Minimal residual disease assessment in B-cell precursor acute lymphoblastic leukemia by semi-automated identification of normal hematopoietic cells: A EuroFlow study

. 2024 Jul ; 106 (4) : 252-263. [epub] 20230922

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid37740440

Grantová podpora
Fondo Europeo de Desarrollo Regional (FEDER)
LSHB-CT-2006-018708 European Commission
CB16/12/00400 CIBERONC
PI19/01183 Instituto de Salud Carlos III (ISCIII)
NU20J-07-00028 Ministry of Health of the Czech Republic
LX22NPO5102 National Institute for Cancer Research
European Union - Next Generation EU
DJCLS R 15/11 Deutsche José Carreras Leukämie-Stiftung
DJCLS 06R/2019 Deutsche José Carreras Leukämie-Stiftung
PCN-1-075/K/1/K Medical Univeristy of Silesia
Fondazione M. Tettamanti M. De Marchi ONLUS

Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating & Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.

Zobrazit více v PubMed

Bueno, C., Barrera, S., Bataller, A., Ortiz‐Maldonado, V., Elliot, N., O'Byrne, S., Wang, G., Rovira, M., Gutierrez‐Aguera, F., Trincado, J. L., Gonzalez‐Gonzalez, M., Morgades, M., Sorigue, M., Barcena, P., Zanetti, S. R., Torrebadell, M., Vega‐Garcia, N., Rives, S., Mallo, M., … Menendez, P. (2022). CD34+CD19‐CD22+ B‐cell progenitors may underlie phenotypic escape in patients treated with CD19‐directed therapies. Blood, 140, 38–44.

Cherian, S., Miller, V., McCullouch, V., Dougherty, K., Fromm, J. R., & Wood, B. L. (2018). A novel flow cytometric assay for detection of residual disease in patients with B‐lymphoblastic leukemia/lymphoma post anti‐CD19 therapy. Cytometry. Part B, Clinical Cytometry, 94, 112–120.

Comans‐Bitter, W. M., de Groot, R., van den Beemd, R., Neijens, H. J., Hop, W. C., Groeneveld, K., Hooijkaas, H., & van Dongen, J. J. M. (1997). Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. The Journal of Pediatrics, 130, 388–393.

DiGiuseppe, J. A., Tadmor, M. D., & Pe'er, D. (2015). Detection of minimal residual disease in B lymphoblastic leukemia using viSNE. Cytometry. Part B, Clinical Cytometry, 88, 294–304.

Fallati, A., Di Marzo, N., D'Amico, G., & Dander, E. (2022). Mesenchymal stromal cells (MSCs): An ally of B‐cell acute lymphoblastic leukemia (B‐ALL) cells in disease maintenance and progression within the bone marrow hematopoietic niche. Cancers (Basel), 14, 14.

Fiser, K., Sieger, T., Schumich, A., Wood, B., Irving, J., Mejstrikova, E., & Dworzak, M. N. (2012). Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry Part A, 81, 25–34.

Flores‐Montero, J., Grigore, G., Fluxa, R., Hernandez, J., Fernandez, P., Almeida, J., Munoz, N., Bottcher, S., Sedek, L., van der Velden, V. H. J., Barrena, S., Hernandez, A., Paiva, B., Lecrevisse, Q., Lima, M., Santos, A. H., van Dongen, J. J. M., & Orfao, A. (2019). EuroFlow lymphoid screening tube (LST) data base for automated identification of blood lymphocyte subsets. Journal of Immunological Methods, 475, 112662.

Flores‐Montero, J., Sanoja‐Flores, L., Paiva, B., Puig, N., Garcia‐Sanchez, O., Bottcher, S., van der Velden, V. H. J., Perez‐Moran, J. J., Vidriales, M. B., Garcia‐Sanz, R., Jimenez, C., Gonzalez, M., Martinez‐Lopez, J., Corral‐Mateos, A., Grigore, G. E., Fluxa, R., Pontes, R., Caetano, J., Sedek, L., … Orfao, A. (2017). Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia, 31, 2094–2103.

Gaipa, G., Basso, G., Biondi, A., & Campana, D. (2013). Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry. Part B, Clinical Cytometry, 84, 359–369.

Harris, K., LaBelle, J. L., & Bishop, M. R. (2021). Current status of CAR T cell therapy for leukemias. Current Treatment Options in Oncology, 22, 62.

Heldrup, J., Kalm, O., & Prellner, K. (1992). Blood T and B lymphocyte subpopulations in healthy infants and children. Acta Paediatrica, 81, 125–132.

