Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
075-15-2021-585
Ministry of Science and Higher Education of the Russian Federation
23-73-10091
Russian Science Foundation
PubMed
37834088
PubMed Central
PMC10573078
DOI
10.3390/ijms241914642
PII: ijms241914642
Knihovny.cz E-zdroje
- Klíčová slova
- DFT calculations, carboxylate, diaryliodonium salt, halogen bond, supramolecular assembly,
- MeSH
- anionty MeSH
- halogeny * chemie MeSH
- kyselina benzoová MeSH
- kyseliny karboxylové * MeSH
- teorie funkcionálu hustoty MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anionty MeSH
- halogeny * MeSH
- kyselina benzoová MeSH
- kyseliny karboxylové * MeSH
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Department of Solid State Engineering Institute of Chemical Technology 16628 Prague Czech Republic
Institute of Chemistry and Pharmaceutical Technologies Altai State University Barnaul 656049 Russia
Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russia
Zobrazit více v PubMed
Desiraju G.R., Ho P.S., Kloo L., Legon A.C., Marquardt R., Metrangolo P., Politzer P., Resnati G., Rissanen K. Definition of the Halogen Bond (IUPAC Recommendations 2013) Pure Appl. Chem. 2013;85:1711–1713. doi: 10.1351/PAC-REC-12-05-10. DOI
Cavallo G., Metrangolo P., Milani R., Pilati T., Priimagi A., Resnati G., Terraneo G. The Halogen Bond. Chem. Rev. 2016;116:2478–2601. doi: 10.1021/acs.chemrev.5b00484. PubMed DOI PMC
Zhao Y., Cotelle Y., Sakai N., Matile S. Unorthodox Interactions at Work. J. Am. Chem. Soc. 2016;138:4270–4277. doi: 10.1021/jacs.5b13006. PubMed DOI
Teyssandier J., Mali K.S., De Feyter S. Halogen Bonding in Two-Dimensional Crystal Engineering. ChemistryOpen. 2020;9:225–241. doi: 10.1002/open.201900337. PubMed DOI PMC
Gilday L.C., Robinson S.W., Barendt T.A., Langton M.J., Mullaney B.R., Beer P.D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015;115:7118–7195. doi: 10.1021/cr500674c. PubMed DOI
Li B., Zang S.Q., Wang L.Y., Mak T.C.W. Halogen Bonding: A Powerful, Emerging Tool for Constructing High-Dimensional Metal-Containing Supramolecular Networks. Coord. Chem. Rev. 2016;308:1–21. doi: 10.1016/j.ccr.2015.09.005. DOI
Scholfield M.R., Vander Zanden C.M., Carter M., Ho P.S. Halogen Bonding (X-Bonding): A Biological Perspective. Protein Sci. 2013;22:139–152. doi: 10.1002/pro.2201. PubMed DOI PMC
Riel A.M.S., Rowe R.K., Ho E.N., Carlsson A.-C.C., Rappé A.K., Berryman O.B., Ho P.S. Hydrogen Bond Enhanced Halogen Bonds: A Synergistic Interaction in Chemistry and Biochemistry. Acc. Chem. Res. 2019;52:2870–2880. doi: 10.1021/acs.accounts.9b00189. PubMed DOI PMC
Ho P.S. Topics in Current Chemistry. Springer; Berlin/Heidelberg, Germany: 2014. Biomolecular Halogen Bonds; pp. 241–276. PubMed
Mendez L., Henriquez G., Sirimulla S., Narayan M. Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules. 2017;22:1397. doi: 10.3390/molecules22091397. PubMed DOI PMC
Pancholi J., Beer P.D. Halogen Bonding Motifs for Anion Recognition. Coord. Chem. Rev. 2020;416:213281. doi: 10.1016/j.ccr.2020.213281. DOI
Hein R., Beer P.D. Halogen Bonding and Chalcogen Bonding Mediated Sensing. Chem. Sci. 2022;13:7098–7125. doi: 10.1039/D2SC01800D. PubMed DOI PMC
Tay H.M., Tse Y.C., Docker A., Gateley C., Thompson A.L., Kuhn H., Zhang Z., Beer P.D. Halogen-Bonding Heteroditopic [2]Catenanes for Recognition of Alkali Metal/Halide Ion Pairs. Angew. Chem. Int. Ed. 2023;62:e202214785. doi: 10.1002/anie.202214785. PubMed DOI PMC
