Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture

. 2023 Sep 27 ; 24 (19) : . [epub] 20230927

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37834088

Grantová podpora
075-15-2021-585 Ministry of Science and Higher Education of the Russian Federation
23-73-10091 Russian Science Foundation

We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.

Zobrazit více v PubMed

Desiraju G.R., Ho P.S., Kloo L., Legon A.C., Marquardt R., Metrangolo P., Politzer P., Resnati G., Rissanen K. Definition of the Halogen Bond (IUPAC Recommendations 2013) Pure Appl. Chem. 2013;85:1711–1713. doi: 10.1351/PAC-REC-12-05-10. DOI

Cavallo G., Metrangolo P., Milani R., Pilati T., Priimagi A., Resnati G., Terraneo G. The Halogen Bond. Chem. Rev. 2016;116:2478–2601. doi: 10.1021/acs.chemrev.5b00484. PubMed DOI PMC

Zhao Y., Cotelle Y., Sakai N., Matile S. Unorthodox Interactions at Work. J. Am. Chem. Soc. 2016;138:4270–4277. doi: 10.1021/jacs.5b13006. PubMed DOI

Teyssandier J., Mali K.S., De Feyter S. Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen. 2020;9:225–241. doi: 10.1002/open.201900337. PubMed DOI PMC

Gilday L.C., Robinson S.W., Barendt T.A., Langton M.J., Mullaney B.R., Beer P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015;115:7118–7195. doi: 10.1021/cr500674c. PubMed DOI

Li B., Zang S.Q., Wang L.Y., Mak T.C.W. Halogen Bonding: A Powerful, Emerging Tool for Constructing High-Dimensional Metal-Containing Supramolecular Networks. Coord. Chem. Rev. 2016;308:1–21. doi: 10.1016/j.ccr.2015.09.005. DOI

Scholfield M.R., Vander Zanden C.M., Carter M., Ho P.S. Halogen Bonding (X-Bonding): A Biological Perspective. Protein Sci. 2013;22:139–152. doi: 10.1002/pro.2201. PubMed DOI PMC

Riel A.M.S., Rowe R.K., Ho E.N., Carlsson A.-C.C., Rappé A.K., Berryman O.B., Ho P.S. Hydrogen Bond Enhanced Halogen Bonds: A Synergistic Interaction in Chemistry and Biochemistry. Acc. Chem. Res. 2019;52:2870–2880. doi: 10.1021/acs.accounts.9b00189. PubMed DOI PMC

Ho P.S. Topics in Current Chemistry. Springer; Berlin/Heidelberg, Germany: 2014. Biomolecular Halogen Bonds; pp. 241–276. PubMed

Mendez L., Henriquez G., Sirimulla S., Narayan M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules. 2017;22:1397. doi: 10.3390/molecules22091397. PubMed DOI PMC

Pancholi J., Beer P.D. Halogen Bonding Motifs for Anion Recognition. Coord. Chem. Rev. 2020;416:213281. doi: 10.1016/j.ccr.2020.213281. DOI

Hein R., Beer P.D. Halogen Bonding and Chalcogen Bonding Mediated Sensing. Chem. Sci. 2022;13:7098–7125. doi: 10.1039/D2SC01800D. PubMed DOI PMC

Tay H.M., Tse Y.C., Docker A., Gateley C., Thompson A.L., Kuhn H., Zhang Z., Beer P.D. Halogen-Bonding Heteroditopic [2]Catenanes for Recognition of Alkali Metal/Halide Ion Pairs. Angew. Chem. Int. Ed. 2023;62:e202214785. doi: 10.1002/anie.202214785. PubMed DOI PMC

Docker A., Guthrie C.H., Kuhn H., Beer P.D. Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew. Chem. Int. Ed. 2021;60:21973–21978. doi: 10.1002/anie.202108591. PubMed DOI PMC

Sutar R.L., Huber S.M. Catalysis of Organic Reactions through Halogen Bonding. ACS Catal. 2019;9:9622–9639. doi: 10.1021/acscatal.9b02894. DOI

Bulfield D., Huber S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J. 2016;22:14434–14450. doi: 10.1002/chem.201601844. PubMed DOI

Heinen F., Reinhard D.L., Engelage E., Huber S.M. A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst**. Angew. Chem. Int. Ed. 2021;60:5069–5073. doi: 10.1002/anie.202013172. PubMed DOI PMC