Lhermitte, L., Barreau, S., Morf, D., Fernandez, P., Grigore, G., Barrena, S., de Bie, M., Flores‐Montero, J., Bruggemann, M., Mejstrikova, E., Nierkens, S., Burgos, L., Caetano, J., Gaipa, G., Buracchi, C., da Costa, E. S., Sedek, L., Szczepanski, T., Aanei, C. M., … van der Velden, V. H. J. (2021). Automated identification of leukocyte subsets improves standardization of database‐guided expert‐supervised diagnostic orientation in acute leukemia: A EuroFlow study. Modern Pathology, 34, 59–69.

Libert, D., Yuan, C. M., Masih, K. E., Galera, P., Salem, D., Shalabi, H., Yates, B., Delbrook, C., Shern, J. F., Fry, T. J., Khan, J., Stetler‐Stevenson, M., & Shah, N. N. (2020). Serial evaluation of CD19 surface expression in pediatric B‐cell malignancies following CD19‐targeted therapy. Leukemia, 34, 3064–3069.

Lin, S. C., Chou, C. C., Tsai, M. J., Wu, K. H., Huang, M. T., Wang, L. H., & Chiang, B. L. (1998). Age‐related changes in blood lymphocyte subsets of Chinese children. Pediatric Allergy and Immunology, 9, 215–220.

Linskens, E., Diks, A. M., Neirinck, J., Perez‐Andres, M., De Maertelaere, E., Berkowska, M. A., Kerre, T., Hofmans, M., Orfao, A., van Dongen, J. J. M., Haerynck, F., Philippe, J., & Bonroy, C. (2020). Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software‐based automated gating. Frontiers in Immunology, 11, 584646.

Lu, W., Wei, Y., Cao, Y., Xiao, X., Li, Q., Lyu, H., Jiang, Y., Zhang, H., Li, X., Jiang, Y., Meng, J., Yuan, T., Zhu, H., He, X., Jin, X., Sun, R., Sui, T., Liu, K., & Zhao, M. (2021). CD19 CAR‐T cell treatment conferred sustained remission in B‐ALL patients with minimal residual disease. Cancer Immunology, Immunotherapy, 70, 3501–3511.

Lucio, P., Parreira, A., van den Beemd, M. W., van Lochem, E. G., van Wering, E. R., Baars, E., Porwit‐MacDonald, A., Bjorklund, E., Gaipa, G., Biondi, A., Orfao, A., Janossy, G., van Dongen, J. J. M., & San Miguel, J. F. (1999). Flow cytometric analysis of normal B cell differentiation: A frame of reference for the detection of minimal residual disease in precursor‐B‐ALL. Leukemia, 13, 419–427.

Maurer‐Granofszky, M., Schumich, A., Buldini, B., Gaipa, G., Kappelmayer, J., Mejstrikova, E., Karawajew, L., Rossi, J., Suzan, A. C., Agriello, E., Anastasiou‐Grenzelia, T., Barcala, V., Barna, G., Batinic, D., Bourquin, J. P., Bruggemann, M., Bukowska‐Strakova, K., Burnusuzov, H., Carelli, D., … Dworzak, M. N. (2021). An extensive quality control and quality assurance (QC/QA) program significantly improves inter‐laboratory concordance rates of flow‐cytometric minimal residual disease assessment in acute lymphoblastic leukemia: An I‐BFM‐FLOW‐network report. Cancers (Basel), 13, 6148.

Mikhailova, E., Itov, A., Zerkalenkova, E., Roumiantseva, J., Olshanskaya, Y., Karachunskiy, A., Novichkova, G., Maschan, M., & Popov, A. (2022). B‐lineage antigens that are useful to substitute CD19 for minimal residual disease monitoring in B cell precursor acute lymphoblastic leukemia after CD19 targeting. Cytometry. Part B, Clinical Cytometry, 102, 353–359.

Mikhailova, E., Semchenkova, A., Illarionova, O., Kashpor, S., Brilliantova, V., Zakharova, E., Zerkalenkova, E., Zangrando, A., Bocharova, N., Shelikhova, L., Diakonova, Y., Zhogov, V., Khismatullina, R., Molostova, O., Buldini, B., Raykina, E., Larin, S., Olshanskaya, Y., Miakova, N., … Popov, A. M. (2021). Relative expansion of CD19‐negative very‐early normal B‐cell precursors in children with acute lymphoblastic leukaemia after CD19 targeting by blinatumomab and CAR‐T cell therapy: Implications for flow cytometric detection of minimal residual disease. British Journal of Haematology, 193, 602–612.

Oliveira, E., Costa, E. S., Ciudad, J., Gaipa, G., Sedek, L., Barrena, S., Szczepanski, T., Buracchi, C., Silvestri, D., Siqueira, P. F. R., Mello, F. V., Torres, R. C., Oliveira, L. M. R., Fay‐Neves, I. V. C., Sonneveld, E., van der Velden, V. H. J., Mejstrikova, E., Ribera, J. M., Conter, V., … Orfao, A. (2022). Bone marrow stromal cell regeneration profile in treated B‐cell precursor acute lymphoblastic leukemia patients: Association with MRD status and patient outcome. Cancers (Basel), 14, 3088.

