Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VEGA 1/0604/20
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0175/22
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0655/23
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0331/23
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0011/23
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0359/22
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0747/20
Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
04-GASPU-2021
Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 3/2023
Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 8/2023
Grant Agency of the Slovak University of Agriculture in Nitra
GAFAPZ 9/2023
Grant Agency of the Slovak University of Agriculture in Nitra
PubMed
37176847
PubMed Central
PMC10180907
DOI
10.3390/plants12091789
PII: plants12091789
Knihovny.cz E-resources
- Keywords
- foliar application, gold, insect biodiversity assessment, iron oxide, nanofertilizers, plant physiology, seeds quality, silica, sunflower yield, zinc,
- Publication type
- Journal Article MeSH
In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha-1 to 3.29 t ha-1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.
AgroBioTech Research Centre Slovak University of Agriculture Tr A Hlinku 2 949 76 Nitra Slovakia
Department of Chemistry VIT University Vellore 632 014 Tamil Nadu India
See more in PubMed
Šebesta M., Ďurišová Ľ., Ernst D., Kšiňan S., Illa R., Sunil B.R., Ingle A.P., Qian Y., Urík M., Kolenčík M. Foliar application of metallic nanoparticles on crops under field conditions. In: Chen J.-T., editor. Plant and Nanoparticles. Springer Nature; Singapore: 2022. pp. 171–215.
Šebesta M., Kolenčík M., Sunil B.R., Illa R., Mosnáček J., Ingle A.P., Urík M. Field application of ZnO and TiO2 nanoparticles on agricultural plants. Agronomy. 2021;11:2281. doi: 10.3390/agronomy11112281. DOI
Giri V.P., Shukla P., Tripathi A., Verma P., Kumar N., Pandey S., Dimkpa C.O., Mishra A. A Review of sustainable use of biogenic nanoscale agro-materials to enhance stress tolerance and nutritional value of plants. Plants. 2023;12:815. doi: 10.3390/plants12040815. PubMed DOI PMC
Duhan J.S., Kumar R., Kumar N., Kaur P., Nehra K., Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017;15:11–23. doi: 10.1016/j.btre.2017.03.002. PubMed DOI PMC
Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014;96:861–868. doi: 10.1080/02772248.2014.994517. DOI
Faizan M., Alam P., Rajput V.D., Faraz A., Afzal S., Ahmed S.M., Yu F.-Y., Minkina T., Hayat S. Nanoparticle mediated plant tolerance to heavy metal stress: What we know? Sustainability. 2023;15:1446. doi: 10.3390/su15021446. DOI
Tanveer Y., Jahangir S., Shah Z.A., Yasmin H., Nosheen A., Hassan M.N., Illyas N., Bajguz A., El-Sheikh M.A., Ahmad P. Zinc oxide nanoparticles mediated biostimulant impact on cadmium detoxification and in silico analysis of zinc oxide-cadmium networks in Zea mays L. regulome. Environ. Pollut. 2023;316:120641. doi: 10.1016/j.envpol.2022.120641. PubMed DOI
Pal D. Sunflower (Helianthus annuus L.) seeds in health and nutrition. In: Preedy V.R., Watson R.R., Patel V.B., editors. Nuts and Seeds in Health and Disease Prevention. Academic Press; San Diego, CA, USA: 2011. pp. 1097–1105. DOI
Petraru A., Ursachi F., Amariei S. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional Ingredient. Plants. 2021;10:2487. doi: 10.3390/plants10112487. PubMed DOI PMC
Kaya Y. Sunflower. In: Gupta S.K., editor. Breeding Oilseed CROPS for Sustainable Production. Academic Press; San Diego, CA, USA: 2016. pp. 55–88. DOI
Kirkham M.B. Leaf anatomy and leaf elasticity. In: Kirkham M.B., editor. Principles of Soil and Plant Water Relations. 2nd ed. Academic Press; Boston, CA, USA: 2014. pp. 409–430. DOI
