• This record comes from PubMed

Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments

. 2023 Apr 27 ; 12 (9) : . [epub] 20230427

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VEGA 1/0604/20 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0175/22 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0655/23 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0331/23 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0011/23 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0359/22 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0747/20 Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
04-GASPU-2021 Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 3/2023 Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 8/2023 Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 9/2023 Grant Agency of the Slovak University of Agriculture in Nitra

In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha-1 to 3.29 t ha-1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.

AgroBioTech Research Centre Slovak University of Agriculture Tr A Hlinku 2 949 76 Nitra Slovakia

Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Prayagraj 211 004 Uttar Pradesh India

Department of Chemistry School of Advanced Sciences VIT AP University Amaravati 522 237 Andra Pradesh India

Department of Chemistry VIT University Vellore 632 014 Tamil Nadu India

Department of Earth and Environmental Studies Montclair State University 1 Normal Ave Montclair NJ 070 43 USA

Department of Nanobiotechnology Institute of Soil Biology and Biogeochemistry Biology Centre Czech Academy of Sciences Na Sadkach 7 370 05 Ceske Budejovice Czech Republic

Institute of Agronomic Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture in Nitra Tr A Hlinku 2 949 76 Nitra Slovakia

Institute of Electrical Engineering Slovak Academy of Sciences Dúbravská cesta 9 841 04 Bratislava Slovakia

Institute of Laboratory Research on Geomaterials Faculty of Natural Sciences Comenius University in Bratislava Mlynská Dolina Ilkovičova 6 842 15 Bratislava Slovakia

Institute of Landscape Engineering Faculty of Horticulture and Landscape Engineering Slovak University of Agriculture in Nitra Hospodárska 7 949 76 Nitra Slovakia

Institute of Plant and Environmental Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture in Nitra Tr A Hlinku 2 949 76 Nitra Slovakia

Nanotechnology Centre CEET VŠB Technical University of Ostrava 17 listopadu 15 2172 708 00 Ostrava Czech Republic

Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacky University Slechtitelu 27 783 71 Olomouc Czech Republic

See more in PubMed

Šebesta M., Ďurišová Ľ., Ernst D., Kšiňan S., Illa R., Sunil B.R., Ingle A.P., Qian Y., Urík M., Kolenčík M. Foliar application of metallic nanoparticles on crops under field conditions. In: Chen J.-T., editor. Plant and Nanoparticles. Springer Nature; Singapore: 2022. pp. 171–215.

Šebesta M., Kolenčík M., Sunil B.R., Illa R., Mosnáček J., Ingle A.P., Urík M. Field application of ZnO and TiO2 nanoparticles on agricultural plants. Agronomy. 2021;11:2281. doi: 10.3390/agronomy11112281. DOI

Giri V.P., Shukla P., Tripathi A., Verma P., Kumar N., Pandey S., Dimkpa C.O., Mishra A. A Review of sustainable use of biogenic nanoscale agro-materials to enhance stress tolerance and nutritional value of plants. Plants. 2023;12:815. doi: 10.3390/plants12040815. PubMed DOI PMC

Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC

Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014;96:861–868. doi: 10.1080/02772248.2014.994517. DOI

Faizan M., Alam P., Rajput V.D., Faraz A., Afzal S., Ahmed S.M., Yu F.-Y., Minkina T., Hayat S. Nanoparticle mediated plant tolerance to heavy metal stress: What we know? Sustainability. 2023;15:1446. doi: 10.3390/su15021446. DOI

Tanveer Y., Jahangir S., Shah Z.A., Yasmin H., Nosheen A., Hassan M.N., Illyas N., Bajguz A., El-Sheikh M.A., Ahmad P. Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome. Environ. Pollut. 2023;316:120641. doi: 10.1016/j.envpol.2022.120641. PubMed DOI