Orfao, A., Matarraz, S., Perez‐Andres, M., Almeida, J., Teodosio, C., Berkowska, M. A., van Dongen, J. J. M., & EuroFlow. (2019). Immunophenotypic dissection of normal hematopoiesis. Journal of Immunological Methods, 475, 112684.

Pedreira, C. E., Costa, E. S., Lecrevisse, Q., van Dongen, J. J., Orfao, A., & EuroFlow, C. (2013). Overview of clinical flow cytometry data analysis: Recent advances and future challenges. Trends in Biotechnology, 31, 415–425.

Pedreira, C. E., Costa, E. S. D., Lecrevise, Q., Grigore, G., Fluxa, R., Verde, J., Hernandez, J., van Dongen, J. J. M., Orfao, A., & EuroFlow. (2019). From big flow cytometry datasets to smart diagnostic strategies: The EuroFlow approach. Journal of Immunological Methods, 475, 112631.

Pont, J., Souvignet, A., Campos, L., Plesa, A., Bulabois, B., Pernollet, M., Raskovalova, T., Dumestre‐Perard, C., Cesbron, J. Y., & Jacob, M. C. (2018). Accurate quantification of fourteen normal bone marrow cell subsets in infants to the elderly by flow cytometry. Cytometry. Part B, Clinical Cytometry, 94, 627–636.

Reiter, M., Diem, M., Schumich, A., Maurer‐Granofszky, M., Karawajew, L., Rossi, J. G., Ratei, R., Groeneveld‐Krentz, S., Sajaroff, E. O., Suhendra, S., Kampel, M., & Dworzak, M. N. (2019). Automated flow cytometric MRD assessment in childhood acute B‐lymphoblastic leukemia using supervised machine learning. Cytometry Part A, 95, 966–975.

Rodriguez, R. F., de Matos Correia, J. A., & Herrero, J. B. (2017). Method of digital information classification patent US10133962B2.

Shopsowitz, K. E., Liu, L., Setiadi, A., Al‐Bakri, M., & Vercauteren, S. (2022). Machine learning optimized multiparameter radar plots for B‐cell acute lymphoblastic leukemia minimal residual disease analysis. Cytometry. Part B, Clinical Cytometry, 102, 342–352.

Singh, H., Manuri, P. R., Olivares, S., Dara, N., Dawson, M. J., Huls, H., Hackett, P. B., Kohn, D. B., Shpall, E. J., Champlin, R. E., & Cooper, L. J. (2008). Redirecting specificity of T‐cell populations for CD19 using the sleeping beauty system. Cancer Research, 68, 2961–2971.

Theunissen, P., Mejstrikova, E., Sedek, L., van der Sluijs‐Gelling, A. J., Gaipa, G., Bartels, M., Sobral da Costa, E., Kotrova, M., Novakova, M., Sonneveld, E., Buracchi, C., Bonaccorso, P., Oliveira, E., Te Marvelde, J. G., Szczepanski, T., Lhermitte, L., Hrusak, O., Lecrevisse, Q., Grigore, G. E., … van der Velden, V. H. J. (2017). Standardized flow cytometry for highly sensitive MRD measurements in B‐cell acute lymphoblastic leukemia. Blood, 129, 347–357.

van Dongen, J. J. M., van der Velden, V. H. J., Bruggemann, M., & Orfao, A. (2015). Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood, 125, 3996–4009.

Verbeek, M. W. C., Buracchi, C., Laqua, A., Nierkens, S., Sedek, L., Flores‐Montero, J., Hofmans, M., Sobral de Costa, E., Novakova, M., Mejstrikova, E., Barrena, S., Kohlscheen, S., Szczepanowski, M., Kulis, J., Oliveira, E., Jugooa, R., de Jong, A. X., Szczepanski, T., Philippe, J., … van Dongen, J. J. M. (2022). Flow cytometric minimal residual disease assessment in B‐cell precursor acute lymphoblastic leukaemia patients treated with CD19‐targeted therapies—A EuroFlow study. British Journal of Haematology, 197, 76–81.

Wodlinger, M., Reiter, M., Weijler, L., Maurer‐Granofszky, M., Schumich, A., Sajaroff, E. O., Groeneveld‐Krentz, S., Rossi, J. G., Karawajew, L., Ratei, R., & Dworzak, M. N. (2022). Automated identification of cell populations in flow cytometry data with transformers. Computers in Biology and Medicine, 144, 105314.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...