The effect of single and repeated doses of rivastigmine on gastric myoelectric activity in experimental pigs
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37262057
PubMed Central
PMC10234519
DOI
10.1371/journal.pone.0286386
PII: PONE-D-22-10515
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease * MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Electromyography MeSH
- Phenylcarbamates pharmacology MeSH
- Gastrointestinal Tract MeSH
- Infant MeSH
- Humans MeSH
- Rivastigmine pharmacology MeSH
- Stomach * MeSH
- Animals MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Phenylcarbamates MeSH
- Rivastigmine MeSH
BACKGROUND: Rivastigmine is a pseudo-irreversible cholinesterase inhibitor used for therapy of Alzheimer's disease and non-Alzheimer dementia syndromes. In humans, rivastigmine can cause significant gastrointestinal side effects that can limit its clinical use. The aim of this study was to assess the impact of rivastigmine on gastric motor function by means of electrogastrography (EGG) in experimental pigs. METHODS: Six experimental adult female pigs (Sus scrofa f. domestica, hybrids of Czech White and Landrace breeds; 3-month-old; mean weight 30.7 ± 1.2 kg) were enrolled into the study twice and created two experimental groups. In group A, a single intragastric dose of 6 mg rivastigmine hydrogen tartate was administered in the morning to fasting pigs before EGG recording. In group B, rivastigmine was administered to overnight fasting animals in a dietary bolus in the morning for 7 days (6 mg per day). On day 8, an intragastric dose of 12 mg rivastigmine was given in the morning to fasting pigs before EGG. EGG recording was accomplished by means of an EGG standalone system. Recordings from both groups were evaluated in dominant frequency and EGG power (areas of amplitudes). RESULTS: In total, 1,980 one-minute EGG intervals were evaluated. In group A, basal EGG power (median 1290.5; interquartile range 736.5-2330 μV2) was significantly higher in comparison with the power of intervals T6 (882; 577-1375; p = 0.001) and T10 (992.5; 385-2859; p = 0.032). In group B, the dominant frequency increased significantly from basal values (1.97 ± 1.57 cycles per minute) to intervals T9 (3.26 ± 2.16; p < 0.001) and T10 (2.14 ± 1.16; p = 0.012), respectively. In group B, basal EGG power (median 1030.5; interquartile range 549-5093) was significantly higher in comparison with the power of intervals T7 (692.5; 434-1476; p = 0.002) and T8 (799; 435-1463 μV2; p = 0.004). CONCLUSIONS: Both single as well as repeated intragastric administration of rivastigmine hydrogen tartrate caused a significant decrease of EGG power (areas of amplitudes) in experimental pigs. EGG power may serve as an indirect indicator of gastric motor competence. These findings might provide a possible explanation of rivastigmine-associated dyspepsia in humans.
Biomedical Research Centre University Hospital Hradec Kralove Czech Republic
Department of Medicine 1st Faculty of Medicine Charles University Nové Město Czech Republic
Institute of Gastrointestinal Oncology Military University Hospital Praha Praha Czech Republic
Military University Hospital Praha Praha Czech Republic
The Royal Marsden NHS Foundation Trust London United Kingdom
See more in PubMed
Pres D, Alexander M. Cholinesterase inhibitors in the treatment of dementia. UpToDate, Walter: Kluwer, 2022. Available from www.uptodate.com; accessed on 4th April 2022.
PubChem. National Center for Biotechnology Information, 2022. Available from https://pubchem.ncbi.nlm.nih.gov/; accessed on 4th April 2022.
