anker J, Kaufmann P. Treatment of rare inflammatory kidney diseases: drugs targeting the terminal complement pathway. Front Immunol. 2020;11(December):1‐20. PubMed PMC
Anliker‐Ort M, Dingemanse J, Hsin C, et al. First‐in‐human study with ACT‐1014‐6470, a novel oral complement factor 5a receptor 1 (C5aR1) antagonist, supported by pharmacokinetic predictions from animals to patients. Basic Clin Pharmacol Toxicol. 2022;131(2):114‐128. PubMed
Anliker‐Ort M, Dingemanse J, Farine H, et al. Multiple‐ascending doses of ACT‐1014‐6470, an oral complement factor 5a receptor 1 (C5a 1 receptor) antagonist: tolerability, pharmacokinetics and target engagement. Br J Clin Pharmacol. 2023;89(1):380‐389. PubMed
FDA . Clinical drug interaction studies — cytochrome P450 enzyme‐ and drug interactions guidance for industry. Center for Drug Evaluation and Research (CDER); 2020:1‐27 Accessed October 18, 2022. https://www.fda.gov/media/134581/download
ICH . ICH harmonised guideline – drug interaction studies (M12). International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human use; 2022:1‐69 Accessed October 18, 2022. https://www.ema.europa.eu/en/documents/scientific‐guideline/draft‐ich‐guideline‐m12‐drug‐interaction‐studies‐step‐2b_en.pdf
EMA . Guideline on the investigation of drug interactions. CPMP/EWP/560/95/Rev 1 Corr 2 Committee for Medicinal Products for Human Use (CHMP) Guideline; 2012:59.
Rowland A, Mangoni AA, Hopkins A, Sorich MJ, Rowland A. Optimized cocktail phenotyping study protocol using physiological based pharmacokinetic modeling and in silico assessment of metabolic drug‐drug interactions involving modafinil. Front Pharmacol. 2016;7(DEC):1‐9. PubMed PMC
Wandel C, Böcker R, Böhrer H, Browne A, Rügheimer E, Martin E. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaesth. 1994;73:658‐661. PubMed
Kupferschmidt HHT, Ha HR, Ziegler WH, Meier PJ, Krähenbühl S. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther. 1995;58(1):20‐28. PubMed
Donzelli M, Derungs A, Serratore MG, et al. The Basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin Pharmacokinet. 2014;53(3):271‐282. PubMed
Giri P, Patel H, Srinivas NR. Use of cocktail probe drugs for indexing cytochrome P450 enzymes in clinical pharmacology studies – review of case studies. Drug Metab Lett. 2018;13(1):3‐18. PubMed
van Schaik RHN. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat. 2008;11(3):77‐98. PubMed
Schijvens AM, ter Heine R, de Wildt SN, Schreuder MF. Pharmacology and pharmacogenetics of prednisone and prednisolone in patients with nephrotic syndrome. Pediatr Nephrol. 2019;34(3):389‐403. PubMed PMC
Ramirez MJZ, Vu D, Jain K. Steroid sparing therapies for Antineutrophil cytoplasmic autoantibodies associated Vasculitis. Transfus Med Rev. 2022;36(4):233‐238. PubMed
Maixnerova D, Tesar V. Emerging modes of treatment of IgA nephropathy. Int J Mol Sci. 2020;21(23):1‐17. PubMed PMC
Freiwald T, Afzali B. Renal Diseases and the Role of Complement: Linking Complement to Immune Effector Pathways and Therapeutics. 1st ed. Elsevier Inc.; 2021. PubMed PMC
Gnerre C, Segrestaa J, Seeland S, et al. The metabolism and drug–drug interaction potential of the selective prostacyclin receptor agonist selexipag. Xenobiotica. 2018;48(7):704‐719. PubMed
