Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Intramural
Grant support
Z01 AI000810
Intramural NIH HHS - United States
PubMed
37179447
PubMed Central
PMC10183022
DOI
10.1038/s42003-023-04907-x
PII: 10.1038/s42003-023-04907-x
Knihovny.cz E-resources
- MeSH
- Poultry MeSH
- Mite Infestations * veterinary parasitology MeSH
- Chickens MeSH
- Poultry Diseases * MeSH
- Mites * genetics MeSH
- RNA-Seq MeSH
- Virome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
Dermanyssus gallinae is a blood-feeding mite that parasitises wild birds and farmed poultry. Its remarkably swift processing of blood, together with the capacity to blood-feed during most developmental stages, makes this mite a highly debilitating pest. To identify specific adaptations to digestion of a haemoglobin-rich diet, we constructed and compared transcriptomes from starved and blood-fed stages of the parasite and identified midgut-enriched transcripts. We noted that midgut transcripts encoding cysteine proteases were upregulated with a blood meal. Mapping the full proteolytic apparatus, we noted a reduction in the suite of cysteine proteases, missing homologues for Cathepsin B and C. We have further identified and phylogenetically analysed three distinct transcripts encoding vitellogenins that facilitate the reproductive capacity of the mites. We also fully mapped transcripts for haem biosynthesis and the ferritin-based system of iron storage and inter-tissue trafficking. Additionally, we identified transcripts encoding proteins implicated in immune signalling (Toll and IMD pathways) and activity (defensins and thioester-containing proteins), RNAi, and ion channelling (with targets for commercial acaricides such as Fluralaner, Fipronil, and Ivermectin). Viral sequences were filtered from the Illumina reads and we described, in part, the RNA-virome of D. gallinae with identification of a novel virus, Red mite quaranjavirus 1.
See more in PubMed
Roy L, Chauve CM. Historical review of the genus Dermanyssus Dugès, 1834 (Acari: Mesostigmata: Dermanyssidae) Parasite. 2007;14:87–100. doi: 10.1051/parasite/2007142087. PubMed DOI
Sigognault Flochlay A, et al. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites Vectors. 2017;10:357. doi: 10.1186/s13071-017-2292-4. PubMed DOI PMC
Sparagano O, et al. Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Exp. Appl. Acarol. 2009;48:3–10. doi: 10.1007/s10493-008-9233-z. PubMed DOI
Kasburg CR, et al. Activity of Some Brazilian Isolates of Entomopathogenic Fungi against the Poultry Red Mite Dermanyssus gallinae De Geer (Acari: Dermanyssidae) Rev. Bras. Ciência Av.ícola. 2016;18:457–460. doi: 10.1590/1806-9061-2015-0120. DOI
Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. World’s Poult. Sci. J. 2019;73:245–256. doi: 10.1017/S0043933917000071. DOI
Valiente Moro C, et al. Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite. 2005;12:99–109. doi: 10.1051/parasite/2005122099. PubMed DOI
Pritchard J, et al. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review. Avian Pathol. 2015;44:143–153. doi: 10.1080/03079457.2015.1030589. PubMed DOI
Raele DA, et al. First report of Coxiella burnetii and Borrelia burgdorferi sensu lato in poultry red mites, Dermanyssus gallinae (Mesostigmata, Acari), related to urban outbreaks of dermatitis in Italy. N. Microbes N. Infect. 2018;23:103–109. doi: 10.1016/j.nmni.2018.01.004. PubMed DOI PMC
George, D. R. et al. Should the poultry red mite Dermanyssus gallinae be of wider concern for veterinary and medical science? Parasites Vectors8, 178 (2015). PubMed PMC