Docker A., Guthrie C.H., Kuhn H., Beer P.D. Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew. Chem. Int. Ed. 2021;60:21973–21978. doi: 10.1002/anie.202108591. PubMed DOI PMC
Sutar R.L., Huber S.M. Catalysis of Organic Reactions through Halogen Bonding. ACS Catal. 2019;9:9622–9639. doi: 10.1021/acscatal.9b02894. DOI
Bulfield D., Huber S.M. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. Eur. J. 2016;22:14434–14450. doi: 10.1002/chem.201601844. PubMed DOI
Heinen F., Reinhard D.L., Engelage E., Huber S.M. A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst**. Angew. Chem. Int. Ed. 2021;60:5069–5073. doi: 10.1002/anie.202013172. PubMed DOI PMC
Heinen F., Engelage E., Dreger A., Weiss R., Huber S.M. Iodine(III) Derivatives as Halogen Bonding Organocatalysts. Angew. Chem. Int. Ed. 2018;57:3830–3833. doi: 10.1002/anie.201713012. PubMed DOI
Brammer L., Peuronen A., Roseveare T.M. Halogen Bonds, Chalcogen Bonds, Pnictogen Bonds, Tetrel Bonds and Other σ-Hole Interactions: A Snapshot of Current Progress. Acta Crystallogr. Sect. C Struct. Chem. 2023;79:204–216. doi: 10.1107/S2053229623004072. PubMed DOI PMC
Robidas R., Reinhard D.L., Legault C.Y., Huber S.M. Iodine(III)-Based Halogen Bond Donors: Properties and Applications. Chem. Rec. 2021;21:1912–1927. doi: 10.1002/tcr.202100119. PubMed DOI
Catalano L., Cavallo G., Metrangolo P., Resnati G., Terraneo G. Topics in Current Chemistry. Volume 373. Springer; Berlin/Heidelberg, Germany: 2016. Halogen Bonding in Hypervalent Iodine Compounds; pp. 289–309. PubMed
Cavallo G., Murray J.S., Politzer P., Pilati T., Ursini M., Resnati G. Halogen Bonding in Hypervalent Iodine and Bromine Derivatives: Halonium Salts. IUCrJ. 2017;4:411–419. doi: 10.1107/S2052252517004262. PubMed DOI PMC
Soldatova N.S., Postnikov P.S., Suslonov V.V., Kissler T.Y., Ivanov D.M., Yusubov M.S., Galmés B., Frontera A., Kukushkin V.Y. Diaryliodonium as a Double σ-Hole Donor: The Dichotomy of Thiocyanate Halogen Bonding Provides Divergent Solid State Arylation by Diaryliodonium Cations. Org. Chem. Front. 2020;7:2230–2242. doi: 10.1039/D0QO00678E. DOI
Semenov A.V., Baykov S.V., Soldatova N.S., Geyl K.K., Ivanov D.M., Frontera A., Boyarskiy V.P., Postnikov P.S., Kukushkin V.Y. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with Cu I-Containing O,O-Donors. Inorg. Chem. 2023;62:6128–6137. doi: 10.1021/acs.inorgchem.3c00229. PubMed DOI
Soldatova N.S., Suslonov V.V., Ivanov D.M., Yusubov M.S., Resnati G., Postnikov P.S., Kukushkin V.Y. Controlled Halogen-Bond-Involving Assembly of Double-σ-Hole-Donating Diaryliodonium Cations and Ditopic Arene Sulfonates. Cryst. Growth Des. 2023;23:413–423. doi: 10.1021/acs.cgd.2c01090. DOI
Fedorova I.I., Soldatova N.S., Ivanov D.M., Nikiforova K., Aliyarova I.S., Yusubov M.S., Tolstoy P.M., Gomila R.M., Frontera A., Kukushkin V.Y., et al. Benzothienoiodolium Cations Doubly Bonded to Anions via Halogen–Chalcogen and Halogen–Hydrogen Supramolecular Synthons. Cryst. Growth Des. 2023;23:2661–2674. doi: 10.1021/acs.cgd.2c01485. DOI
Suslonov V.V., Soldatova N.S., Postnikov P.S., Resnati G., Kukushkin V.Y., Ivanov D.M., Bokach N.A. Diaryliodonium Tetracyanidometallates Self-Assemble into Halogen-Bonded Square-Like Arrays. Cryst. Growth Des. 2022;22:2749–2758. doi: 10.1021/acs.cgd.2c00175. DOI