Peng Y, Wu H, Zhang X, et al. A comprehensive assay for nine major cytochrome P450 enzymes activities with 16 probe reactions on human liver microsomes by a single LC/MS/MS run to support reliable in vitro inhibitory drug‐drug interaction evaluation. Xenobiotica. 2015;45(11):961‐977. PubMed
Luong TLT, Powers CN, Reinhardt BJ, Weina PJ. Pre‐clinical drug‐drug interactions (DDIs) of gefitinib with/without losartan and selective serotonin reuptake inhibitors (SSRIs): citalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, and venlafaxine. Curr Res Pharmacol Drug Discov. 2022;3(April):100112. PubMed PMC
Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T. Inhibition of human cytochrome P450 enzymes by 1,4‐dihydropyridine calcium antagonists: prediction of in vivo drug‐drug interactions. Eur J Clin Pharmacol. 2000;55(11–12):843‐852. PubMed
Park S, Hyun YJ, Kim YR, et al. Effects of CYP2C19 genetic polymorphisms on PK/PD responses of omeprazole in Korean healthy volunteers. J Korean Med Sci. 2017;32(5):729‐736. PubMed PMC
FDA . Assessing the effects of food on drugs in INDs and NDAs — clinical pharmacology considerations. Guidance for industry. Center for Drug Evaluation and Research (CDER); 2022:1‐15 Accessed February 2, 2023. https://www.fda.gov/media/121313/download
Armani S, Ting L, Sauter N, et al. Drug interaction potential of Osilodrostat (LCI699) based on its effect on the pharmacokinetics of probe drugs of cytochrome P450 enzymes in healthy adults. Clin Drug Investig. 2017;37(5):465‐472. PubMed PMC
Bornemann LD, Crews T, Chen SS, Twardak S, Patel IH. Influence of food on midazolam absorption. J Clin Pharmacol. 1986;26(1):55‐59. PubMed
Wiesner A, Zwolińska‐Wcisło M, Paśko P. Effect of food and dosing regimen on safety and efficacy of proton pump inhibitors therapy—a literature review. Int J Environ Res Public Health. 2021;18(7):1‐21. PubMed PMC
Ochoa D, Román M, Cabaleiro T, Saiz‐Rodríguez M, Mejía G, Abad‐Santos F. Effect of food on the pharmacokinetics of omeprazole, pantoprazole and rabeprazole. BMC Pharmacol Toxicol. 2020;21(1):1‐9. PubMed PMC
Vaz‐da‐Silva M, Loureiro AI, Nunes T, et al. Bioavailability and bioequivalence of two enteric‐coated formulations of omeprazole in fasting and fed conditions. Clin Drug Investig. 2005;25(6):391‐399. PubMed
Cui C, Sun J, Wang X, Yu Z, Shi Y. Factors contributing to drug release from enteric‐coated omeprazole capsules: an In vitro and In vivo pharmacokinetic study and IVIVC evaluation in beagle dogs. Dose‐Response. 2020;18(1):1‐13. PubMed PMC
Cederberg C, Andersson T, Skånberg I. Omeprazole: pharmacokinetics and metabolism in man. Scand J Gastroenterol. 1989;24(S166):33‐40. PubMed
Simonian HP, Vo L, Doma S, Fisher RS, Parkman HP. Regional postprandial differences in pH within the stomach and gastroesophageal junction. Dig Dis Sci. 2005;50(12):2276‐2285. PubMed
Mohylyuk V, Yerkhova A, Katynska M, Sirko V, Patel K. Effect of elevated pH on the commercial enteric‐coated omeprazole pellets resistance: patent review and multisource generics comparison. AAPS PharmSciTech. 2021;22(5):1‐17. PubMed
Andersson T, Andrén K, Cederberg C, Heggelund A, Lundborg P, Röhss K. Bioavailability of omeprazole as enteric coated (EC) granules in conjunction with food on the first and seventh days of treatment. Drug Investig. 1990;2(3):184‐188.