Pal D. Sunflower (Helianthus annuus L.) seeds in health and nutrition. In: Preedy V.R., Watson R.R., Patel V.B., editors. Nuts and Seeds in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2011. pp. 1097–1105. DOI

Petraru A., Ursachi F., Amariei S. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional Ingredient. Plants. 2021;10:2487. doi: 10.3390/plants10112487. PubMed DOI PMC

Kaya Y. Sunflower. In: Gupta S.K., editor. Breeding Oilseed CROPS for Sustainable Production. Academic Press; San Diego, CA, USA: 2016. pp. 55–88. DOI

Kirkham M.B. Leaf anatomy and leaf elasticity. In: Kirkham M.B., editor. Principles of Soil and Plant Water Relations. 2nd ed. Academic Press; Boston, CA, USA: 2014. pp. 409–430. DOI

Li C., Wang P., van der Ent A., Cheng M., Jiang H., Lund Read T., Lombi E., Tang C., de Jonge M.D., Menzies N.W., et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2019;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC

Zhu H., Han J., Xiao J.Q., Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008;10:713–717. doi: 10.1039/b805998e. PubMed DOI

Hevia V., Bosch J., Azcárate F.M., Fernández E., Rodrigo A., Barril-Graells H., González J.A. Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agric. Ecosyst. Environ. 2016;232:336–344. doi: 10.1016/j.agee.2016.08.021. DOI

Torretta J.P., Poggio S.L. Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops. J. Nat. Hist. 2013;47:139–165. doi: 10.1080/00222933.2012.742162. DOI

Athanassiou C.G., Kavallieratos N.G., Benelli G., Losic D., Usha Rani P., Desneux N. Nanoparticles for pest control: Current status and future perspectives. J. Pest. Sci. 2018;91:1–15. doi: 10.1007/s10340-017-0898-0. DOI

Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI

Alabdallah N.M., Hasan M.M., Hammami I., Alghamdi A.I., Alshehri D., Alatawi H.A. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants. 2021;10:1730. doi: 10.3390/plants10081730. PubMed DOI PMC

Seleiman M.F., Al-Selwey W.A., Ibrahim A.A., Shady M., Alsadon A.A. Foliar applications of ZnO and SiO2 nanoparticles mitigate water deficit and enhance potato yield and quality traits. Agronomy. 2023;13:466. doi: 10.3390/agronomy13020466. DOI

Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI

Zia-ur-Rehman M., Naeem A., Khalid H., Rizwan M., Ali S., Azhar M. Responses of plants to iron oxide nanoparticles. In: Tripathi D.K., Ahmad P., Sharma S., Chauhan D.K., Dubey N.K., editors. Nanomaterials in Plants, Algae, and Microorganisms. Academic Press; Cambridge, MA, USA: 2018. pp. 221–238. DOI

Zhang X., Zhang D., Sun W., Wang T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019;20:2424. doi: 10.3390/ijms20102424. PubMed DOI PMC

Grotz N., Guerinot M.L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006;1763:595–608. doi: 10.1016/j.bbamcr.2006.05.014. PubMed DOI

Guerriero G., Stokes I., Valle N., Hausman J.-F., Exley C. Visualising silicon in plants: Histochemistry, silica sculptures and elemental imaging. Cells. 2020;9:1066. doi: 10.3390/cells9041066. PubMed DOI PMC

Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC

Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC

Cai L., Cai L., Jia H., Liu C., Wang D., Sun X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 2020;393:122415. doi: 10.1016/j.jhazmat.2020.122415. PubMed DOI

Ahmed K.B.M., Khan M.M.A., Shabbir A., Ahmad B., Uddin M., Azam A. Comparative effect of foliar application of silicon, titanium and zinc nanoparticles on the performance of vetiver- a medicinal and aromatic plant. Silicon. 2022;15:153–166. doi: 10.1007/s12633-022-02007-9. DOI

Arora S., Sharma P., Kumar S., Nayan R., Khanna P.K., Zaidi M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66:303–310. doi: 10.1007/s10725-011-9649-z. DOI

