Specific microRNAs for Heart Failure: Reference Values in Whole Blood

. 2025 Oct 20 ; 13 (10) : . [epub] 20251020

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41153837

Grantová podpora
05/RVO-FNOs/2018, 12/RVO FNOs/2019 Ministry of Health of the Czech Republic

Background: The objective of this study was to validate reference values for eight selected microRNAs (miRNAs) in a population of healthy individuals. The selected miRNAs (hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-142-5p and hsa-miR-126-3p, hsa-miR-499a-5p, hsa-miR-195-5p, hsa-miR-1-3p, hsa-miR-29a-3p) have an important role in heart failure. Methods: Ninety-nine individuals were selected for this study. Specific microRNAs were isolated from whole blood and quantified using the microRNA enzymatic immunoassay (miREIA) method. Reference intervals were evaluated with respect to age and sex. Statistical analyses were performed using MedCalc (v22.021) and R software, Version 4.1.2. Results: Reference values (2.5th and 97.5th percentile values and their 90% confidence intervals) were determined for hsa-miR-21-5p: 1.45 to 96.3 pmol/L, hsa-miR-23a-3p: 13.0 to 432 pmol/L, hsa-miR-126-3p: 5.67 to 66.5 pmol/L, hsa-miR-142-5p: 37.4 to 293 pmol/L, hsa-miR-195-5p: 11.5 to 254 pmol/L, hsa-miR-1-3p: 50.6 to 1800 pmol/L, hsa-miR-499a-5p: 8.90 to 82.5 pmol/L and hsa-miR-29a-3p: 22.9 to 210 pmol/L. The median age of the included individuals was 44 years (range: 23-75 years). No sex-related differences were observed in the reference intervals of the microRNAs (p < 0.05). Except for hsa-miR-21-5p (RS = -0.208; p = 0.043), no significant age-related associations were found for the other microRNAs (p < 0.05). However, due to the limited number of individuals in the stratified subgroups, reference intervals were not calculated for these subgroups. Conclusions: In this study, reference intervals for eight specific miRNAs associated with heart failure were determined. The results are unique for assessment in further clinical research, given that reference intervals in absolute values have not yet been published.

Zobrazit více v PubMed

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

Wojciechowska A., Braniewska A., Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017;26:865–874. doi: 10.17219/acem/62915. PubMed DOI

Çakmak H.A., Demir M. MicroRNA and Cardiovascular Diseases. Balk. Med. J. 2020;37:60–71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94. PubMed DOI PMC

Gargiulo P., Marzano F., Salvatore M., Esposito G., Bossone E., Perrone-Filardi P. MicroRNAs: Diagnostic, prognostic and therapeutic role in heart failure—A review. ESC Heart Fail. 2023;10:753–761. doi: 10.1002/ehf2.14153. PubMed DOI PMC

Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. PubMed DOI

Sigutova R., Evin L., Stejskal D., Ploticova V., Svagera Z. Specific microRNAs and heart failure: Time for the next step toward application? Biomed. Pap. 2022;166:359–368. doi: 10.5507/bp.2022.028. PubMed DOI

Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC

Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. PubMed DOI PMC

Solberg H.E. International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology (ICSH), Standing Committee on Reference Values. Approved Recommendation (1986) on the theory of reference values. Part 1. The concept of reference values. J. Clin. Chem. Clin. Biochem. 1987;25:337–342. PubMed

Horowitz G.L. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory. 3rd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2010.