Valiente Moro C, et al. The poultry red mite (Dermanyssus gallinae): a potential vector of pathogenic agents. Exp. Appl. Acarol. 2009;48:93–104. doi: 10.1007/s10493-009-9248-0. PubMed DOI
Cocciolo G, et al. Evidence of vector borne transmission of Salmonella enterica enterica serovar Gallinarum and fowl typhoid disease mediated by the poultry red mite, Dermanyssus gallinae (De Geer, 1778) Parasites Vectors. 2020;13:513. doi: 10.1186/s13071-020-04393-8. PubMed DOI PMC
Sommer D, et al. Rolle der Roten Vogelmilbe (Dermanyssus gallinae) bei der Übertragung von aviärem Influenza-A-Virus. Tierärztliche Praxis Ausg G Grosstiere Nutztiere. 2017;44:26–33. doi: 10.15653/TPG-150413. PubMed DOI
Brännström S, et al. Experimental study on possible transmission of the bacterium Erysipelothrix rhusiopathiae to chickens by the poultry red mite, Dermanyssus gallinae. Exp. Appl. Acarol. 2009;50:299–307. doi: 10.1007/s10493-009-9317-4. PubMed DOI
De Luna CJ, et al. The poultry red mite Dermanyssus gallinae as a potential carrier of vector-borne diseases. Ann. N. Y. Acad. Sci. 2008;1149:255–258. doi: 10.1196/annals.1428.085. PubMed DOI
Huang Y, et al. De novo assembly and discovery of genes related to blood digestion in the transcriptome of Dermanyssus gallinae (Acari: Dermanyssidae) Vet. Parasitol. 2020;286:109246. doi: 10.1016/j.vetpar.2020.109246. PubMed DOI
Schicht S, et al. Whole transcriptome analysis of the poultry red mite Dermanyssus gallinae (De Geer, 1778) Parasitology. 2013;141:336–346. doi: 10.1017/S0031182013001467. PubMed DOI
Bartley, K. et al. Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics22, 248 (2021). PubMed PMC
Fujisawa S, et al. Transcriptome dynamics of blood-fed and starved poultry red mites, Dermanyssus gallinae. Parasitol. Int. 2020;78:102156. doi: 10.1016/j.parint.2020.102156. PubMed DOI
Horn M, et al. Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem. Biol. 2009;16:1053–1063. doi: 10.1016/j.chembiol.2009.09.009. PubMed DOI PMC
Kašný M, et al. Chapter 4 peptidases of trematodes. Adv. Parasitol. 2009;69:205–297. doi: 10.1016/S0065-308X(09)69004-7. PubMed DOI
Sojka D, et al. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasites Vectors. 2008;1:7. doi: 10.1186/1756-3305-1-7. PubMed DOI PMC
Perner, J. et al. Acquisition of exogenous haem is essential for tick reproduction. eLife5, e12318 (2016). PubMed PMC
Perner J, et al. Haem biology in metazoan parasites—‘The Bright Side of Haem’. Trends Parasitol. 2019;35:213–225. doi: 10.1016/j.pt.2019.01.001. PubMed DOI
Blackwell TK, et al. TOR signaling in Caenorhabditis elegans development, metabolism, and aging. Genetics. 2019;213:329–360. doi: 10.1534/genetics.119.302504. PubMed DOI PMC
Kozelková T, et al. Functional characterization of the insulin signaling pathway in the hard tick Ixodes ricinus. Ticks Tick. Borne Dis. 2021;12:101694. doi: 10.1016/j.ttbdis.2021.101694. PubMed DOI
Nunn F, et al. An improved method for in vitro feeding of adult female Dermanyssus gallinae (poultry red mite) using Baudruche membrane (goldbeater’s skin) Parasites Vectors. 2020;13:585. doi: 10.1186/s13071-020-04471-x. PubMed DOI PMC
Liu Q, et al. Characterization of Torin2, an ATP-Competitive Inhibitor of mTOR, ATM, and ATR. Cancer Res. 2013;73:2574–2586. doi: 10.1158/0008-5472.CAN-12-1702. PubMed DOI PMC
Jones AK. Genomics, cys-loop ligand-gated ion channels and new targets for the control of insect pests and vectors. Curr. Opin. Insect Sci. 2018;30:1–7. doi: 10.1016/j.cois.2018.07.016. PubMed DOI
Meriney, S. D. & Fanselow, E. E. Ionotropic Receptors. (Synaptic Transmission, Elsevier Academic Press, Cambridge, MA, 2019).