Heinen F., Engelage E., Dreger A., Weiss R., Huber S.M. Iodine(III) Derivatives as Halogen Bonding Organocatalysts. Angew. Chem. Int. Ed. 2018;57:3830–3833. doi: 10.1002/anie.201713012. PubMed DOI

Brammer L., Peuronen A., Roseveare T.M. Halogen Bonds, Chalcogen Bonds, Pnictogen Bonds, Tetrel Bonds and Other σ-Hole Interactions: A Snapshot of Current Progress. Acta Crystallogr. Sect. C Struct. Chem. 2023;79:204–216. doi: 10.1107/S2053229623004072. PubMed DOI PMC

Robidas R., Reinhard D.L., Legault C.Y., Huber S.M. Iodine(III)-Based Halogen Bond Donors: Properties and Applications. Chem. Rec. 2021;21:1912–1927. doi: 10.1002/tcr.202100119. PubMed DOI

Catalano L., Cavallo G., Metrangolo P., Resnati G., Terraneo G. Topics in Current Chemistry. Volume 373. Springer; Berlin/Heidelberg, Germany: 2016. Halogen Bonding in Hypervalent Iodine Compounds; pp. 289–309. PubMed

Cavallo G., Murray J.S., Politzer P., Pilati T., Ursini M., Resnati G. Halogen Bonding in Hypervalent Iodine and Bromine Derivatives: Halonium Salts. IUCrJ. 2017;4:411–419. doi: 10.1107/S2052252517004262. PubMed DOI PMC

Soldatova N.S., Postnikov P.S., Suslonov V.V., Kissler T.Y., Ivanov D.M., Yusubov M.S., Galmés B., Frontera A., Kukushkin V.Y. Diaryliodonium as a Double σ-Hole Donor: The Dichotomy of Thiocyanate Halogen Bonding Provides Divergent Solid State Arylation by Diaryliodonium Cations. Org. Chem. Front. 2020;7:2230–2242. doi: 10.1039/D0QO00678E. DOI

Semenov A.V., Baykov S.V., Soldatova N.S., Geyl K.K., Ivanov D.M., Frontera A., Boyarskiy V.P., Postnikov P.S., Kukushkin V.Y. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with Cu I-Containing O,O-Donors. Inorg. Chem. 2023;62:6128–6137. doi: 10.1021/acs.inorgchem.3c00229. PubMed DOI

Soldatova N.S., Suslonov V.V., Ivanov D.M., Yusubov M.S., Resnati G., Postnikov P.S., Kukushkin V.Y. Controlled Halogen-Bond-Involving Assembly of Double-σ-Hole-Donating Diaryliodonium Cations and Ditopic Arene Sulfonates. Cryst. Growth Des. 2023;23:413–423. doi: 10.1021/acs.cgd.2c01090. DOI

Fedorova I.I., Soldatova N.S., Ivanov D.M., Nikiforova K., Aliyarova I.S., Yusubov M.S., Tolstoy P.M., Gomila R.M., Frontera A., Kukushkin V.Y., et al. Benzothienoiodolium Cations Doubly Bonded to Anions via Halogen–Chalcogen and Halogen–Hydrogen Supramolecular Synthons. Cryst. Growth Des. 2023;23:2661–2674. doi: 10.1021/acs.cgd.2c01485. DOI

Suslonov V.V., Soldatova N.S., Postnikov P.S., Resnati G., Kukushkin V.Y., Ivanov D.M., Bokach N.A. Diaryliodonium Tetracyanidometallates Self-Assemble into Halogen-Bonded Square-Like Arrays. Cryst. Growth Des. 2022;22:2749–2758. doi: 10.1021/acs.cgd.2c00175. DOI

Wolf J., Huber F., Erochok N., Heinen F., Guérin V., Legault C.Y., Kirsch S.F., Huber S.M. Activation of a Metal-Halogen Bond by Halogen Bonding. Angew. Chem. Int. Ed. 2020;59:16496–16500. doi: 10.1002/anie.202005214. PubMed DOI PMC

Heinen F., Engelage E., Cramer C.J., Huber S.M. Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors. J. Am. Chem. Soc. 2020;142:8633–8640. doi: 10.1021/jacs.9b13309. PubMed DOI PMC

Boelke A., Kuczmera T.J., Lork E., Nachtsheim B.J. N-Heterocyclic Iod(Az)Olium Salts–Potent Halogen-Bond Donors in Organocatalysis. Chem. Eur. J. 2021;27:13128–13134. doi: 10.1002/chem.202101961. PubMed DOI PMC

