Comparative analysis of retinal photoplethysmographic spatial maps and thickness of retinal nerve fiber layer
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37146019
PubMed Central
PMC10162550
DOI
10.1371/journal.pone.0284743
PII: PONE-D-22-12488
Knihovny.cz E-resources
- MeSH
- Optic Disk * MeSH
- Glaucoma * diagnosis MeSH
- Humans MeSH
- Nerve Fibers MeSH
- Tomography, Optical Coherence methods MeSH
- Retinal Ganglion Cells MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The paper presents a comparative study of the pulsatile attenuation amplitude (PAA) within the optic nerve head (ONH) at four different areas calculated from retinal video sequences and its relevance to the retinal nerve fiber layer thickness (RNFL) changes in normal subjects and patients with different stages of glaucoma. The proposed methodology utilizes processing of retinal video sequences acquired by a novel video ophthalmoscope. The PAA parameter measures the amplitude of heartbeat-modulated light attenuation in retinal tissue. Correlation analysis between PAA and RNFL is performed in vessel-free locations of the peripapillary region with the proposed evaluating patterns: 360° circular area, temporal semi-circle, nasal semi-circle. For comparison, the full ONH area is also included. Various positions and sizes of evaluating patterns in peripapillary region were tested which resulted in different outputs of correlation analysis. The results show significant correlation between PAA and RNFL thickness calculated in proposed areas. The highest correlation coefficient Rtemp = 0.557 (p<0.001) reflects the highest PAA-RNFL correspondence in the temporal semi-circular area, compared to the lowest value in the nasal semi-circular area (Rnasal = 0.332, p<0.001). Furthermore, the results indicate the most relevant approach to calculate PAA from the acquired video sequences is using a thin annulus near the ONH center. Finally, the paper shows the proposed photoplethysmographic principle based on innovative video ophthalmoscope can be used to analyze changes in retinal perfusion in peripapillary area and can be potentially used to assess progression of the RNFL deterioration.
See more in PubMed
Sathyan P, Shilpa A. Optical Coherence Tomography in Glaucoma. Journal of Current Glaucoma Practice. 2012;6(1):1. doi: 10.5005/jp-journals-10008-1099 PubMed DOI PMC
Rabiolo A, Carnevali A, Bandello F, et al.. Optical coherence tomography angiography: evolution or revolution? Expert Review of Ophthalmology. 2016;11(4):43–245.
Lévêque P-M, Zéboulon P, Brasnu E, et al.. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. Journal of Ophthalmology. 2016; Article ID 6956717:1–9. doi: 10.1155/2016/6956717 PubMed DOI PMC
Richter GM, Sylvester B, Chu Z, et al.. Peripapillary microvasculature in the retinal nerve fiber layer in glaucoma by optical coherence tomography angiography: focal structural and functional correlations and diagnostic performance. Clin Ophthalmol. 2018;12:2285–2296. doi: 10.2147/OPTH.S179816 PubMed DOI PMC
Li Z, Xu Z, Liu Q, et al.. Comparisons of retinal vessel density and glaucomatous parameters in optical coherence tomography angiography. PLoS ONE. 2020;15(6):e0234816. doi: 10.1371/journal.pone.0234816 PubMed DOI PMC
Zha Y, Chen J, Liu S, et al.. Vessel density and structural measurements in primary angle-closure suspect glaucoma using optical coherence tomography angiography. BioMed Research International. 2020; Article ID 7526185:1:6. doi: 10.1155/2020/7526185 PubMed DOI PMC
Khayrallah O, Mahjoub A, Abdesslam N-B, et al.. Optical coherence tomography angiography vessel density parameters in primary open-angle glaucoma. Annals of Medicine and Surgery. 2021;69. doi: 10.1016/j.amsu.2021.102671 PubMed DOI PMC
Konishi N, Tokimoto Y, Kohra K, et al.. New laser speckle flowgraphy system using CCD camera. OPT REV. 2002;9:163–169.
Yokoyama Y, Aizawa N, Chiba N, et al.. Significant correlations between optic nerve head microcirculation and visual field defects and nerve fiber layer loss in glaucoma patients with myopic glaucomatous disk. Clin Ophthalmol. 2011;5:1721–1727 doi: 10.2147/OPTH.S23204 PubMed DOI PMC
Shiga Y, Kunikata H, Aizawa N, et al.. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Current Eye Research. 2016;41(11):1447–1453. doi: 10.3109/02713683.2015.1127974 PubMed DOI
Tornow RP, Odstrcilik J, Kolar R. Time-resolved quantitative inter-eye comparison of cardiac cycle-induced blood volume changes in the human retina. Biomed Opt Express. 2018;9(12):6237–6254. doi: 10.1364/BOE.9.006237 PubMed DOI PMC
Tornow RP, Kolar R, Odstrcilik J, et al.. Imaging video plethysmography shows reduced signal amplitude in glaucoma patients in the area of the microvascular tissue of the optic nerve head. Graefes Arch Clin Exp Ophthalmol. 2021;259:483–494. doi: 10.1007/s00417-020-04934-y PubMed DOI PMC
Kolar R, Odstrcilik J, Tornow RP. Photoplethysmographic analysis of retinal videodata based on the Fourier domain approach. Biomed. Opt. Express. 2021;12:7405–7421. doi: 10.1364/BOE.441451 PubMed DOI PMC
Kolar R, Tornow RP, Odstrcilik J, et al.. Registration of retinal sequences from new video-ophthalmoscopic camera. BioMed Eng OnLine. 2016;15(57). doi: 10.1186/s12938-016-0191-0 PubMed DOI PMC
Odstrcilik J, Kolar R, Budai A, et al.. Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Processing. 2013;7:373–383.
Jia Y, Morrison JC, Tokayer J, et al.. Quantitative OCT angiography of optic nerve head blood flow. Biomed. Opt. Express. 2012;3:3127–3137. doi: 10.1364/BOE.3.003127 PubMed DOI PMC
Kumar JRH, Seelamantula CS, Kamath YS, et al.. Rim-to-disc ratio outperforms cup-to-disc ratio for glaucoma prescreening. Sci Rep. 2019;9:7099. doi: 10.1038/s41598-019-43385-2 PubMed DOI PMC
Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest. Ophthalmol. Vis. Sci. 1988;29(7):1151–1158. PubMed
Mangouritsas G, Koutropoulou N, Ragkousis A et al.. Peripapillary vessel density in unilateral preperimetric glaucoma. Clin Ophthalmol. 2019;13:2511–2519. doi: 10.2147/OPTH.S224757 PubMed DOI PMC
Si Kim, Eun Lee, Chul Han Jong et al.. Comparison of peripapillary vessel density between preperimetric and perimetric glaucoma evaluated by OCT-angiography. PLOS ONE. 2017;12: e0184297. doi: 10.1371/journal.pone.0184297 PubMed DOI PMC
figshare
10.6084/m9.figshare.21197173.v1