Serum identification of at-risk MASH: The metabolomics-advanced steatohepatitis fibrosis score (MASEF)

. 2024 Jan 01 ; 79 (1) : 135-148. [epub] 20230724

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37505221
Odkazy

PubMed 37505221
PubMed Central PMC10718221
DOI 10.1097/hep.0000000000000542
PII: 01515467-202401000-00017
Knihovny.cz E-zdroje

BACKGROUND: Early identification of those with NAFLD activity score ≥ 4 and significant fibrosis (≥F2) or at-risk metabolic dysfunction-associated steatohepatitis (MASH) is a priority as these patients are at increased risk for disease progression and may benefit from therapies. We developed and validated a highly specific metabolomics-driven score to identify at-risk MASH. METHODS: We included derivation (n = 790) and validation (n = 565) cohorts from international tertiary centers. Patients underwent laboratory assessment and liver biopsy for metabolic dysfunction-associated steatotic liver disease. Based on 12 lipids, body mass index, aspartate aminotransferase, and alanine aminotransferase, the MASEF score was developed to identify at-risk MASH and compared to the FibroScan-AST (FAST) score. We further compared the performance of a FIB-4 + MASEF algorithm to that of FIB-4 + liver stiffness measurements (LSM) by vibration-controlled transient elastography (VCTE). RESULTS: The diagnostic performance of the MASEF score showed an area under the receiver-operating characteristic curve, sensitivity, specificity, and positive and negative predictive values of 0.76 (95% CI 0.72-0.79), 0.69, 0.74, 0.53, and 0.85 in the derivation cohort, and 0.79 (95% CI 0.75-0.83), 0.78, 0.65, 0.48, and 0.88 in the validation cohort, while FibroScan-AST performance in the validation cohort was 0.74 (95% CI 0.68-0.79; p = 0.064), 0.58, 0.79, 0.67, and 0.73, respectively. FIB-4+MASEF showed similar overall performance compared with FIB-4 + LSM by VCTE ( p = 0.69) to identify at-risk MASH. CONCLUSION: MASEF is a promising diagnostic tool for the assessment of at-risk MASH. It could be used alternatively to LSM by VCTE in the algorithm that is currently recommended by several guidance publications.

Biocruces Bizkaia Health Research Institute Barakaldo Spain

Biodonostia Research Institute Donostia University Hospital University of the Basque Country CIBERehd IKERBASQUE Donostia Spain

CIC bioGUNE Basque Research and Technology Alliance Derio Spain

Clinic University Hospital University of Valladolid Valladolid Spain

Department of Biochemistry and Genetics School of Sciences University of Navarra Pamplona Spain

Department of Gastroenterology School of Medicine Pontificia Universidad Católica de Chile Santiago Chile

Department of Physiology Faculty of Medicine and Nursing University of the Basque Country UPV EHU Leioa Spain

Division of Liver Diseases Icahn School of Medicine at Mount Sinai New York City New York USA

General University Hospital and the 1st Faculty of Medicine Charles University Prague Czech Republic

Gregorio Marañón University Hospital Madrid Spain

Houston Methodist Hospital Houston Research Institute Houston Texas USA

Houston Research Institute Houston Texas USA

Karsh Division of Gastroenterology and Hepatology Cedars Sinai Medical Center Los Angeles CA

Marqués de Valdecilla University Hospital Cantabria University IDIVAL Santander Spain

National Institute for the Study of Liver and Gastrointestinal Diseases Madrid Spain

OWL Metabolomics Derio Spain

Pinnacle Clinical Research San Antonio Texas USA

Príncipe de Asturias University Hospital Alcalá University Madrid Spain

Puerta del Hierro University Hospital Madrid Spain

Translational and Clinical Research Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne United Kingdom

University of Florida Gainesville Florida USA

Valme University Hospital CIBERehd Seville Spain

Virgen del Rocío University Hospital Sevilla Spain

Virginia Commonwealth University Medical Center Richmond Virginia USA

Zobrazit více v PubMed

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. . NAFLD Nomenclature consensus group. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78:1966–86. PubMed

Noureddin M, Vipani A, Bresee C, Todo T, Kim IK, Alkhouri N, et al. . NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol. 2018;113:1649–1659. PubMed PMC