Wolf J., Huber F., Erochok N., Heinen F., Guérin V., Legault C.Y., Kirsch S.F., Huber S.M. Activation of a Metal-Halogen Bond by Halogen Bonding. Angew. Chem. Int. Ed. 2020;59:16496–16500. doi: 10.1002/anie.202005214. PubMed DOI PMC
Heinen F., Engelage E., Cramer C.J., Huber S.M. Hypervalent Iodine(III) Compounds as Biaxial Halogen Bond Donors. J. Am. Chem. Soc. 2020;142:8633–8640. doi: 10.1021/jacs.9b13309. PubMed DOI PMC
Boelke A., Kuczmera T.J., Lork E., Nachtsheim B.J. N-Heterocyclic Iod(Az)Olium Salts–Potent Halogen-Bond Donors in Organocatalysis. Chem. Eur. J. 2021;27:13128–13134. doi: 10.1002/chem.202101961. PubMed DOI PMC
Soldatova N.S., Postnikov P.S., Ivanov D.M., Semyonov O.V., Kukurina O.S., Guselnikova O., Yamauchi Y., Wirth T., Zhdankin V.V., Yusubov M.S., et al. Zwitterionic Iodonium Species Afford Halogen Bond-Based Porous Organic Frameworks. Chem. Sci. 2022;13:5650–5658. doi: 10.1039/D2SC00892K. PubMed DOI PMC
Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013;341:1230444. doi: 10.1126/science.1230444. PubMed DOI
Mayer R.J., Ofial A.R., Mayr H., Legault C.Y. Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases. J. Am. Chem. Soc. 2020;142:5221–5233. doi: 10.1021/jacs.9b12998. PubMed DOI
Bondi A. Van Der Waals Volumes and Radii. J. Phys. Chem. 1964;68:441–451. doi: 10.1021/j100785a001. DOI
Dabranskaya U., Ivanov D.M., Novikov A.S., Matveychuk Y.V., Bokach N.A., Kukushkin V.Y. Metal-Involving Bifurcated Halogen Bonding C–Br···η 2 (Cl–Pt) Cryst. Growth Des. 2019;19:1364–1376. doi: 10.1021/acs.cgd.8b01757. DOI
Efimenko Z.M., Eliseeva A.A., Ivanov D.M., Galmés B., Frontera A., Bokach N.A., Kukushkin V.Y. Bifurcated μ 2-I···(N,O) Halogen Bonding: The Case of (Nitrosoguanidinate)Ni II Cocrystals with Iodine(I)-Based σ-Hole Donors. Cryst. Growth Des. 2021;21:588–596. doi: 10.1021/acs.cgd.0c01408. DOI
Aliyarova I.S., Ivanov D.M., Soldatova N.S., Novikov A.S., Postnikov P.S., Yusubov M.S., Kukushkin V.Y. Bifurcated Halogen Bonding Involving Diaryliodonium Cations as Iodine(III)-Based Double-σ-Hole Donors. Cryst. Growth Des. 2021;21:1136–1147. doi: 10.1021/acs.cgd.0c01463. DOI
Eliseeva A.A., Ivanov D.M., Rozhkov A.V., Ananyev I.V., Frontera A., Kukushkin V.Y. Bifurcated Halogen Bonding Involving Two Rhodium(I) Centers as an Integrated σ-Hole Acceptor. JACS Au. 2021;1:354–361. doi: 10.1021/jacsau.1c00012. PubMed DOI PMC
Ivanov D.M., Kinzhalov M.A., Novikov A.S., Ananyev I.V., Romanova A.A., Boyarskiy V.P., Haukka M., Kukushkin V.Y. H 2 C(X)–X···X–(X = Cl, Br) Halogen Bonding of Dihalomethanes. Cryst. Growth Des. 2017;17:1353–1362. doi: 10.1021/acs.cgd.6b01754. DOI
Fotović L., Bedeković N., Stilinović V. Isostructural Halogen Exchange and Halogen Bonds: The Case of N-(4-Halogenobenzyl)-3-Halogenopyridinium Halogenides. Cryst. Growth Des. 2022;22:1333–1344. doi: 10.1021/acs.cgd.1c01285. PubMed DOI PMC
Buldakov A.V., Kinzhalov M.A., Kryukova M.A., Ivanov D.M., Novikov A.S., Smirnov A.S., Starova G.L., Bokach N.A., Kukushkin V.Y. Isomorphous Series of Pd II-Containing Halogen-Bond Donors Exhibiting Cl/Br/I Triple Halogen Isostructural Exchange. Cryst. Growth Des. 2020;20:1975–1984. doi: 10.1021/acs.cgd.9b01631. DOI
Adonin S.A., Bondarenko M.A., Novikov A.S., Sokolov M.N. Halogen Bonding in Isostructural Co(II) Complexes with 2-Halopyridines. Crystals. 2020;10:289. doi: 10.3390/cryst10040289. DOI