Li C., Wang P., van der Ent A., Cheng M., Jiang H., Lund Read T., Lombi E., Tang C., de Jonge M.D., Menzies N.W., et al. Absorption of foliar-applied Zn in sunflower (Helianthus annuus): Importance of the cuticle, stomata and trichomes. Ann. Bot. 2019;123:57–68. doi: 10.1093/aob/mcy135. PubMed DOI PMC
Zhu H., Han J., Xiao J.Q., Jin Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008;10:713–717. doi: 10.1039/b805998e. PubMed DOI
Hevia V., Bosch J., Azcárate F.M., Fernández E., Rodrigo A., Barril-Graells H., González J.A. Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agric. Ecosyst. Environ. 2016;232:336–344. doi: 10.1016/j.agee.2016.08.021. DOI
Torretta J.P., Poggio S.L. Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops. J. Nat. Hist. 2013;47:139–165. doi: 10.1080/00222933.2012.742162. DOI
Athanassiou C.G., Kavallieratos N.G., Benelli G., Losic D., Usha Rani P., Desneux N. Nanoparticles for pest control: Current status and future perspectives. J. Pest. Sci. 2018;91:1–15. doi: 10.1007/s10340-017-0898-0. DOI
Liu R., Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015;514:131–139. doi: 10.1016/j.scitotenv.2015.01.104. PubMed DOI
Alabdallah N.M., Hasan M.M., Hammami I., Alghamdi A.I., Alshehri D., Alatawi H.A. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants. 2021;10:1730. doi: 10.3390/plants10081730. PubMed DOI PMC
Seleiman M.F., Al-Selwey W.A., Ibrahim A.A., Shady M., Alsadon A.A. Foliar applications of ZnO and SiO2 nanoparticles mitigate water deficit and enhance potato yield and quality traits. Agronomy. 2023;13:466. doi: 10.3390/agronomy13020466. DOI
Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI
Zia-ur-Rehman M., Naeem A., Khalid H., Rizwan M., Ali S., Azhar M. Responses of plants to iron oxide nanoparticles. In: Tripathi D.K., Ahmad P., Sharma S., Chauhan D.K., Dubey N.K., editors. Nanomaterials in Plants, Algae, and Microorganisms. Academic Press; Cambridge, MA, USA: 2018. pp. 221–238. DOI
Zhang X., Zhang D., Sun W., Wang T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019;20:2424. doi: 10.3390/ijms20102424. PubMed DOI PMC
Grotz N., Guerinot M.L. Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2006;1763:595–608. doi: 10.1016/j.bbamcr.2006.05.014. PubMed DOI
Guerriero G., Stokes I., Valle N., Hausman J.-F., Exley C. Visualising silicon in plants: Histochemistry, silica sculptures and elemental imaging. Cells. 2020;9:1066. doi: 10.3390/cells9041066. PubMed DOI PMC
Siddiqi K.S., Husen A. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res. Lett. 2016;11:400. doi: 10.1186/s11671-016-1607-2. PubMed DOI PMC
Kolenčík M., Ernst D., Urík M., Ďurišová Ľ., Bujdoš M., Šebesta M., Dobročka E., Kšiňan S., Illa R., Qian Y. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials. 2020;10:1619. doi: 10.3390/nano10081619. PubMed DOI PMC
Cai L., Cai L., Jia H., Liu C., Wang D., Sun X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 2020;393:122415. doi: 10.1016/j.jhazmat.2020.122415. PubMed DOI
Ahmed K.B.M., Khan M.M.A., Shabbir A., Ahmad B., Uddin M., Azam A. Comparative effect of foliar application of silicon, titanium and zinc nanoparticles on the performance of vetiver- a medicinal and aromatic plant. Silicon. 2022;15:153–166. doi: 10.1007/s12633-022-02007-9. DOI
Arora S., Sharma P., Kumar S., Nayan R., Khanna P.K., Zaidi M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012;66:303–310. doi: 10.1007/s10725-011-9649-z. DOI
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
Dragičević V., Sredojević S., Perić V., Kovinčić A., Srebrić M. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds. Acta Period. Technol. 2011;42:11–21. doi: 10.2298/APT1142011D. DOI
Hong F., Zhou J., Liu C., Yang F., Wu C., Zheng L., Yang P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res. 2005;105:269–279. doi: 10.1385/BTER:105:1-3:269. PubMed DOI