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC

Dragičević V., Sredojević S., Perić V., Kovinčić A., Srebrić M. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds. Acta Period. Technol. 2011;42:11–21. doi: 10.2298/APT1142011D. DOI

Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., Yang P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005;105:269–279. doi: 10.1385/BTER:105:1-3:269. PubMed DOI

Grimme R.A., Lubner C.E., Bryant D.A., Golbeck J.H. Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J. Am. Chem. Soc. 2008;130:6308–6309. doi: 10.1021/ja800923y. PubMed DOI

Archana B., Manjunath K., Nagaraju G., Chandra Sekhar K.B., Kottam N. Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int. J. Hydrogen Energy. 2017;42:5125–5131. doi: 10.1016/j.ijhydene.2016.11.099. DOI

Shah M., Badwaik V., Kherde Y., Waghwani H., Modi T., Aguilar Z.P., Rodgers H., Hamilton W., Marutharaj T., Webb C., et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front. Biosci. 2014;19:1320–1344. doi: 10.2741/4284. PubMed DOI

Mishra M., Chun D.-M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023. DOI

Xiang L., Zhao H.-M., Li Y.-W., Huang X.-P., Wu X.-L., Zhai T., Yuan Y., Cai Q.-Y., Mo C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI

Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M., et al. Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC

Holišová V., Urban M., Kolenčík M., Němcová Y., Schröfel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI

Domingo J.C., Mercadal M., Petriz J., De Madariaga M.A. Preparation of PEG-grafted immunomagnetoliposomes entrapping citrate stabilized magnetite particles and their application in CD34+ cell sorting. J. Microencapsul. 2001;18:41–54. doi: 10.1080/026520401750038593. PubMed DOI

Harčár J., Priechodská Z., Karolus K., Karolusová E., Remšík K., Šucha P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nížiny. Geologický ústav Dioníza Štúra; Bratislava, Slovakia: 1988.

Šimanský V., Kovačik P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015;20:1033–1040. doi: 10.5601/jelem.2015.20.1.857. DOI

Alberio C., Izquierdo N.G., Aguirrezábal L.A.N. Sunflower crop physiology and agronomy. In: Martínez-Force E., Dunford N.T., Salas J.J., editors. Sunflower. AOCS Press; Urbana, IL, USA: 2015. pp. 53–91. DOI

Aschenbrenner A.-K., Horakh S., Spring O. Linear glandular trichomes of Helianthus (Asteraceae): Morphology, localization, metabolite activity and occurrence. AoB Plants. 2013;5:plt028. doi: 10.1093/aobpla/plt028. DOI

Pazourek J. Studium listové epidermis mikroreliefovou metodou. Preslia Praha. 1963;35:210–216.

Gamon J.A., Peñuelas J., Field C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI

Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989. doi: 10.1071/FP09123. PubMed DOI

Shahidi F. Extraction and measurement of total lipids. Curr. Protoc. Food Anal. Chem. 2003;7:D1. 1.1–D1. 1.11. doi: 10.1002/0471142913.fad0101s07. DOI

Kollathova R., Varga B., Ivanišova E., Galik B., Biro D., Rolinec M., Juraček M., Šimko M., Hanušovsky O., Zabransky Ľ. The content of nutrients and fatty acids profile in different oilseeds. J. Cent. Eur. Agric. 2019;20:1063–1068. doi: 10.5513/JCEA01/20.4.2320. DOI

Vatehová Z., Kollárová K., Zelko I., Richterová-Kučerová D., Bujdoš M., Lišková D. Interaction of silicon and cadmium in Brassica Juncea Brassica Napus. Biologia. 2012;67:498–504. doi: 10.2478/s11756-012-0034-9. DOI

Kolenčík M., Urík M., Bujdoš M., Gardošová K., Littera P., Puškelová Ľ., Gregor M., Matúš P. Lúhovanie hliníka, železa, cínu, kobaltu a zlata z elektronických odpadov pôsobením organických kyselín a mikroskopickej vláknitej huby Aspergillus Niger. Chem. Listy. 2013;107:182–185.