Aliyarova I.S., Tupikina E.Y., Soldatova N.S., Ivanov D.M., Postnikov P.S., Yusubov M., Kukushkin V.Y. Halogen Bonding Involving Gold Nucleophiles in Different Oxidation States. Inorg. Chem. 2022;61:15398–15407. doi: 10.1021/acs.inorgchem.2c01858. PubMed DOI
United States Patent Application: 0050054626. [(accessed on 26 September 2022)]; Available online: https://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220050054626%22.PGNR.&OS=DN/20050054626&RS=DN/20050054626.
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
VandeVondele J., Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007;127:114105. doi: 10.1063/1.2770708. PubMed DOI
LIPPERT B.G., PARRINELLO J.H. and M. A Hybrid Gaussian and Plane Wave Density Functional Scheme. Mol. Phys. 1997;92:477–488. doi: 10.1080/00268979709482119. DOI
Bader R.F.W. Atoms in Molecules: A Quantum Theory. Clarendon Press; London, UK: 1990.
Bader R.F.W., Nguyen-Dang T.T. Quantum Theory of Atoms in Molecules–Dalton Revisited. Adv. Quantum Chem. 1981;14:63–124.
Bader R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991;91:893–928. doi: 10.1021/cr00005a013. DOI
Espinosa E., Alkorta I., Elguero J., Molins E. From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X-H⋯F-Y Systems. J. Chem. Phys. 2002;117:5529–5542. doi: 10.1063/1.1501133. DOI
Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W., Mori-Sánchez P., Contreras-García J., Cohen A.J., Yang W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Chattaraj P.K., Maiti B., Sarkar U. Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A. 2003;107:4973–4975. doi: 10.1021/jp034707u. DOI
Parsaee F., Senarathna M.C., Kannangara P.B., Alexander S.N., Arche P.D.E., Welin E.R. Radical Philicity and Its Role in Selective Organic Transformations. Nat. Rev. Chem. 2021;5:486–499. doi: 10.1038/s41570-021-00284-3. PubMed DOI
Verschueren R.H., Schmauck J., Perryman M.S., Yue H., Riegger J., Schweitzer-Chaput B., Breugst M., Klussmann M. Philicity of Acetonyl and Benzoyl Radicals: A Comparative Experimental and Computational Study. Chem. Eur. J. 2019;25:9088–9097. doi: 10.1002/chem.201901439. PubMed DOI
Hunter G. The Exact One-Electron Model of Molecular Structure. Int. J. Quantum Chem. 1986;29:197–204. doi: 10.1002/qua.560290209. DOI
Chan W.-T., Hamilton I.P. Valence Shell Structures in the Distributions of the Laplacian of the Electron Density and the One-Electron Potential for Diatomic Molecules. J. Chem. Phys. 1998;108:2473–2485. doi: 10.1063/1.475630. DOI
Tsirelson V., Stash A. On Functions and Quantities Derived from the Experimental Electron Density. Acta Crystallogr. Sect. A Found. Crystallogr. 2004;60:418–426. doi: 10.1107/S010876730401339X. PubMed DOI
Bertolotti F., Shishkina A.V., Forni A., Gervasio G., Stash A.I., Tsirelson V.G. Intermolecular Bonding Features in Solid Iodine. Cryst. Growth Des. 2014;14:3587–3595. doi: 10.1021/cg5005159. DOI
Bartashevich E., Yushina I., Kropotina K., Muhitdinova S., Tsirelson V. Testing the Tools for Revealing and Characterizing the Iodine–Iodine Halogen Bond in Crystals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2017;73:217–226. doi: 10.1107/S2052520617002931. PubMed DOI
Becke A.D., Edgecombe K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990;92:5397–5403. doi: 10.1063/1.458517. DOI