Birks JS, Chong LY, Grimley Evans J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015, 9, CD001191. doi: 10.1002/14651858.CD001191.pub4 PubMed DOI PMC
Fan F, Liu H, Shi X, Ai Y, Liu Q, Cheng Y. The Efficacy and Safety of Alzheimer’s Disease Therapies: An Updated Umbrella Review. J Alzheimers Dis. 2022; 85: 1195–1204. doi: 10.3233/JAD-215423 PubMed DOI
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021; 190: 108352. doi: 10.1016/j.neuropharm.2020.108352 PubMed DOI
Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M. The State of The Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer’s Disease. J Cent Nerv Syst Dis. 2021; 13: 11795735211029113. doi: 10.1177/11795735211029113 PubMed DOI PMC
Jamshidnejad-Tosaramandani T, Kashanian S, Babaei M, Al-Sabri MH, Schiöth HB. The Potential Effect of Insulin on AChE and Its Interactions with Rivastigmine In Vitro. Pharmaceuticals (Basel). 2021; 14: 1136. doi: 10.3390/ph14111136 PubMed DOI PMC
Zemek F, Drtinova L, Nepovimova E, Sepsova V, Korabecny J, Klimes J, et al.. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf. 2014; 13: 759–774. doi: 10.1517/14740338.2014.914168 PubMed DOI
Bures J, Kvetina J, Radochova V, Tacheci I, Peterova E, Herman D, et al.. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One. 2020; 15: e0227781. doi: 10.1371/journal.pone.0227781 PubMed DOI PMC
Bures J, Tacheci I, Kvetina J, Radochova V, Prchal L, Kohoutova D, et al.. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules. 2021; 26: 2160. doi: 10.3390/molecules26082160 PubMed DOI PMC
Bures J, Tacheci I, Kvetina J, Radochova V, Kohoutova D, Valis M, et al.. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel). 2021; 14: 590. doi: 10.3390/ph14060590 PubMed DOI PMC
Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995; 16: 351–380. doi: 10.1002/bdd.2510160502 PubMed DOI
Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res. 2015; 166: 12–27. doi: 10.1016/j.trsl.2015.01.004 PubMed DOI PMC
Kvetina J, Tacheci I, Nobilis M, Kopacova M, Kunes M, Bures J. The importance of wireless capsule endoscopy for research into the intestinal absorption window of 5-aminosalicylic acid in experimental pigs. Curr Pharm Des. 2017; 23: 1873–1876. doi: 10.2174/1381612822666161201145247 PubMed DOI
Bures J, Jun D, Hrabinova M, Tacheci I, Kvetina J, Pavlik M, et al.. Impact of tacrine and 7- methoxytacrine on gastric myoelectrical activity assessed using electrogastrography in experimental pigs. Neuro Endocrinol Lett. 2015; 36, Suppl 1: 150–155. PubMed
Chen JZ, McCallum RW. (Eds.). Electrogastrography. Principles and Applications. Raven Press, New York: 1994.
Koch KL, Stern RM. Handbook of Electrogastrography. Oxford University Press, Oxford: 2004.
Parkman HP, Hasler WL, Barnett JL, Eaker EY, American Motility Society Clinical GI Motility Testing Task Force. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil. 2003; 15: 89–102. PubMed
Bures J, Kvetina J, Tacheci I, Pavlik M, Kunes M, Rejchrt S, et al.. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed. 2015; 13: 273–277.
Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 2009.
Bures J, Kopacova M, Vorisek V, Bukac J, Neumann D, Zivny P, et al.. Correlation of electrogastrography and gastric emptying rate estimated by 13C-octanoic acid breath test in healthy volunteers. Folia Gastroenterol Hepatol. 2007; 5: 5–11. Available from www.pro-folia.org; accessed on 11th March 2023.
Bures J, Kabelac K, Kopacova M, Vorisek V, Siroky M, Palicka V, et al.. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy. Hepatogastroenterology. 2008; 55: 1492–1496. PubMed
Faure C, Wolff VP, Navarro J. Effect of meal and intravenous erythromycin on manometric and electrogastrographic measurements of gastric motor and electrical activity. Dig Dis Sci. 2000; 45: 525–528. doi: 10.1023/a:1005445207628 PubMed DOI
Chen JD, Lin ZY, Edmunds MC 3rd, McCallum RW. Effects of octreotide and erythromycin on gastric myoelectrical and motor activities in patients with gastroparesis. Dig Dis Sci. 1998; 43: 80–89. doi: 10.1023/a:1018876021156 PubMed DOI
Sha W, Pasricha PJ, Chen JD. Correlations among electrogastrogram, gastric dysmotility, and duodenal dysmotility in patients with functional dyspepsia. J Clin Gastroenterol. 2009; 43: 716–722. doi: 10.1097/MCG.0b013e31818b8ed9 PubMed DOI
