Specific microRNAs for Heart Failure: Reference Values in Whole Blood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
05/RVO-FNOs/2018, 12/RVO FNOs/2019
Ministry of Health of the Czech Republic
PubMed
41153837
PubMed Central
PMC12561492
DOI
10.3390/biomedicines13102559
PII: biomedicines13102559
Knihovny.cz E-zdroje
- Klíčová slova
- heart failure, miRNA (microRNA), microRNA enzymatic immunoassay (miREIA) method, reference values,
- Publikační typ
- časopisecké články MeSH
Background: The objective of this study was to validate reference values for eight selected microRNAs (miRNAs) in a population of healthy individuals. The selected miRNAs (hsa-miR-21-5p, hsa-miR-23a-3p, hsa-miR-142-5p and hsa-miR-126-3p, hsa-miR-499a-5p, hsa-miR-195-5p, hsa-miR-1-3p, hsa-miR-29a-3p) have an important role in heart failure. Methods: Ninety-nine individuals were selected for this study. Specific microRNAs were isolated from whole blood and quantified using the microRNA enzymatic immunoassay (miREIA) method. Reference intervals were evaluated with respect to age and sex. Statistical analyses were performed using MedCalc (v22.021) and R software, Version 4.1.2. Results: Reference values (2.5th and 97.5th percentile values and their 90% confidence intervals) were determined for hsa-miR-21-5p: 1.45 to 96.3 pmol/L, hsa-miR-23a-3p: 13.0 to 432 pmol/L, hsa-miR-126-3p: 5.67 to 66.5 pmol/L, hsa-miR-142-5p: 37.4 to 293 pmol/L, hsa-miR-195-5p: 11.5 to 254 pmol/L, hsa-miR-1-3p: 50.6 to 1800 pmol/L, hsa-miR-499a-5p: 8.90 to 82.5 pmol/L and hsa-miR-29a-3p: 22.9 to 210 pmol/L. The median age of the included individuals was 44 years (range: 23-75 years). No sex-related differences were observed in the reference intervals of the microRNAs (p < 0.05). Except for hsa-miR-21-5p (RS = -0.208; p = 0.043), no significant age-related associations were found for the other microRNAs (p < 0.05). However, due to the limited number of individuals in the stratified subgroups, reference intervals were not calculated for these subgroups. Conclusions: In this study, reference intervals for eight specific miRNAs associated with heart failure were determined. The results are unique for assessment in further clinical research, given that reference intervals in absolute values have not yet been published.
Zobrazit více v PubMed
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Wojciechowska A., Braniewska A., Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017;26:865–874. doi: 10.17219/acem/62915. PubMed DOI
Çakmak H.A., Demir M. MicroRNA and Cardiovascular Diseases. Balk. Med. J. 2020;37:60–71. doi: 10.4274/balkanmedj.galenos.2020.2020.1.94. PubMed DOI PMC
Gargiulo P., Marzano F., Salvatore M., Esposito G., Bossone E., Perrone-Filardi P. MicroRNAs: Diagnostic, prognostic and therapeutic role in heart failure—A review. ESC Heart Fail. 2023;10:753–761. doi: 10.1002/ehf2.14153. PubMed DOI PMC
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128. PubMed DOI
Sigutova R., Evin L., Stejskal D., Ploticova V., Svagera Z. Specific microRNAs and heart failure: Time for the next step toward application? Biomed. Pap. 2022;166:359–368. doi: 10.5507/bp.2022.028. PubMed DOI
Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–D144. doi: 10.1093/nar/gkj112. PubMed DOI PMC
Solberg H.E. International Federation of Clinical Chemistry (IFCC), Scientific Committee, Clinical Section, Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology (ICSH), Standing Committee on Reference Values. Approved Recommendation (1986) on the theory of reference values. Part 1. The concept of reference values. J. Clin. Chem. Clin. Biochem. 1987;25:337–342. PubMed
Horowitz G.L. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory. 3rd ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2010.