Grimme R.A., Lubner C.E., Bryant D.A., Golbeck J.H. Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2. J. Am. Chem. Soc. 2008;130:6308–6309. doi: 10.1021/ja800923y. PubMed DOI
Archana B., Manjunath K., Nagaraju G., Chandra Sekhar K.B., Kottam N. Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int. J. Hydrogen Energy. 2017;42:5125–5131. doi: 10.1016/j.ijhydene.2016.11.099. DOI
Shah M., Badwaik V., Kherde Y., Waghwani H., Modi T., Aguilar Z.P., Rodgers H., Hamilton W., Marutharaj T., Webb C., et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front. Biosci. 2014;19:1320–1344. doi: 10.2741/4284. PubMed DOI
Mishra M., Chun D.-M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015;498:126–141. doi: 10.1016/j.apcata.2015.03.023. DOI
Xiang L., Zhao H.-M., Li Y.-W., Huang X.-P., Wu X.-L., Zhai T., Yuan Y., Cai Q.-Y., Mo C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI
Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Ďurišová Ľ., Bujdoš M., Černý I., Chlpík J., Juriga M., et al. Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials. 2022;12:310. doi: 10.3390/nano12030310. PubMed DOI PMC
Holišová V., Urban M., Kolenčík M., Němcová Y., Schröfel A., Peikertová P., Slabotinský J., Kratošová G. Biosilica-nanogold composite: Easy-to-prepare catalyst for soman degradation. Arab. J. Chem. 2019;12:262–271. doi: 10.1016/j.arabjc.2017.08.003. DOI
Domingo J.C., Mercadal M., Petriz J., De Madariaga M.A. Preparation of PEG-grafted immunomagnetoliposomes entrapping citrate stabilized magnetite particles and their application in CD34+ cell sorting. J. Microencapsul. 2001;18:41–54. doi: 10.1080/026520401750038593. PubMed DOI
Harčár J., Priechodská Z., Karolus K., Karolusová E., Remšík K., Šucha P. Vysvetlivky ku Geologickej Mape Severovýchodnej Časti Podunajskej Nížiny. Geologický ústav Dioníza Štúra; Bratislava, Slovakia: 1988.
Šimanský V., Kovačik P. Long-term effects of tillage and fertilization on pH and sorption parameters of haplic Luvisol. J. Elem. 2015;20:1033–1040. doi: 10.5601/jelem.2015.20.1.857. DOI
Alberio C., Izquierdo N.G., Aguirrezábal L.A.N. Sunflower crop physiology and agronomy. In: Martínez-Force E., Dunford N.T., Salas J.J., editors. Sunflower. AOCS Press; Urbana, IL, USA: 2015. pp. 53–91. DOI
Aschenbrenner A.-K., Horakh S., Spring O. Linear glandular trichomes of Helianthus (Asteraceae): Morphology, localization, metabolite activity and occurrence. AoB Plants. 2013;5:plt028. doi: 10.1093/aobpla/plt028. DOI
Pazourek J. Studium listové epidermis mikroreliefovou metodou. Preslia Praha. 1963;35:210–216.
Gamon J.A., Peñuelas J., Field C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992;41:35–44. doi: 10.1016/0034-4257(92)90059-S. DOI
Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989. doi: 10.1071/FP09123. PubMed DOI
Shahidi F. Extraction and measurement of total lipids. Curr. Protoc. Food Anal. Chem. 2003;7:D1. 1.1–D1. 1.11. doi: 10.1002/0471142913.fad0101s07. DOI
Kollathova R., Varga B., Ivanišova E., Galik B., Biro D., Rolinec M., Juraček M., Šimko M., Hanušovsky O., Zabransky Ľ. The content of nutrients and fatty acids profile in different oilseeds. J. Cent. Eur. Agric. 2019;20:1063–1068. doi: 10.5513/JCEA01/20.4.2320. DOI
Vatehová Z., Kollárová K., Zelko I., Richterová-Kučerová D., Bujdoš M., Lišková D. Interaction of silicon and cadmium in Brassica Juncea Brassica Napus. Biologia. 2012;67:498–504. doi: 10.2478/s11756-012-0034-9. DOI
Kolenčík M., Urík M., Bujdoš M., Gardošová K., Littera P., Puškelová Ľ., Gregor M., Matúš P. Lúhovanie hliníka, železa, cínu, kobaltu a zlata z elektronických odpadov pôsobením organických kyselín a mikroskopickej vláknitej huby Aspergillus Niger. Chem. Listy. 2013;107:182–185.