Polák F., Urík M., Bujdoš M., Kim H., Matúš P. Fungal bioextraction of iron from kaolin. Chem. Pap. 2019;73:3025–3029. doi: 10.1007/s11696-019-00896-6. DOI

Pokorný V. Book of Coleoptera. Vydavatelství Paseka; Praha, Czechia: 2002.

StatSoft. I. STATISTICA (Data Analysis Software System), Version 10. [(accessed on 25 March 2021)]. Available online: www.statsoft.com.

Shukla S.K., Kumar R., Mishra R.K., Pandey A., Pathak A., Zaidi M., Srivastava S.K., Dikshit A. Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers. Nanotechnol. Rev. 2015;4:439–448. doi: 10.1515/ntrev-2015-0036. DOI

Shafira S., Salamah A. Analysis of leaves trichomes of Eclipta prostrata, Eleutheranthera ruderalis, Synedrella nodiflora, and Tridax procumbens (Asteraceae, Heliantheae); Proceedings of the IOP Conference Series: Earth and Environmental Science; Malang, Indonesia. 23–24 October 2019; p. 12001.

Read T.L., Doolette C.L., Li C., Schjoerring J.K., Kopittke P.M., Donner E., Lombi E. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption? Physiol. Plant. 2020;170:384–397. doi: 10.1111/ppl.13167. PubMed DOI

Askary M., Talebi S.M., Amini F., Bangan A.D.B. Effects of stress on foliar trichomes plasticity in Mentha piperita. Nus. Biosci. 2016;8:31–37. doi: 10.13057/nusbiosci/n080107. DOI

Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI

Zanão Junior L.A., Venegas V.H.A., Fontes R.L.F., Carvalho-Zanao M.P., Diaspereira J., Maranho L.T., Pereira N. Leaf anatomy and gas exchange of ornamental sunflower in response to silicon application. Biosc. J. 2017;33:833–842. doi: 10.14393/BJ-v33n4a2017-36559. DOI

Mathur P., Roy S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol. Biochem. 2020;157:114–127. doi: 10.1016/j.plaphy.2020.10.011. PubMed DOI

Lin M., Huang H., Liu Z., Liu Y., Ge J., Fang Y. Growth–dissolution–regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir. 2013;29:15433–15441. doi: 10.1021/la403577y. PubMed DOI

Alkhatib R., Alkhatib B., Abdo N., Al-Eitan L., Creamer R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 2019;19:253. doi: 10.1186/s12870-019-1864-1. PubMed DOI PMC

Salehi H., De Diego N., Chehregani Rad A., Benjamin J.J., Trevisan M., Lucini L. Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Sci. Total Environ. 2021;778:146331. doi: 10.1016/j.scitotenv.2021.146331. PubMed DOI

Alidoust D., Isoda A. Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiol. Plant. 2013;35:3365–3375. doi: 10.1007/s11738-013-1369-8. DOI

Zahedi S.M., Hosseini M.S., Karimi M., Gholami R., Amini M., Abdelrahman M., Tran L.-S.P. Chitosan-based Schiff base-metal (Fe, Cu, and Zn) complexes mitigate the negative consequences of drought stress on pomegranate fruits. Plant Physiol. Biochem. 2023;196:952–964. doi: 10.1016/j.plaphy.2023.02.021. PubMed DOI

Gao X., Kundu A., Bueno V., Rahim A.A., Ghoshal S. Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environ. Sci. Technol. 2021;55:13551–13560. doi: 10.1021/acs.est.1c00447. PubMed DOI

Tomaszewska-Sowa M., Lisiecki K., Pańka D. Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy. 2022;12:2885. doi: 10.3390/agronomy12112885. DOI

Thind S., Hussain I., Rasheed R., Ashraf M.A., Perveen A., Ditta A., Hussain S., Khalil N., Ullah Z., Mahmood Q. Alleviation of cadmium stress by silicon nanoparticles during different phenological stages of Ujala wheat variety. Arab. J. Geosci. 2021;14:1028. doi: 10.1007/s12517-021-07384-w. DOI

Shahrekizad M., Gholamalizadeh A.A., Mir N. EDTA-coated Fe3O4 nanoparticles: A novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus Annuus) J. Nanostruct. 2015;5:117–127.