Soldatova N.S., Postnikov P.S., Ivanov D.M., Semyonov O.V., Kukurina O.S., Guselnikova O., Yamauchi Y., Wirth T., Zhdankin V.V., Yusubov M.S., et al. Zwitterionic Iodonium Species Afford Halogen Bond-Based Porous Organic Frameworks. Chem. Sci. 2022;13:5650–5658. doi: 10.1039/D2SC00892K. PubMed DOI PMC

Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI

Mayer R.J., Ofial A.R., Mayr H., Legault C.Y. Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases. J. Am. Chem. Soc. 2020;142:5221–5233. doi: 10.1021/jacs.9b12998. PubMed DOI

Bondi A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI

Dabranskaya U., Ivanov D.M., Novikov A.S., Matveychuk Y.V., Bokach N.A., Kukushkin V.Y. Metal-Involving Bifurcated Halogen Bonding C–Br···η 2 (Cl–Pt) Cryst. Growth Des. 2019;19:1364–1376. doi: 10.1021/acs.cgd.8b01757. DOI

Efimenko Z.M., Eliseeva A.A., Ivanov D.M., Galmés B., Frontera A., Bokach N.A., Kukushkin V.Y. Bifurcated μ 2-I···(N,O) Halogen Bonding: The Case of (Nitrosoguanidinate)Ni II Cocrystals with Iodine(I)-Based σ-Hole Donors. Cryst. Growth Des. 2021;21:588–596. doi: 10.1021/acs.cgd.0c01408. DOI

Aliyarova I.S., Ivanov D.M., Soldatova N.S., Novikov A.S., Postnikov P.S., Yusubov M.S., Kukushkin V.Y. Bifurcated Halogen Bonding Involving Diaryliodonium Cations as Iodine(III)-Based Double-σ-Hole Donors. Cryst. Growth Des. 2021;21:1136–1147. doi: 10.1021/acs.cgd.0c01463. DOI

Eliseeva A.A., Ivanov D.M., Rozhkov A.V., Ananyev I.V., Frontera A., Kukushkin V.Y. Bifurcated Halogen Bonding Involving Two Rhodium(I) Centers as an Integrated σ-Hole Acceptor. JACS Au. 2021;1:354–361. doi: 10.1021/jacsau.1c00012. PubMed DOI PMC

Ivanov D.M., Kinzhalov M.A., Novikov A.S., Ananyev I.V., Romanova A.A., Boyarskiy V.P., Haukka M., Kukushkin V.Y. H 2 C(X)–X···X–(X = Cl, Br) Halogen Bonding of Dihalomethanes. Cryst. Growth Des. 2017;17:1353–1362. doi: 10.1021/acs.cgd.6b01754. DOI

Fotović L., Bedeković N., Stilinović V. Isostructural Halogen Exchange and Halogen Bonds: The Case of N-(4-Halogenobenzyl)-3-Halogenopyridinium Halogenides. Cryst. Growth Des. 2022;22:1333–1344. doi: 10.1021/acs.cgd.1c01285. PubMed DOI PMC

Buldakov A.V., Kinzhalov M.A., Kryukova M.A., Ivanov D.M., Novikov A.S., Smirnov A.S., Starova G.L., Bokach N.A., Kukushkin V.Y. Isomorphous Series of Pd II-Containing Halogen-Bond Donors Exhibiting Cl/Br/I Triple Halogen Isostructural Exchange. Cryst. Growth Des. 2020;20:1975–1984. doi: 10.1021/acs.cgd.9b01631. DOI

Adonin S.A., Bondarenko M.A., Novikov A.S., Sokolov M.N. Halogen Bonding in Isostructural Co(II) Complexes with 2-Halopyridines. Crystals. 2020;10:289. doi: 10.3390/cryst10040289. DOI

Aliyarova I.S., Tupikina E.Y., Soldatova N.S., Ivanov D.M., Postnikov P.S., Yusubov M., Kukushkin V.Y. Halogen Bonding Involving Gold Nucleophiles in Different Oxidation States. Inorg. Chem. 2022;61:15398–15407. doi: 10.1021/acs.inorgchem.2c01858. PubMed DOI

United States Patent Application: 0050054626. [(accessed on 26 September 2022)]; Available online: https://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220050054626%22.PGNR.&OS=DN/20050054626&RS=DN/20050054626.

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S., Ehrlich S., Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

VandeVondele J., Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI

LIPPERT B.G., PARRINELLO J.H. and M. A Hybrid Gaussian and Plane Wave Density Functional Scheme. Mol. Phys. 1997;92:477–488. doi: 10.1080/00268979709482119. DOI

Bader R.F.W. Atoms in Molecules: A Quantum Theory. Clarendon Press; London, UK: 1990.