Polák F., Urík M., Bujdoš M., Kim H., Matúš P. Fungal bioextraction of iron from kaolin. Chem. Pap. 2019;73:3025–3029. doi: 10.1007/s11696-019-00896-6. DOI
Pokorný V. Book of Coleoptera. Vydavatelství Paseka; Praha, Czechia: 2002.
StatSoft. I. STATISTICA (Data Analysis Software System), Version 10. [(accessed on 25 March 2021)]. Available online: www.statsoft.com.
Shukla S.K., Kumar R., Mishra R.K., Pandey A., Pathak A., Zaidi M., Srivastava S.K., Dikshit A. Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers. Nanotechnol. Rev. 2015;4:439–448. doi: 10.1515/ntrev-2015-0036. DOI
Shafira S., Salamah A. Analysis of leaves trichomes of Eclipta prostrata, Eleutheranthera ruderalis, Synedrella nodiflora, and Tridax procumbens (Asteraceae, Heliantheae); Proceedings of the IOP Conference Series: Earth and Environmental Science; Malang, Indonesia. 23–24 October 2019; p. 12001.
Read T.L., Doolette C.L., Li C., Schjoerring J.K., Kopittke P.M., Donner E., Lombi E. Optimising the foliar uptake of zinc oxide nanoparticles: Do leaf surface properties and particle coating affect absorption? Physiol. Plant. 2020;170:384–397. doi: 10.1111/ppl.13167. PubMed DOI
Askary M., Talebi S.M., Amini F., Bangan A.D.B. Effects of stress on foliar trichomes plasticity in Mentha piperita. Nus. Biosci. 2016;8:31–37. doi: 10.13057/nusbiosci/n080107. DOI
Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica. 2016;54:110–119. doi: 10.1007/s11099-015-0167-5. DOI
Zanão Junior L.A., Venegas V.H.A., Fontes R.L.F., Carvalho-Zanao M.P., Diaspereira J., Maranho L.T., Pereira N. Leaf anatomy and gas exchange of ornamental sunflower in response to silicon application. Biosc. J. 2017;33:833–842. doi: 10.14393/BJ-v33n4a2017-36559. DOI
Mathur P., Roy S. Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol. Biochem. 2020;157:114–127. doi: 10.1016/j.plaphy.2020.10.011. PubMed DOI
Lin M., Huang H., Liu Z., Liu Y., Ge J., Fang Y. Growth–dissolution–regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir. 2013;29:15433–15441. doi: 10.1021/la403577y. PubMed DOI
Alkhatib R., Alkhatib B., Abdo N., Al-Eitan L., Creamer R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biol. 2019;19:253. doi: 10.1186/s12870-019-1864-1. PubMed DOI PMC
Salehi H., De Diego N., Chehregani Rad A., Benjamin J.J., Trevisan M., Lucini L. Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Sci. Total Environ. 2021;778:146331. doi: 10.1016/j.scitotenv.2021.146331. PubMed DOI
Alidoust D., Isoda A. Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiol. Plant. 2013;35:3365–3375. doi: 10.1007/s11738-013-1369-8. DOI
Zahedi S.M., Hosseini M.S., Karimi M., Gholami R., Amini M., Abdelrahman M., Tran L.-S.P. Chitosan-based Schiff base-metal (Fe, Cu, and Zn) complexes mitigate the negative consequences of drought stress on pomegranate fruits. Plant Physiol. Biochem. 2023;196:952–964. doi: 10.1016/j.plaphy.2023.02.021. PubMed DOI
Gao X., Kundu A., Bueno V., Rahim A.A., Ghoshal S. Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to Solanum lycopersicum following foliar application. Environ. Sci. Technol. 2021;55:13551–13560. doi: 10.1021/acs.est.1c00447. PubMed DOI
Tomaszewska-Sowa M., Lisiecki K., Pańka D. Response of rapeseed (Brassica napus L.) to silver and gold nanoparticles as a function of concentration and length of exposure. Agronomy. 2022;12:2885. doi: 10.3390/agronomy12112885. DOI
Thind S., Hussain I., Rasheed R., Ashraf M.A., Perveen A., Ditta A., Hussain S., Khalil N., Ullah Z., Mahmood Q. Alleviation of cadmium stress by silicon nanoparticles during different phenological stages of Ujala wheat variety. Arab. J. Geosci. 2021;14:1028. doi: 10.1007/s12517-021-07384-w. DOI
Shahrekizad M., Gholamalizadeh A.A., Mir N. EDTA-coated Fe3O4 nanoparticles: A novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus Annuus) J. Nanostruct. 2015;5:117–127.