Mahmoud A.W.M., Ayad A.A., Abdel-Aziz H.S.M., Williams L.L., El-Shazoly R.M., Abdel-Wahab A., Abdeldaym E.A. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants. 2022;11:2599. doi: 10.3390/plants11192599. PubMed DOI PMC

González-Pérez S., Vereijken J.M. Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007;87:2173–2191. doi: 10.1002/jsfa.2971. DOI

Pereyra-Irujo G.A., Aguirrezábal L.A.N. Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model. Agric. For. Meteorol. 2007;143:252–265. doi: 10.1016/j.agrformet.2007.01.001. DOI

Pereyra-Irujo G.A., Izquierdo N.G., Covi M., Nolasco S.M., Quiroz F., Aguirrezábal L.A.N. Variability in sunflower oil quality for biodiesel production: A simulation study. Biomass Bioenergy. 2009;33:459–468. doi: 10.1016/j.biombioe.2008.07.007. DOI

Sales-Campos H., Souza P.R., Peghini B.C., da Silva J.S., Cardoso C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013;13:201–210. PubMed

Jandacek R.J. Linoleic acid: A nutritional quandary. Healthcare. 2017;5:25. doi: 10.3390/healthcare5020025. PubMed DOI PMC

Laane H.M. The effects of foliar sprays with different silicon compounds. Plants. 2018;7:45. doi: 10.3390/plants7020045. PubMed DOI PMC

Nissar J., Ahad T., Naik H., Hussain S. A review phytic acid: As antinutrient or nutraceutical. J. Pharmacogn. Phytochem. 2017;6:1554–1560.

Raliya R., Nair R., Chavalmane S., Wang W.-N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI

Kongala S.I., Nadendla S.R., Mamidala P. Internalization and induction of defense responses in tobacco by harpinPss conjugated gold nanoparticles as a foliar spray. Colloids Interface Sci. Commun. 2021;43:100438. doi: 10.1016/j.colcom.2021.100438. DOI

Chourasiya V., Nehra A., Shukla P., Singh K., Singh P. Impact of mesoporous nano-silica (SiO2) on seed germination and seedling growth of wheat, pea and mustard seed. J. Nanosci. Nanotechnol. 2021;21:3566–3572. doi: 10.1166/jnn.2021.19013. PubMed DOI

Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI

Hussain A., Ali S., Rizwan M., Zia ur Rehman M., Javed M.R., Imran M., Chatha S.A.S., Nazir R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018;242:1518–1526. doi: 10.1016/j.envpol.2018.08.036. PubMed DOI

Hussain A., Rizwan M., Ali S., Rehman M.Z.u., Qayyum M.F., Nawaz R., Ahmad A., Asrar M., Ahmad S.R., Alsahli A.A., et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicol. Environ. Saf. 2021;215:112139. doi: 10.1016/j.ecoenv.2021.112139. PubMed DOI

Linh T.M., Mai N.C., Hoe P.T., Lien L.Q., Ban N.K., Hien L.T.T., Chau N.H., Van N.T. Metal-based nanoparticles enhance drought tolerance in soybean. J. Nanomater. 2020;2020:4056563. doi: 10.1155/2020/4056563. DOI

Mitra G. Essential plant nutrients and recent concepts about their uptake. In: Naeem M., Ansari A.A., Gill S.S., editors. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Springer International Publishing; Cham, Switzerland: 2017. pp. 3–36.