Raymond-Delpech V, et al. Ion channels: molecular targets of neuroactive insecticides. Invertebr. Neurosci. 2005;5:119–133. doi: 10.1007/s10158-005-0004-9. PubMed DOI
Ortells MO, Lunt GG. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 1995;18:121–127. doi: 10.1016/0166-2236(95)93887-4. PubMed DOI
Jones AK, Sattelle DB. Diversity Insect Nicotinic Acetylcholine Receptor Subunits. 2010;683:25–43. doi: 10.1007/978-1-4419-6445-8_3. PubMed DOI
Buckingham SD, et al. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol. Pharmacol. 2005;68:942–951. doi: 10.1124/mol.105.015313. PubMed DOI
Gisselmann G, et al. Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat. Neurosci. 2001;5:11–12. doi: 10.1038/nn787. PubMed DOI
Zheng Y, et al. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J. Biol. Chem. 2002;277:2000–2005. doi: 10.1074/jbc.M107635200. PubMed DOI
Redhai S, et al. An intestinal zinc sensor regulates food intake and developmental growth. Nature. 2020;580:263–268. doi: 10.1038/s41586-020-2111-5. PubMed DOI PMC
Wolstenholme AJ. Glutamate-gated chloride channels. J. Biol. Chem. 2012;287:40232–40238. doi: 10.1074/jbc.R112.406280. PubMed DOI PMC
Atif M, et al. The effects of insecticides on two splice variants of the glutamate‐gated chloride channel receptor of the major malaria vector, Anopheles gambiae. Br. J. Pharmacol. 2019;177:175–187. doi: 10.1111/bph.14855. PubMed DOI PMC
Lamassiaude N, et al. The molecular targets of ivermectin and lotilaner in the human louse Pediculus humanus humanus: new prospects for the treatment of pediculosis. PLOS Pathog. 2021;17:e1008863. doi: 10.1371/journal.ppat.1008863. PubMed DOI PMC
Dermauw W, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem. Mol. Biol. 2012;42:455–465. doi: 10.1016/j.ibmb.2012.03.002. PubMed DOI
Hibbs RE, Gouaux E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature. 2011;474:54–60. doi: 10.1038/nature10139. PubMed DOI PMC
Hultmark D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 2003;15:12–19. doi: 10.1016/S0952-7915(02)00005-5. PubMed DOI
Nishide Y, et al. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc. R. Soc. B Biol. Sci. 2019;286:20182207. doi: 10.1098/rspb.2018.2207. PubMed DOI PMC
Shafee TMA, et al. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 2016;74:663–682. doi: 10.1007/s00018-016-2344-5. PubMed DOI PMC
De Gregorio E. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 2002;21:2568–2579. doi: 10.1093/emboj/21.11.2568. PubMed DOI PMC
Wang Y, Zhu S. The defensin gene family expansion in the tick Ixodes scapularis. Dev. Comp. Immunol. 2011;35:1128–1134. doi: 10.1016/j.dci.2011.03.030. PubMed DOI
Molloy SS, et al. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994;13:18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. PubMed DOI PMC
Ricklin D, et al. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 2010;11:785–797. doi: 10.1038/ni.1923. PubMed DOI PMC
Blandin SA, et al. Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host Microbe. 2008;3:364–374. doi: 10.1016/j.chom.2008.05.007. PubMed DOI
Shokal U, Eleftherianos I. Evolution and function of thioester-containing proteins and the complement system in the innate immune response. Front Immunol. 2017;8:759. doi: 10.3389/fimmu.2017.00759. PubMed DOI PMC
Sekiguchi R, Nonaka M. Evolution of the complement system in protostomes revealed by de novo transcriptome analysis of six species of Arthropoda. Dev. Comp. Immunol. 2015;50:58–67. doi: 10.1016/j.dci.2014.12.008. PubMed DOI
Buresova V, et al. Functional genomics of tick thioester-containing proteins reveal the ancient origin of the complement system. J. Innate Immun. 2011;3:623–630. doi: 10.1159/000328851. PubMed DOI
Schneider D, et al. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 2005;4:e4. doi: 10.1371/journal.pbio.0040004. PubMed DOI PMC
Fogaça AC, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front. Immunol. 2021;12:628054. doi: 10.3389/fimmu.2021.628054. PubMed DOI PMC
Bronkhorst AW, van Rij RP. The long and short of antiviral defense: small RNA-based immunity in insects. Curr. Opin. Virol. 2014;7:19–28. doi: 10.1016/j.coviro.2014.03.010. PubMed DOI
Han, Q. et al. Mechanism and function of antiviral RNA interference in mice. mBio11, e03278-19 (2020). PubMed PMC
Mueller S, et al. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl Acad. Sci. USA. 2010;107:19390–19395. doi: 10.1073/pnas.1014378107. PubMed DOI PMC