Treijtel N, Collins C, van Bruijnsvoort M, et al. A cocktail interaction study evaluating the drug‐drug interaction potential of the perpetrator drug ASP8477 at multiple ascending dose levels. Clin Pharmacol Drug Dev. 2019;8(4):529‐540. PubMed PMC
Suenderhauf C, Berger B, Puchkov M, et al. Pharmacokinetics and phenotyping properties of the Basel phenotyping cocktail combination capsule in healthy male adults. Br J Clin Pharmacol. 2020;86(2):352‐361. PubMed PMC
Yasui‐Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol. 2004;57(4):487‐494. PubMed PMC
Desta Z, Zhao X, Shin J, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913‐958. PubMed
Richard M, Kaufmann P, Ort M, Kornberger R, Dingemanse J. Multiple‐ascending dose study in healthy subjects to assess the pharmacokinetics, tolerability, and CYP3A4 interaction potential of the T‐type Calcium Channel blocker ACT‐709478, a potential new antiepileptic drug. CNS Drugs. 2020;34(3):311‐323. PubMed
Friedman EJ, Fraser IP, Wang Y, et al. Effect of different durations and formulations of diltiazem on the single‐dose pharmacokinetics of midazolam: how long do we go? J Clin Pharmacol. 2011;51(11):1561‐1570. PubMed
Berger B, Kaufmann P, Koch A, Dingemanse J. Impact of the selective Orexin‐1 receptor antagonist ACT‐539313 on the pharmacokinetics of the CYP3A probe drug midazolam in healthy male subjects. J Clin Pharmacol. 2020;60(7):931‐941. PubMed
Thelen K, Dressman JB. Cytochrome P450‐mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61(5):541‐558. PubMed
Hoch M, Hoever P, Alessi F, Theodor R, Dingemanse J. Pharmacokinetic interactions of almorexant with midazolam and simvastatin, two CYP3A4 model substrates, in healthy male subjects. Eur J Clin Pharmacol. 2013;69:523‐532. PubMed
Veronese ML, Gillen LP, Burke JP, et al. Exposure‐dependent inhibition of intestinal and hepatic CYP3A4 In vivo by grapefruit juice. J Clin Pharmacol. 2003;43(8):831‐839. PubMed
Deodhar M, Al Rihani SB, Arwood MJ, et al. Mechanisms of cyp450 inhibition: understanding drug‐drug interactions due to mechanism‐based inhibition in clinical practice. Pharmaceutics. 2020;12(9):1‐18. PubMed PMC
Tian DD, Leonowens C, Cox EJ, et al. Indinavir increases midazolam N‐Glucuronidation in humans: identification of an alternate CYP3A inhibitor using an In vitro to In vivo approach. Drug Metab Dispos. 2019;47(7):724‐731. PubMed PMC
Pinto AG, Wang YH, Chalasani N, et al. Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther. 2005;77(3):178‐188. PubMed
Robertson SM, Luo X, Dubey N, et al. Clinical drug‐drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P‐glycoprotein. J Clin Pharmacol. 2015;55(1):56‐62. PubMed
Hoch M, Sengupta T, Hourcade‐Potelleret F. Pharmacokinetic drug interactions of asciminib with the sensitive cytochrome P450 probe substrates midazolam, warfarin, and repaglinide in healthy participants. Clin Transl Sci. 2022;15(6):1406‐1416. PubMed PMC
Meneses‐Lorente G, Fowler S, Guerini E, et al. In vitro and clinical investigations to determine the drug‐drug interaction potential of entrectinib, a small molecule inhibitor of neurotrophic tyrosine receptor kinase (NTRK). Investig New Drugs. 2022;40(1):68‐80. PubMed PMC
Jayne DRW, Merkel PA, Schall TJ, Bekker P, ADVOCATE Study Group . Avacopan for the treatment of ANCA‐associated Vasculitis. N Engl J Med. 2021;384(7):599‐609. PubMed
CDER . New drug application (NDA) multidisciplinary review and evaluation: Avacopan, ANCA‐associated vasculitis. Center for Drug Evaluation and Research; 2021:1‐751 Accessed September 7, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214487Orig1s000MultidisciplineR.pdf