Egboh SC, Abere S. Gastroparesis: A Multidisciplinary Approach to Management. Cureus. 2022; 14(1): e21295. doi: 10.7759/cureus.21295 PubMed DOI PMC
Usai-Satta P, Bellini M, Morelli O, Geri F, Lai M, Bassotti G. Gastroparesis: New insights into an old disease. World J Gastroenterol. 2020; 26(19): 2333–2348. doi: 10.3748/wjg.v26.i19.2333 PubMed DOI PMC
Nagy K, Fébel H, Bazar G, Grosz G, Gáspár R, Ferenc Szücs K, et al.. Non-invasive smooth muscle electromyography (SMEMG) as a novel monitoring technology of the gastrointestinal tract of awake, free-moving pigs-A pilot study. PLoS One. 2021; 16(9): e0257311. doi: 10.1371/journal.pone.0257311 PubMed DOI PMC
Szucs KF, Nagy A, Grosz G, Tiszai Z, Gaspar R. Correlation between slow-wave myoelectric signals and mechanical contractions in the gastrointestinal tract: Advanced electromyographic method in rats. J Pharmacol Toxicol Methods. 2016; 82: 37–44. doi: 10.1016/j.vascn.2016.07.005 PubMed DOI
Szücs KF, Grosz G, Süle M, Sztojkov-Ivanov A, Ducza E, Márki A, et al.. Detection of stress and the effects of central nervous system depressants by gastrointestinal smooth muscle electromyography in wakeful rats. Life Sci. 2018; 205: 1–8. doi: 10.1016/j.lfs.2018.05.015 PubMed DOI
Pribék IK, Szücs KF, Süle M, Grosz G, Ducza E, Vigh D, et al.. Detection of acute stress by smooth muscle electromyography: A translational study on rat and human. Life Sci. 2021; 77: 119492. PubMed
Angeli TR, Du P, Paskaranandavadivel N, Sathar S, Hall A, Asirvatham SJ, et al.. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface. Neurogastroenterol Motil. 2017; 29(5): 10.1111/nmo.13010. doi: 10.1111/nmo.13010 PubMed DOI PMC
Bekkelund M, Sangnes DA, Gunnar Hatlebakk J, Aabakken L. Pathophysiology of idiopathic gastroparesis and implications for therapy. Scand J Gastroenterol. 2019; 54(1): 8–17. doi: 10.1080/00365521.2018.1558280 PubMed DOI
O’Grady G, Angeli TR, Paskaranandavadivel N, Erickson JC, Wells CI, Gharibans AA, et al.. Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Rev Biomed Eng. 2019; 12: 287–302. doi: 10.1109/RBME.2018.2867555 PubMed DOI
Sukasem A, Calder S, Angeli-Gordon TR, Andrews CN, O’Grady G, Gharibans A, et al.. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array. Biomed Eng Online. 2022; 21(1): 43. doi: 10.1186/s12938-022-01010-w PubMed DOI PMC
Calder S, Cheng LK, Andrews CN, Paskaranandavadivel N, Waite S, Alighaleh S, et al.. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine. Am J Physiol Gastrointest Liver Physiol. 2022; 323(4): G295–G305. doi: 10.1152/ajpgi.00049.2022 PubMed DOI
Gharibans AA, Hayes TCL, Carson DA, Calder S, Varghese C, Du P, et al.. A novel scalable electrode array and system for non-invasively assessing gastric function using flexible electronics. Neurogastroenterol Motil. 2023; 35(2): e14418. doi: 10.1111/nmo.14418 PubMed DOI PMC
Tacheci I, Radochova V, Kvetina J, Rejchrt S, Kopacova M, Bures J. Oesophageal Manometry in Experimental Pigs: Methods and Initial Experience. Acta Medica (Hradec Kralove). 2015; 58: 131–134. doi: 10.14712/18059694.2016.5 PubMed DOI
Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 1998; 20: 634–647. doi: 10.1016/s0149-2918(98)80127-6 PubMed DOI
Gobburu JV, Tammara V, Lesko L, Jhee SS, Sramek JJ, Cutler NR, et al.. Pharmacokinetic-pharmacodynamic modeling of rivastigmine, a cholinesterase inhibitor, in patients with Alzheimer’s disease. J Clin Pharmacol. 2001; 41: 1082–1090. doi: 10.1177/00912700122012689 PubMed DOI
Hossain M, Jhee SS, Shiovitz T, McDonald C, Sedek G, Pommier F, et al.. Estimation of the absolute bioavailability of rivastigmine in patients with mild to moderate dementia of the Alzheimer’s type. Clin Pharmacokinet. 2002; 41: 225–234. doi: 10.2165/00003088-200241030-00006 PubMed DOI
Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al.. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging. 2017; 12: 697–707. doi: 10.2147/CIA.S129145 PubMed DOI PMC
Tse FL, Laplanche R. Absorption, metabolism, and disposition of [14C]SDZ ENA 713, an acetylcholinesterase inhibitor, in minipigs following oral, intravenous, and dermal administration. Pharm Res. 1998; 15: 1614–1620. doi: 10.1023/a:1011919603822 PubMed DOI
Kvetina J, Tacheci I, Pavlik M, Kopacova M, Rejchrt S, Douda T, et al.. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol Res. 2015; 64, Suppl 5: S647–S652. doi: 10.33549/physiolres.933227 PubMed DOI