Bronkhorst AW, et al. The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery. Proc. Natl Acad. Sci. USA. 2012;109:E3604–E3613. doi: 10.1073/pnas.1207213109. PubMed DOI PMC
Chen W, et al. RNAi gene knockdown in the poultry red mite, Dermanyssus gallinae (De Geer 1778), a tool for functional genomics. Parasites Vectors. 2021;14:57. doi: 10.1186/s13071-020-04562-9. PubMed DOI PMC
Marques JT, et al. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat. Struct. Mol. Biol. 2009;17:24–30. doi: 10.1038/nsmb.1735. PubMed DOI PMC
Dowling, D. et al. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biol. Evolut.8, 3784–3793 (2017). PubMed PMC
Liu Q, et al. Comparative analysis of mite genomes reveals positive selection for diet adaptation. Commun. Biol. 2021;4:668. doi: 10.1038/s42003-021-02173-3. PubMed DOI PMC
Sojka D, et al. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI
Franta Z, et al. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. doi: 10.1186/1756-3305-3-119. PubMed DOI PMC
Santamaría ME, et al. Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. J. Insect Physiol. 2015;78:69–77. doi: 10.1016/j.jinsphys.2015.05.002. PubMed DOI
Nisbet AJ, Billingsley PF. A comparative survey of the hydrolytic enzymes of ectoparasitic and free-living mites. Int. J. Parasitol. 2000;30:19–27. doi: 10.1016/S0020-7519(99)00169-1. PubMed DOI
Franta Z, et al. IrCL1—the haemoglobinolytic cathepsin L of the hard tick, Ixodes ricinus. Int. J. Parasitol. 2011;41:1253–1262. doi: 10.1016/j.ijpara.2011.06.006. PubMed DOI
Hartmann D, et al. Multiple legumain isoenzymes in ticks. Int. J. Parasitol. 2018;48:167–178. doi: 10.1016/j.ijpara.2017.08.011. PubMed DOI
Mul M, et al. Control methods for Dermanyssus gallinae in systems for laying hens: results of an international seminar. World’s Poult. Sci. J. 2019;65:589–600. doi: 10.1017/S0043933909000403. DOI
Balashov YS. Interaction between blood-sucking arthropods and their hosts, and its influence on vector potential. Annu. Rev. Entomol. 1984;29:137–156. doi: 10.1146/annurev.en.29.010184.001033. PubMed DOI
DeLoach JR, DeVaney JA. Northern fowl mite, Ornithonyssus Sylviarum (Acari: Macronyssidae), ingests large quantities of blood from white leghorn hens1. J. Med. Entomol. 1981;18:374–377. doi: 10.1093/jmedent/18.5.374. PubMed DOI
Filimonova SA. Morphological aspects of blood digestion in a parasitic mite Bakericheyla chanayi. Arthropod Struct. Dev. 2013;42:265–276. doi: 10.1016/j.asd.2013.02.006. PubMed DOI
Hajdusek O, et al. Tick iron and heme metabolism—new target for an anti-tick intervention. Ticks Tick Borne Dis. 2016;7:565–572. doi: 10.1016/j.ttbdis.2016.01.006. PubMed DOI
Hajdusek O, et al. Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc. Natl Acad. Sci. USA. 2009;106:1033–1038. doi: 10.1073/pnas.0807961106. PubMed DOI PMC
Perner J, et al. Independent somatic distribution of heme and iron in ticks. Curr. Opin. Insect Sci. 2022;51:100916. doi: 10.1016/j.cois.2022.100916. PubMed DOI
Gorman MJ. Iron Homeostasis in Insects. Annu. Rev. Entomol. 2023;68:51–67. doi: 10.1146/annurev-ento-040622-092836. PubMed DOI PMC
Masuda T, et al. The first crystal structure of crustacean ferritin that is a hybrid type of H and L ferritin. Protein Sci. 2018;27:1955–1960. doi: 10.1002/pro.3495. PubMed DOI PMC
Zhao Y, et al. Cloning, expression, and function of ferritins in the tick Haemaphysalis flava. Ticks Tick Borne Dis. 2022;13:101892. doi: 10.1016/j.ttbdis.2021.101892. PubMed DOI
Xu X, et al. Two ferritins from Dermanyssus gallinae: characterization and in vivo assessment as protective antigens. Pest Manag. Sci. 2021;78:561–571. doi: 10.1002/ps.6664. PubMed DOI
Perner J, et al. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. Insect Biochem. Mol. Biol. 2018;95:44–54. doi: 10.1016/j.ibmb.2018.02.002. PubMed DOI
Palmer WJ, Jiggins FM. Comparative genomics reveals the origins and diversity of arthropod immune systems. Mol. Biol. Evolut. 2015;32:2111–2129. doi: 10.1093/molbev/msv093. PubMed DOI PMC
Simpson SD, et al. The draft genome and transcriptome of the atlantic horseshoe crab, Limulus polyphemus. Int. J. Genomics. 2017;2017:1–14. doi: 10.1155/2017/7636513. PubMed DOI PMC
Zhou Y, et al. The draft genome of horseshoe crab Tachypleus tridentatus reveals its evolutionary scenario and well-developed innate immunity. BMC Genomics. 2020;21:137. doi: 10.1186/s12864-020-6488-1. PubMed DOI PMC