Bader R.F.W., Nguyen-Dang T.T. Quantum Theory of Atoms in Molecules–Dalton Revisited. Adv. Quantum Chem. 1981;14:63–124.

Bader R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991;91:893–928. doi: 10.1021/cr00005a013. DOI

Espinosa E., Alkorta I., Elguero J., Molins E. From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X-H⋯F-Y Systems. J. Chem. Phys. 2002;117:5529–5542. doi: 10.1063/1.1501133. DOI

Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Chattaraj P.K., Maiti B., Sarkar U. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A. 2003;107:4973–4975. doi: 10.1021/jp034707u. DOI

Parsaee F., Senarathna M.C., Kannangara P.B., Alexander S.N., Arche P.D.E., Welin E.R. Radical Philicity and Its Role in Selective Organic Transformations. Nat. Rev. Chem. 2021;5:486–499. doi: 10.1038/s41570-021-00284-3. PubMed DOI

Verschueren R.H., Schmauck J., Perryman M.S., Yue H., Riegger J., Schweitzer-Chaput B., Breugst M., Klussmann M. Philicity of Acetonyl and Benzoyl Radicals: A Comparative Experimental and Computational Study. Chem. Eur. J. 2019;25:9088–9097. doi: 10.1002/chem.201901439. PubMed DOI

Hunter G. The Exact One-Electron Model of Molecular Structure. Int. J. Quantum Chem. 1986;29:197–204. doi: 10.1002/qua.560290209. DOI

Chan W.-T., Hamilton I.P. Valence Shell Structures in the Distributions of the Laplacian of the Electron Density and the One-Electron Potential for Diatomic Molecules. J. Chem. Phys. 1998;108:2473–2485. doi: 10.1063/1.475630. DOI

Tsirelson V., Stash A. On Functions and Quantities Derived from the Experimental Electron Density. Acta Crystallogr. Sect. A Found. Crystallogr. 2004;60:418–426. doi: 10.1107/S010876730401339X. PubMed DOI

Bertolotti F., Shishkina A.V., Forni A., Gervasio G., Stash A.I., Tsirelson V.G. Intermolecular Bonding Features in Solid Iodine. Cryst. Growth Des. 2014;14:3587–3595. doi: 10.1021/cg5005159. DOI

Bartashevich E., Yushina I., Kropotina K., Muhitdinova S., Tsirelson V. Testing the Tools for Revealing and Characterizing the Iodine–Iodine Halogen Bond in Crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2017;73:217–226. doi: 10.1107/S2052520617002931. PubMed DOI

Becke A.D., Edgecombe K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990;92:5397–5403. doi: 10.1063/1.458517. DOI

Silvi B., Savin A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature. 1994;371:683–686. doi: 10.1038/371683a0. DOI

Savin A., Nesper R., Wengert S., Fässler T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 1997;36:1808–1832. doi: 10.1002/anie.199718081. DOI

Zou W., Cai Z., Wang J., Xin K. An Open Library of Relativistic Core Electron Density Function for the QTAIM Analysis with Pseudopotentials. J. Comput. Chem. 2018;39:1697–1706. doi: 10.1002/jcc.25214. PubMed DOI

Sheldrick G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Allen F.H., Bruno I.J. Bond Lengths in Organic and Metal-Organic Compounds Revisited: X —H Bond Lengths from Neutron Diffraction Data. Acta Crystallogr. Sect. B Struct. Sci. 2010;66:380–386. doi: 10.1107/S0108768110012048. PubMed DOI

Frigo M., Johnson S.G. The Design and Implementation of FFTW3. Proc. IEEE. 2005;93:216–231. doi: 10.1109/JPROC.2004.840301. DOI

VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI

Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. <scp>cp2k:</Scp> Atomistic Simulations of Condensed Matter Systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:15–25. doi: 10.1002/wcms.1159. DOI

Borštnik U., VandeVondele J., Weber V., Hutter J. Sparse Matrix Multiplication: The Distributed Block-Compressed Sparse Row Library. Parallel Comput. 2014;40:47–58. doi: 10.1016/j.parco.2014.03.012. DOI

Schütt O., Messmer P., Hutter J., VandeVondele J. Electronic Structure Calculations on Graphics Processing Units. John Wiley & Sons, Ltd.; Chichester, UK: 2016. GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory; pp. 173–190.

Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI

Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package-Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020;152:194103. doi: 10.1063/5.0007045. PubMed DOI

Golze D., Iannuzzi M., Hutter J. Local Fitting of the Kohn–Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations. J. Chem. Theory Comput. 2017;13:2202–2214. doi: 10.1021/acs.jctc.7b00148. PubMed DOI

Wang S., Lee J.S., Wahiduzzaman M., Park J., Muschi M., Martineau-Corcos C., Tissot A., Cho K.H., Marrot J., Shepard W., et al. A Robust Large-Pore Zirconium Carboxylate Metal–Organic Framework for Energy-Efficient Water-Sorption-Driven Refrigeration. Nat. Energy. 2018;3:985–993. doi: 10.1038/s41560-018-0261-6. DOI

Wang X.-D., Huang Y.-H., Liao J.-F., Jiang Y., Zhou L., Zhang X.-Y., Chen H.-Y., Kuang D.-B. In Situ Construction of a Cs 2 SnI 6 Perovskite Nanocrystal/SnS 2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. J. Am. Chem. Soc. 2019;141:13434–13441. doi: 10.1021/jacs.9b04482. PubMed DOI

Chung Y.G., Haldoupis E., Bucior B.J., Haranczyk M., Lee S., Zhang H., Vogiatzis K.D., Milisavljevic M., Ling S., Camp J.S., et al. Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. J. Chem. Eng. Data. 2019;64:5985–5998. doi: 10.1021/acs.jced.9b00835. DOI

Bao Q., Zhang W., Mei D. Theoretical Characterization of Zeolite Encapsulated Platinum Clusters in the Presence of Water Molecules. Phys. Chem. Chem. Phys. 2021;23:23360–23371. doi: 10.1039/D1CP03766H. PubMed DOI

Bennion J.C., Vogt L., Tuckerman M.E., Matzger A.J. Isostructural Cocrystals of 1,3,5-Trinitrobenzene Assembled by Halogen Bonding. Cryst. Growth Des. 2016;16:4688–4693. doi: 10.1021/acs.cgd.6b00753. DOI

Oropeza F.E., Barawi M., Alfonso-González E., de la Peña O’Shea V.A., Trigo J.F., Guillén C., Saiz F., Villar-Garcia I.J. Understanding Ultrafast Charge Transfer Processes in SnS and SnS 2: Using the Core Hole Clock Method to Measure Attosecond Orbital-Dependent Electron Delocalisation in Semiconducting Layered Materials. J. Mater. Chem. C. 2021;9:11859–11872. doi: 10.1039/D1TC02866A. DOI

Chadwick F.M., Rees N.H., Weller A.S., Krämer T., Iannuzzi M., Macgregor S.A. A Rhodium-Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques. Angew. Chem. Int. Ed. 2016;55:3677–3681. doi: 10.1002/anie.201511269. PubMed DOI PMC

Pambudi F.I., Prasetyo N. Insight into the Structure of the Heulandite-Type Zeolite Containing Aromatic Compounds Using Periodic Density Functional Theory. Mater. Today Commun. 2021;26:102028. doi: 10.1016/j.mtcomm.2021.102028. DOI

Hazra A., Bonakala S., Adalikwu S.A., Balasubramanian S., Maji T.K. Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg. Chem. 2021;60:3823–3833. doi: 10.1021/acs.inorgchem.0c03575. PubMed DOI

Kinzhalov M.A., Ivanov D.M., Melekhova A.A., Bokach N.A., Gomila R.M., Frontera A., Kukushkin V.Y. Chameleonic Metal-Bound Isocyanides: A π-Donating CuI-Center Imparts Nucleophilicity to the Isocyanide Carbon toward Halogen Bonding. Inorg. Chem. Front. 2022;9:1655–1665. doi: 10.1039/D2QI00034B. DOI

Nieland E., Komisarek D., Hohloch S., Wurst K., Vasylyeva V., Weingart O., Schmidt B.M. Supramolecular Networks by Imine Halogen Bonding. Chem. Commun. 2022;58:5233–5236. doi: 10.1039/D2CC00799A. PubMed DOI

Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-Covalent Interactions. ACS Omega. 2022;7:34454–34462. doi: 10.1021/acsomega.2c04110. PubMed DOI PMC

Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI

Bielawski M., Zhu M., Olofsson B. Efficient and General One-Pot Synthesis of Diaryliodonium Triflates: Optimization, Scope and Limitations. Adv. Synth. Catal. 2007;349:2610–2618. doi: 10.1002/adsc.200700373. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...