Setiawan VW, Stram DO, Porcel J, Lu SC, Noureddin M, Angeles L, et al. . Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: the Multiethnic Cohort. Hepatology. 2017;64:1969–1977. PubMed PMC

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. . The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–357. PubMed

Sanyal AJ, Van Natta ML, Clark J, Neuschwander-Tetri BA, Diehl A, Dasarathy S, et al. . Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N Engl J Med. 2021;385:1559–1569. PubMed PMC

Hagström H, Nasr P, Ekstedt M, Hammar U, Stål P, Hultcrantz R, et al. . Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol. 2017;67:1265–1273. PubMed

Noureddin M, Muthiah MD, Sanyal AJ. Drug discovery and treatment paradigms in nonalcoholic steatohepatitis. Endocrinol Diabetes Metab. 2020;3:e00105. PubMed PMC

Harrison SA, Ratziu V, Boursier J, Francque S, Bedossa P, Majd Z, et al. . A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020;5:970–985. PubMed

Newsome PN, Sasso M, Deeks JJ, Paredes A, Boursier J, Chan WK, et al. . FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 2020;5:362–373. PubMed PMC

Noureddin M, Truong E, Gornbein JA, Saouaf R, Guindi M, Todo T, et al. . MRI-based (MAST) score accurately identifies patients with NASH and significant fibrosis. J Hepatol. 2022;76:781–787. PubMed

Vali Y, Lee J, Boursier J, Spijker R, Löffler J, Verheij J, et al. . Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J Hepatol. 2020;73:252–262. PubMed

Kanwal F, Shubrook JH, Adams LA, Pfotenhauer K, Wai-Sun Wong V, Wright E, et al. . Clinical care pathway for the risk stratification and management of patients with nonalcoholic fatty liver disease. Gastroenterology. 2021;161:1657–1669. PubMed PMC

Kanwal F, Shubrook JH, Younossi Z, Natarajan Y, Bugianesi E, Rinella ME, et al. . Preparing for the NASH Epidemic: A Call to Action. Diabetes Care. 2021;44:2162–2172. PubMed

Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. . AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77:1797–1835. PubMed PMC

Anstee QM, Lawitz EJ, Alkhouri N, Wong VW-S, Romero-Gomez M, Okanoue T, et al. . Noninvasive tests accurately identify advanced fibrosis due to NASH: Baseline Data From the STELLAR Trials. Hepatology. 2019;70:1521–1530. PubMed

Younossi ZM, Noureddin M, Bernstein D, Kwo P, Russo M, Shiffman ML, et al. . Role of noninvasive tests in clinical gastroenterology practices to identify patients with nonalcoholic steatohepatitis at high risk of adverse outcomes: Expert Panel Recommendations. Am J Gastroenterol. 2021;116:254–262. PubMed

Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, et al. . Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18:835–856. PubMed

Alonso C, Noureddin M, Lu SC, Mato JM. Biomarkers and subtypes of deranged lipid metabolism in nonalcoholic fatty liver disease. World J Gastroenterol. 2019;25:3009–3020. PubMed PMC

Mayo R, Crespo J, Martínez-Arranz I, Banales JM, Arias M, Mincholé I, et al. . Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatol Commun. 2018;2:807–820. PubMed PMC

Moons KGM, Altman DG, Reitsma JB, Ioannidis JA, Macaskill P, Steyerberg EW, et al. . Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Ann Intern Med. 2015;162:1–73. PubMed

Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. Eur Urol. 2015;67:1142–1151. PubMed

Ratziu V, de Guevara L, Safadi R, Poordad F, Fuster F, Flores-Figueroa J, et al. . Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial. Nat Med. 2021;27:1825–1835. PubMed

Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–2474. PubMed

Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. . Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. PubMed

He Z, Yu W. Stable feature selection for biomarker discovery. Comput Biol Chem. 2010;34:215–225. PubMed

Trevor H, Robert T, Jerome F. The Elements of Statistical Learning, 2nd ed. Springer, New York, NY. 2009.

Pedregosa F, Grisel O, Weiss R, Passos A, Brucher M, Varoquax G, et al. . Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825–2830.

McKinney W. Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. Conf. 2010;1:56–61.

Chang D, Truong E, Mena EA, Pacheco F, Wong M, Guindi M, et al. . Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD-related cirrhosis. Hepatology. 2022;77:546–557. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...