Sottrup-Jensen L. α-Macroglobulins: structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem. 1989;264:11539–11542. doi: 10.1016/S0021-9258(18)80094-1. PubMed DOI
Saravanan T, et al. Molecular cloning, structure and bait region splice variants of α2-macroglobulin from the soft tick Ornithodoros moubata. Insect Biochem. Mol. Biol. 2003;33:841–851. doi: 10.1016/S0965-1748(03)00083-3. PubMed DOI
Buresova V, et al. IrAM—An α2-macroglobulin from the hard tick Ixodes ricinus: Characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. Dev. Comp. Immunol. 2009;33:489–498. doi: 10.1016/j.dci.2008.09.011. PubMed DOI
Brauneis, M. D. et al. The acaricidal speed of kill of orally administered fluralaner against poultry red mites (Dermanyssus gallinae) on laying hens and its impact on mite reproduction. Parasites Vectors10, 594 (2017). PubMed PMC
Xu, X. et al. Acaricidal efficacy of orally administered macrocyclic lactones against poultry red mites (Dermanyssus gallinae) on chicks and their impacts on mite reproduction and blood-meal digestion. Parasites & Vectors12, 345 (2019). PubMed PMC
Guerrini A, et al. Evaluation of the acaricidal effectiveness of fipronil and phoxim in field populations of Dermanyssus gallinae (De Geer, 1778) from ornamental poultry farms in Italy. Vet. Sci. 2022;9:486. doi: 10.3390/vetsci9090486. PubMed DOI PMC
Nakatani Y, et al. Ivermectin modulation of pH-sensitive chloride channels in the silkworm larvae of Bombyx mori. Pestic. Biochem. Physiol. 2016;126:1–5. doi: 10.1016/j.pestbp.2015.08.004. PubMed DOI
Burgess, S. T. G. et al. Draft genome assembly of the poultry red mite, Dermanyssus gallinae. Microbiol. Resour. Announc.7, e01221-18 (2018). PubMed PMC
Ribeiro JMC, et al. An insight into the sialome of the frog biting fly, Corethrella appendiculata. Insect Biochem. Mol. Biol. 2014;44:23–32. doi: 10.1016/j.ibmb.2013.10.006. PubMed DOI PMC
Birol I, et al. De novo transcriptome assembly with ABySS. Bioinformatics. 2009;25:2872–2877. doi: 10.1093/bioinformatics/btp367. PubMed DOI
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Huang X, Madan A. CAP3: a DNA Sequence Assembly Program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. PubMed DOI PMC
Karim S, et al. A deep insight into the Sialotranscriptome of the Gulf Coast Tick, Amblyomma maculatum. PLoS ONE. 2011;6:e28525. doi: 10.1371/journal.pone.0028525. PubMed DOI PMC
Nielsen H, et al. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. Des. Sel. 1999;12:3–9. doi: 10.1093/protein/12.1.3. PubMed DOI
Sonnhammer EL, et al. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1998;6:175–182. PubMed
Hansen JE, et al. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj. J. 1998;15:115–130. doi: 10.1023/A:1006960004440. PubMed DOI
Katoh K, et al. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinforma. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Kearse M, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evolut. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Trifinopoulos J, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–W235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Kalyaanamoorthy S, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Miller, M. A. et al. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees, Gateway Computing Environments Workshop (GCE). pp. 1–8 (New Orleans, LA, USA, 2010).
Moos M, et al. Cryoprotective metabolites are sourced from both external diet and internal macromolecular reserves during metabolic reprogramming for freeze tolerance in drosophilid fly. Chymomyza costata Metab. 2022;12:163. PubMed PMC
Škodová-Sveráková I, et al. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol. 2021;19:251. doi: 10.1186/s12915-021-01186-y. PubMed DOI PMC
Scarpassa VM, et al. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genomics. 2019;20:166. doi: 10.1186/s12864-019-5545-0. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Nielsen H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 2017;1611:59–73. doi: 10.1007/978-1-4939-7015-5_6. PubMed DOI
Genome sequences of four Ixodes species expands understanding of tick evolution
Fipronil prevents transmission of Lyme disease spirochetes
One health approach to study human health risks associated with Dermanyssus gallinae mites
figshare
10.6084/m9.figshare.22658317, 10.6084/m9.figshare.22658338, 10.6084/m9.figshare.22658386, 10.6084/m9.figshare.22658458