R Core Team . R: A Language and Environment for Statistical Computing [Computer Software] R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 12 May 2025)]. version 4.1.2. Available online: https://www.r-project.org/
Stejskal D., Hlozankova M., Sigutova R., Andelova K., Svagera Z., Svestak M. Comparison of a new immunoassay and PCR-based method for quantification of microRNAs in whole blood. A pilot methodical study. Biomed. Pap. 2019;163:39–44. doi: 10.5507/bp.2018.080. PubMed DOI
Krepelkova I., Mrackova T., Izakova J., Dvorakova B., Chalupova L., Mikulik R., Slaby O., Bartos M., Ruzicka V. Evaluation of miRNA detection methods for the analytical characteristic necessary for clinical utilization. Biotechniques. 2019;66:277–284. doi: 10.2144/btn-2019-0021. PubMed DOI
Townsend N., Kazakiewicz D., Wright F.L., Timmis A., Huculeci R., Torbica A., Gale C.P., Achenbach S., Weidinger F., Vardas P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022;19:133–143. doi: 10.1038/s41569-021-00607-3. PubMed DOI
Kuai Z., Ma Y., Gao W., Zhang X., Wang X., Ye Y., Zhang X., Yuan J. Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis. Heliyon. 2024;10:e37929. doi: 10.1016/j.heliyon.2024.e37929. PubMed DOI PMC
Severino P., Mancone M., D’Amato A., Mariani M.V., Prosperi S., Alunni Fegatelli D., Birtolo L.I., Angotti D., Milanese A., Cerrato E., et al. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score. ESC Heart Fail. 2024;11:390–399. doi: 10.1002/ehf2.14594. PubMed DOI PMC
Florio M.C., Magenta A., Beji S., Lakatta E.G., Capogrossi M.C. Aging, MicroRNAs, and Heart Failure. Curr. Probl. Cardiol. 2020;45:100406. doi: 10.1016/j.cpcardiol.2018.12.003. PubMed DOI PMC
Bang C., Batkai S., Dangwal S., Gupta S.K., Foinquinos A., Holzmann A., Just A., Remke J., Zimmer K., Zeug A., et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 2014;124:2136–2146. doi: 10.1172/JCI70577. PubMed DOI PMC
Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI
Roncarati R., Viviani Anselmi C., Losi M.A., Papa L., Cavarretta E., Da Costa Martins P., Contaldi C., Saccani Jotti G., Franzone A., Galastri L., et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2014;63:920–927. doi: 10.1016/j.jacc.2013.09.041. PubMed DOI
Silverman M.G., Yeri A., Moorthy M.V., Camacho Garcia F., Chatterjee N.A., Glinge C.S.A., Tfelt-Hansen J., Salvador A.M., Pico A.R., Shah R., et al. Circulating miRNAs and Risk of Sudden Death in Patients With Coronary Heart Disease. JACC Clin. Electrophysiol. 2020;6:70–79. doi: 10.1016/j.jacep.2019.08.011. PubMed DOI PMC
Li M., Chen X., Chen L., Chen K., Zhou J., Song J. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J. Transl. Med. 2018;16:161. doi: 10.1186/s12967-018-1534-3. PubMed DOI PMC
Rincón L.M., Rodríguez-Serrano M., Conde E., Lanza V.F., Sanmartín M., González-Portilla P., Paz-García M., Del Rey J.M., Menacho M., García Bermejo M.L., et al. Serum microRNAs are key predictors of long-term heart failure and cardiovascular death after myocardial infarction. ESC Heart Fail. 2022;9:3367–3379. doi: 10.1002/ehf2.13919. PubMed DOI PMC
Jiao M., You H.-Z., Yang X.-Y., Yuan H., Li Y.-L., Liu W.-X., Jin M., Du J. Circulating microRNA signature for the diagnosis of childhood dilated cardiomyopathy. Sci. Rep. 2018;8:724. doi: 10.1038/s41598-017-19138-4. PubMed DOI PMC
Grau-Perez M., Martinez-Arroyo O., Rubia-Martinez M., Flores-Chova A., Rodriguez-Hernandez Z., Fernández-Navarro P., Gonzalez-Neira A., Alonso M.R., Pita G., Pineda S., et al. Association of miR-126-3p, miR-1260b and miR-374a-5p with the incidence of heart failure in a population-based cohort: The Hortega Follow-Up Study. Eur. J. Intern. Med. 2025;135:118–125. doi: 10.1016/j.ejim.2025.03.022. PubMed DOI