R Core Team . R: A Language and Environment for Statistical Computing [Computer Software] R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 12 May 2025)]. version 4.1.2. Available online: https://www.r-project.org/

Stejskal D., Hlozankova M., Sigutova R., Andelova K., Svagera Z., Svestak M. Comparison of a new immunoassay and PCR-based method for quantification of microRNAs in whole blood. A pilot methodical study. Biomed. Pap. 2019;163:39–44. doi: 10.5507/bp.2018.080. PubMed DOI

Krepelkova I., Mrackova T., Izakova J., Dvorakova B., Chalupova L., Mikulik R., Slaby O., Bartos M., Ruzicka V. Evaluation of miRNA detection methods for the analytical characteristic necessary for clinical utilization. Biotechniques. 2019;66:277–284. doi: 10.2144/btn-2019-0021. PubMed DOI

Townsend N., Kazakiewicz D., Wright F.L., Timmis A., Huculeci R., Torbica A., Gale C.P., Achenbach S., Weidinger F., Vardas P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022;19:133–143. doi: 10.1038/s41569-021-00607-3. PubMed DOI

Kuai Z., Ma Y., Gao W., Zhang X., Wang X., Ye Y., Zhang X., Yuan J. Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis. Heliyon. 2024;10:e37929. doi: 10.1016/j.heliyon.2024.e37929. PubMed DOI PMC

Severino P., Mancone M., D’Amato A., Mariani M.V., Prosperi S., Alunni Fegatelli D., Birtolo L.I., Angotti D., Milanese A., Cerrato E., et al. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score. ESC Heart Fail. 2024;11:390–399. doi: 10.1002/ehf2.14594. PubMed DOI PMC

Florio M.C., Magenta A., Beji S., Lakatta E.G., Capogrossi M.C. Aging, MicroRNAs, and Heart Failure. Curr. Probl. Cardiol. 2020;45:100406. doi: 10.1016/j.cpcardiol.2018.12.003. PubMed DOI PMC

Bang C., Batkai S., Dangwal S., Gupta S.K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 2014;124:2136–2146. doi: 10.1172/JCI70577. PubMed DOI PMC

Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI

Roncarati R., Viviani Anselmi C., Losi M.A., Papa L., Cavarretta E., Da Costa Martins P., Contaldi C., Saccani Jotti G., Franzone A., Galastri L., et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2014;63:920–927. doi: 10.1016/j.jacc.2013.09.041. PubMed DOI

Silverman M.G., Yeri A., Moorthy M.V., Camacho Garcia F., Chatterjee N.A., Glinge C.S.A., Tfelt-Hansen J., Salvador A.M., Pico A.R., Shah R., et al. Circulating miRNAs and Risk of Sudden Death in Patients With Coronary Heart Disease. JACC Clin. Electrophysiol. 2020;6:70–79. doi: 10.1016/j.jacep.2019.08.011. PubMed DOI PMC

Li M., Chen X., Chen L., Chen K., Zhou J., Song J. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl. Med. 2018;16:161. doi: 10.1186/s12967-018-1534-3. PubMed DOI PMC

Rincón L.M., Rodríguez-Serrano M., Conde E., Lanza V.F., Sanmartín M., González-Portilla P., Paz-García M., Del Rey J.M., Menacho M., García Bermejo M.L., et al. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail. 2022;9:3367–3379. doi: 10.1002/ehf2.13919. PubMed DOI PMC

Jiao M., You H.-Z., Yang X.-Y., Yuan H., Li Y.-L., Liu W.-X., Jin M., Du J. Circulating microRNA signature for the diagnosis of childhood dilated cardiomyopathy. Sci. Rep. 2018;8:724. doi: 10.1038/s41598-017-19138-4. PubMed DOI PMC

Grau-Perez M., Martinez-Arroyo O., Rubia-Martinez M., Flores-Chova A., Rodriguez-Hernandez Z., Fernández-Navarro P., Gonzalez-Neira A., Alonso M.R., Pita G., Pineda S., et al. Association of miR-126-3p, miR-1260b and miR-374a-5p with the incidence of heart failure in a population-based cohort: The Hortega Follow-Up Study. Eur. J. Intern. Med. 2025;135:118–125. doi: 10.1016/j.ejim.2025.03.022. PubMed DOI

Gallo A., Agnese V., Sciacca S., Scardulla C., Cipriani M., Pilato M., Oh J.K., Pasta S., Maalouf J., Conaldi P.G., et al. MicroRNA-30d and -483-3p for bi-ventricular remodelling and miR-126-3p for pulmonary hypertension in advanced heart failure. ESC Heart Fail. 2024;11:155–166. doi: 10.1002/ehf2.14546. PubMed DOI PMC