Mahmoud A.W.M., Ayad A.A., Abdel-Aziz H.S.M., Williams L.L., El-Shazoly R.M., Abdel-Wahab A., Abdeldaym E.A. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants. 2022;11:2599. doi: 10.3390/plants11192599. PubMed DOI PMC
González-Pérez S., Vereijken J.M. Sunflower proteins: Overview of their physicochemical, structural and functional properties. J. Sci. Food Agric. 2007;87:2173–2191. doi: 10.1002/jsfa.2971. DOI
Pereyra-Irujo G.A., Aguirrezábal L.A.N. Sunflower yield and oil quality interactions and variability: Analysis through a simple simulation model. Agric. For. Meteorol. 2007;143:252–265. doi: 10.1016/j.agrformet.2007.01.001. DOI
Pereyra-Irujo G.A., Izquierdo N.G., Covi M., Nolasco S.M., Quiroz F., Aguirrezábal L.A.N. Variability in sunflower oil quality for biodiesel production: A simulation study. Biomass Bioenergy. 2009;33:459–468. doi: 10.1016/j.biombioe.2008.07.007. DOI
Sales-Campos H., Souza P.R., Peghini B.C., da Silva J.S., Cardoso C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013;13:201–210. PubMed
Jandacek R.J. Linoleic acid: A nutritional quandary. Healthcare. 2017;5:25. doi: 10.3390/healthcare5020025. PubMed DOI PMC
Laane H.M. The effects of foliar sprays with different silicon compounds. Plants. 2018;7:45. doi: 10.3390/plants7020045. PubMed DOI PMC
Nissar J., Ahad T., Naik H., Hussain S. A review phytic acid: As antinutrient or nutraceutical. J. Pharmacogn. Phytochem. 2017;6:1554–1560.
Raliya R., Nair R., Chavalmane S., Wang W.-N., Biswas P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics. 2015;7:1584–1594. doi: 10.1039/C5MT00168D. PubMed DOI
Kongala S.I., Nadendla S.R., Mamidala P. Internalization and induction of defense responses in tobacco by harpinPss conjugated gold nanoparticles as a foliar spray. Colloids Interface Sci. Commun. 2021;43:100438. doi: 10.1016/j.colcom.2021.100438. DOI
Chourasiya V., Nehra A., Shukla P., Singh K., Singh P. Impact of mesoporous nano-silica (SiO2) on seed germination and seedling growth of wheat, pea and mustard seed. J. Nanosci. Nanotechnol. 2021;21:3566–3572. doi: 10.1166/jnn.2021.19013. PubMed DOI
Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI
Hussain A., Ali S., Rizwan M., Zia ur Rehman M., Javed M.R., Imran M., Chatha S.A.S., Nazir R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut. 2018;242:1518–1526. doi: 10.1016/j.envpol.2018.08.036. PubMed DOI
Hussain A., Rizwan M., Ali S., Rehman M.Z.u., Qayyum M.F., Nawaz R., Ahmad A., Asrar M., Ahmad S.R., Alsahli A.A., et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicol. Environ. Saf. 2021;215:112139. doi: 10.1016/j.ecoenv.2021.112139. PubMed DOI
Linh T.M., Mai N.C., Hoe P.T., Lien L.Q., Ban N.K., Hien L.T.T., Chau N.H., Van N.T. Metal-based nanoparticles enhance drought tolerance in soybean. J. Nanomater. 2020;2020:4056563. doi: 10.1155/2020/4056563. DOI
Mitra G. Essential plant nutrients and recent concepts about their uptake. In: Naeem M., Ansari A.A., Gill S.S., editors. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. Springer International Publishing; Cham, Switzerland: 2017. pp. 3–36.