Krbečková V., Šimonová Z., Langer P., Peikertová P., Kutláková K.M., Thomasová B., Plachá D. Effective and reproducible biosynthesis of nanogold-composite catalyst for paracetamol oxidation. Environ. Sci. Pollut. Res. 2022;29:87764–87774. doi: 10.1007/s11356-022-21868-6. PubMed DOI PMC

Venzhik Y., Deryabin A., Popov V., Dykman L., Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat. Plant Physiol. Biochem. 2022;190:145–155. doi: 10.1016/j.plaphy.2022.09.006. PubMed DOI

Elsheery N.I., Sunoj V.S.J., Wen Y., Zhu J.J., Muralidharan G., Cao K.F. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiol. Biochem. 2020;149:50–60. doi: 10.1016/j.plaphy.2020.01.035. PubMed DOI

Cao X., Chen Y., Jiao S., Fang Z., Xu M., Liu X., Li L., Pang G., Feng S. Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale. 2014;6:12366–12370. doi: 10.1039/C4NR03729D. PubMed DOI

Rainio J., Niemelä J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003;12:487–506. doi: 10.1023/A:1022412617568. DOI

Goswami P., Mathur J., Srivastava N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon. 2022;8:e09908. doi: 10.1016/j.heliyon.2022.e09908. PubMed DOI PMC

Kong X.-P., Zhang B.-H., Wang J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food. Chem. 2021;69:6735–6754. doi: 10.1021/acs.jafc.1c01091. PubMed DOI

Wang L., Ning C., Pan T., Cai K. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review. Int. J. Mol. Sci. 2022;23:1947. doi: 10.3390/ijms23041947. PubMed DOI PMC

Mohamed G.R., Morsy A.R. Toxicity of nanosilica particles on Eobania vermiculata and their effects on biochemical changes in rats. Egypt. Acad. J. Biol. Sci. 2021;13:217–226. doi: 10.21608/eajbsf.2021.162947. DOI

Hussein H.S., Tawfeek M.E., Eldesouky S.E. Toxicity and biochemical effects of spirotetramat and its binary mixtures with nanosilica against Aphis gossypii glover, Bemisia tabaci gennadius and the earthworm, Eisenia fetida. Alex. Sci. Exch. J. 2022;43:107–119. doi: 10.21608/asejaiqjsae.2022.223962. DOI

Tian L., Shen J., Sun G., Wang B., Ji R., Zhao L. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ. Sci. Technol. 2020;54:13137–13146. doi: 10.1021/acs.est.0c03767. PubMed DOI

Dubey A., Mailapalli D.R. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E., editor. Sustainable Agriculture Reviews: Volume 19. Springer International Publishing; Cham, Switzerland: 2016. pp. 307–330.

Samrot A.V., Bhavya K.S., Angalene J.L.A., Roshini S.M., Preethi R., Steffi S.M., Raji P., Kumar S.S. Utilization of gum polysaccharide of Araucaria heterophylla and Azadirachta indica for encapsulation of cyfluthrin loaded super paramagnetic iron oxide nanoparticles for mosquito larvicidal activity. Int. J. Biol. Macromol. 2020;153:1024–1034. doi: 10.1016/j.ijbiomac.2019.10.232. PubMed DOI

Vindedahl A.M., Strehlau J.H., Arnold W.A., Penn R.L. Organic matter and iron oxide nanoparticles: Aggregation, interactions, and reactivity. Environ. Sci. Nano. 2016;3:494–505. doi: 10.1039/C5EN00215J. DOI

Qu H., Ma H., Riviere A., Zhou W., O’Connor C.J. One-pot synthesis in polyamines for preparation of water-soluble magnetite nanoparticles with amine surface reactivity. J. Mater. Chem. 2012;22:3311–3313. doi: 10.1039/c2jm15932e. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...