Fan X., Yang G., Wang Y., Shi H., Nitschke K., Sattler K., Abumayyaleh M., Cyganek L., Nuhn P., Worst T., et al. Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: A novel mechanism in Takotsubo cardiomyopathy. Stem. Cell Res. Ther. 2025;16:36. doi: 10.1186/s13287-025-04157-0. PubMed DOI PMC

Baulina N., Pisklova M., Kiselev I., Chumakova O., Zateyshchikov D., Favorova O. Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2022;23:3791. doi: 10.3390/ijms23073791. PubMed DOI PMC

Wang L., Qin D., Shi H., Zhang Y., Li H., Han Q. MiR-195-5p Promotes Cardiomyocyte Hypertrophy by Targeting MFN2 and FBXW7. BioMed Res. Int. 2019;2019:1580982. doi: 10.1155/2019/1580982. PubMed DOI PMC

Xuan L., Zhu Y., Liu Y., Yang H., Wang S., Li Q., Yang C., Jiao L., Zhang Y., Yang B., et al. Up-regulation of miR-195 contributes to cardiac hypertrophy-induced arrhythmia by targeting calcium and potassium channels. J. Cell. Mol. Med. 2021;25:1801. doi: 10.1111/jcmm.15431. PubMed DOI PMC

Wan J., Ling X., Peng B., Ding G. miR-142-5p regulates CD4+ T cells in human non-small cell lung cancer through PD-L1 expression via the PTEN pathway. Oncol. Rep. 2018;40:272–282. doi: 10.3892/or.2018.6439. PubMed DOI PMC

Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., Mayr A., Weger S., Oberhollenzer F., Bonora E., et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010;107:810–817. doi: 10.1161/CIRCRESAHA.110.226357. PubMed DOI

Dimmeler S., Zeiher A.M. Circulating microRNAs: Novel biomarkers for cardiovascular diseases? Eur. Heart J. 2010;31:2705–2707. doi: 10.1093/eurheartj/ehq221. PubMed DOI

Schober A., Blay R.M., Maleki S.S., Zahedi F., Winklmaier A.E., Kakar M.Y., Baatsch I.M., Zhu M., Geißler C., Fusco A.E., et al. MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions. Circulation. 2021;144:1059–1073. doi: 10.1161/CIRCULATIONAHA.120.051614. PubMed DOI

Tan X., Zhang P., Zhou L., Yin B., Pan H., Peng X. Clock-controlled miR-142-3p can target its activator, Bmal1. BMC Mol. Biol. 2012;13:27. doi: 10.1186/1471-2199-13-27. PubMed DOI PMC

Zhao X., Zhu X., Cheng S., Xie Y., Wang Z., Liu Y., Jiang Z., Xiao J., Guo H., Wang Y., et al. MiR-29a/b/c regulate human circadian gene hPER1 expression by targeting its 3′UTR. Acta Biochim. Biophys. Sin. 2014;46:313–317. doi: 10.1093/abbs/gmu007. PubMed DOI

Schneider S.I.d.R., Silvello D., Martinelli N.C., Garbin A., Biolo A., Clausell N., Andrades M., dos Santos K.G., Rohde L.E. Plasma levels of microRNA-21, -126 and -423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol. Med. Rep. 2018;17:4736–4746. doi: 10.3892/mmr.2018.8428. PubMed DOI

Hromádka M., Černá V., Pešta M., Kučerová A., Jarkovský J., Rajdl D., Rokyta R., Moťovská Z. Prognostic value of microRNAs in patients after myocardial infarction: A substudy of PRAGUE-18. Dis. Markers. 2019;2019:2925019. doi: 10.1155/2019/2925019. PubMed DOI PMC

Van Rooij E., Sutherland L.B., Thatcher J.E., DiMaio J.M., Naseem R.H., Marshall W.S., Hill J.A., Olson E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA. 2008;105:13027–13032. doi: 10.1073/pnas.0805038105. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...