Gallo A., Agnese V., Sciacca S., Scardulla C., Cipriani M., Pilato M., Oh J.K., Pasta S., Maalouf J., Conaldi P.G., et al. MicroRNA-30d and -483-3p for bi-ventricular remodelling and miR-126-3p for pulmonary hypertension in advanced heart failure. ESC Heart Fail. 2024;11:155–166. doi: 10.1002/ehf2.14546. PubMed DOI PMC
Fan X., Yang G., Wang Y., Shi H., Nitschke K., Sattler K., Abumayyaleh M., Cyganek L., Nuhn P., Worst T., et al. Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: A novel mechanism in Takotsubo cardiomyopathy. Stem. Cell Res. Ther. 2025;16:36. doi: 10.1186/s13287-025-04157-0. PubMed DOI PMC
Baulina N., Pisklova M., Kiselev I., Chumakova O., Zateyshchikov D., Favorova O. Circulating miR-499a-5p Is a Potential Biomarker of MYH7-Associated Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2022;23:3791. doi: 10.3390/ijms23073791. PubMed DOI PMC
Wang L., Qin D., Shi H., Zhang Y., Li H., Han Q. MiR-195-5p Promotes Cardiomyocyte Hypertrophy by Targeting MFN2 and FBXW7. BioMed Res. Int. 2019;2019:1580982. doi: 10.1155/2019/1580982. PubMed DOI PMC
Xuan L., Zhu Y., Liu Y., Yang H., Wang S., Li Q., Yang C., Jiao L., Zhang Y., Yang B., et al. Up-regulation of miR-195 contributes to cardiac hypertrophy-induced arrhythmia by targeting calcium and potassium channels. J. Cell. Mol. Med. 2021;25:1801. doi: 10.1111/jcmm.15431. PubMed DOI PMC
Wan J., Ling X., Peng B., Ding G. miR-142-5p regulates CD4+ T cells in human non-small cell lung cancer through PD-L1 expression via the PTEN pathway. Oncol. Rep. 2018;40:272–282. doi: 10.3892/or.2018.6439. PubMed DOI PMC
Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M., Mayr A., Weger S., Oberhollenzer F., Bonora E., et al. Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circ. Res. 2010;107:810–817. doi: 10.1161/CIRCRESAHA.110.226357. PubMed DOI
Dimmeler S., Zeiher A.M. Circulating microRNAs: Novel biomarkers for cardiovascular diseases? Eur. Heart J. 2010;31:2705–2707. doi: 10.1093/eurheartj/ehq221. PubMed DOI
Schober A., Blay R.M., Maleki S.S., Zahedi F., Winklmaier A.E., Kakar M.Y., Baatsch I.M., Zhu M., Geißler C., Fusco A.E., et al. MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions. Circulation. 2021;144:1059–1073. doi: 10.1161/CIRCULATIONAHA.120.051614. PubMed DOI
Tan X., Zhang P., Zhou L., Yin B., Pan H., Peng X. Clock-controlled miR-142-3p can target its activator, Bmal1. BMC Mol. Biol. 2012;13:27. doi: 10.1186/1471-2199-13-27. PubMed DOI PMC
Zhao X., Zhu X., Cheng S., Xie Y., Wang Z., Liu Y., Jiang Z., Xiao J., Guo H., Wang Y., et al. MiR-29a/b/c regulate human circadian gene hPER1 expression by targeting its 3′UTR. Acta Biochim. Biophys. Sin. 2014;46:313–317. doi: 10.1093/abbs/gmu007. PubMed DOI
Schneider S.I.d.R., Silvello D., Martinelli N.C., Garbin A., Biolo A., Clausell N., Andrades M., dos Santos K.G., Rohde L.E. Plasma levels of microRNA-21, -126 and -423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol. Med. Rep. 2018;17:4736–4746. doi: 10.3892/mmr.2018.8428. PubMed DOI
Hromádka M., Černá V., Pešta M., Kučerová A., Jarkovský J., Rajdl D., Rokyta R., Moťovská Z. Prognostic value of microRNAs in patients after myocardial infarction: A substudy of PRAGUE-18. Dis. Markers. 2019;2019:2925019. doi: 10.1155/2019/2925019. PubMed DOI PMC
Van Rooij E., Sutherland L.B., Thatcher J.E., DiMaio J.M., Naseem R.H., Marshall W.S., Hill J.A., Olson E.N. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA. 2008;105:13027–13032. doi: 10.1073/pnas.0805038105. PubMed DOI PMC