Krbečková V., Šimonová Z., Langer P., Peikertová P., Kutláková K.M., Thomasová B., Plachá D. Effective and reproducible biosynthesis of nanogold-composite catalyst for paracetamol oxidation. Environ. Sci. Pollut. Res. 2022;29:87764–87774. doi: 10.1007/s11356-022-21868-6. PubMed DOI PMC
Venzhik Y., Deryabin A., Popov V., Dykman L., Moshkov I. Priming with gold nanoparticles leads to changes in the photosynthetic apparatus and improves the cold tolerance of wheat. Plant Physiol. Biochem. 2022;190:145–155. doi: 10.1016/j.plaphy.2022.09.006. PubMed DOI
Elsheery N.I., Sunoj V.S.J., Wen Y., Zhu J.J., Muralidharan G., Cao K.F. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiol. Biochem. 2020;149:50–60. doi: 10.1016/j.plaphy.2020.01.035. PubMed DOI
Cao X., Chen Y., Jiao S., Fang Z., Xu M., Liu X., Li L., Pang G., Feng S. Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale. 2014;6:12366–12370. doi: 10.1039/C4NR03729D. PubMed DOI
Rainio J., Niemelä J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003;12:487–506. doi: 10.1023/A:1022412617568. DOI
Goswami P., Mathur J., Srivastava N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon. 2022;8:e09908. doi: 10.1016/j.heliyon.2022.e09908. PubMed DOI PMC
Kong X.-P., Zhang B.-H., Wang J. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. J. Agric. Food. Chem. 2021;69:6735–6754. doi: 10.1021/acs.jafc.1c01091. PubMed DOI
Wang L., Ning C., Pan T., Cai K. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review. Int. J. Mol. Sci. 2022;23:1947. doi: 10.3390/ijms23041947. PubMed DOI PMC
Mohamed G.R., Morsy A.R. Toxicity of nanosilica particles on Eobania vermiculata and their effects on biochemical changes in rats. Egypt. Acad. J. Biol. Sci. 2021;13:217–226. doi: 10.21608/eajbsf.2021.162947. DOI
Hussein H.S., Tawfeek M.E., Eldesouky S.E. Toxicity and biochemical effects of spirotetramat and its binary mixtures with nanosilica against Aphis gossypii glover, Bemisia tabaci gennadius and the earthworm, Eisenia fetida. Alex. Sci. Exch. J. 2022;43:107–119. doi: 10.21608/asejaiqjsae.2022.223962. DOI
Tian L., Shen J., Sun G., Wang B., Ji R., Zhao L. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ. Sci. Technol. 2020;54:13137–13146. doi: 10.1021/acs.est.0c03767. PubMed DOI
Dubey A., Mailapalli D.R. Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In: Lichtfouse E., editor. Sustainable Agriculture Reviews: Volume 19. Springer International Publishing; Cham, Switzerland: 2016. pp. 307–330.
Samrot A.V., Bhavya K.S., Angalene J.L.A., Roshini S.M., Preethi R., Steffi S.M., Raji P., Kumar S.S. Utilization of gum polysaccharide of Araucaria heterophylla and Azadirachta indica for encapsulation of cyfluthrin loaded super paramagnetic iron oxide nanoparticles for mosquito larvicidal activity. Int. J. Biol. Macromol. 2020;153:1024–1034. doi: 10.1016/j.ijbiomac.2019.10.232. PubMed DOI
Vindedahl A.M., Strehlau J.H., Arnold W.A., Penn R.L. Organic matter and iron oxide nanoparticles: Aggregation, interactions, and reactivity. Environ. Sci. Nano. 2016;3:494–505. doi: 10.1039/C5EN00215J. DOI
Qu H., Ma H., Riviere A., Zhou W., O’Connor C.J. One-pot synthesis in polyamines for preparation of water-soluble magnetite nanoparticles with amine surface reactivity. J. Mater. Chem. 2012;22:3311–3313. doi: 10.1039/c2jm15932e. DOI