Silvi B., Savin A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature. 1994;371:683–686. doi: 10.1038/371683a0. DOI
Savin A., Nesper R., Wengert S., Fässler T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 1997;36:1808–1832. doi: 10.1002/anie.199718081. DOI
Zou W., Cai Z., Wang J., Xin K. An Open Library of Relativistic Core Electron Density Function for the QTAIM Analysis with Pseudopotentials. J. Comput. Chem. 2018;39:1697–1706. doi: 10.1002/jcc.25214. PubMed DOI
Sheldrick G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Allen F.H., Bruno I.J. Bond Lengths in Organic and Metal-Organic Compounds Revisited: X —H Bond Lengths from Neutron Diffraction Data. Acta Crystallogr. Sect. B Struct. Sci. 2010;66:380–386. doi: 10.1107/S0108768110012048. PubMed DOI
Frigo M., Johnson S.G. The Design and Implementation of FFTW3. Proc. IEEE. 2005;93:216–231. doi: 10.1109/JPROC.2004.840301. DOI
VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI
Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. <scp>cp2k:</Scp> Atomistic Simulations of Condensed Matter Systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:15–25. doi: 10.1002/wcms.1159. DOI
Borštnik U., VandeVondele J., Weber V., Hutter J. Sparse Matrix Multiplication: The Distributed Block-Compressed Sparse Row Library. Parallel Comput. 2014;40:47–58. doi: 10.1016/j.parco.2014.03.012. DOI
Schütt O., Messmer P., Hutter J., VandeVondele J. Electronic Structure Calculations on Graphics Processing Units. John Wiley & Sons, Ltd.; Chichester, UK: 2016. GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory; pp. 173–190.
Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017;19:32184–32215. doi: 10.1039/C7CP04913G. PubMed DOI
Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package-Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020;152:194103. doi: 10.1063/5.0007045. PubMed DOI
Golze D., Iannuzzi M., Hutter J. Local Fitting of the Kohn–Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations. J. Chem. Theory Comput. 2017;13:2202–2214. doi: 10.1021/acs.jctc.7b00148. PubMed DOI
Wang S., Lee J.S., Wahiduzzaman M., Park J., Muschi M., Martineau-Corcos C., Tissot A., Cho K.H., Marrot J., Shepard W., et al. A Robust Large-Pore Zirconium Carboxylate Metal–Organic Framework for Energy-Efficient Water-Sorption-Driven Refrigeration. Nat. Energy. 2018;3:985–993. doi: 10.1038/s41560-018-0261-6. DOI
Wang X.-D., Huang Y.-H., Liao J.-F., Jiang Y., Zhou L., Zhang X.-Y., Chen H.-Y., Kuang D.-B. In Situ Construction of a Cs 2 SnI 6 Perovskite Nanocrystal/SnS 2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. J. Am. Chem. Soc. 2019;141:13434–13441. doi: 10.1021/jacs.9b04482. PubMed DOI
Chung Y.G., Haldoupis E., Bucior B.J., Haranczyk M., Lee S., Zhang H., Vogiatzis K.D., Milisavljevic M., Ling S., Camp J.S., et al. Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. J. Chem. Eng. Data. 2019;64:5985–5998. doi: 10.1021/acs.jced.9b00835. DOI
Bao Q., Zhang W., Mei D. Theoretical Characterization of Zeolite Encapsulated Platinum Clusters in the Presence of Water Molecules. Phys. Chem. Chem. Phys. 2021;23:23360–23371. doi: 10.1039/D1CP03766H. PubMed DOI
Bennion J.C., Vogt L., Tuckerman M.E., Matzger A.J. Isostructural Cocrystals of 1,3,5-Trinitrobenzene Assembled by Halogen Bonding. Cryst. Growth Des. 2016;16:4688–4693. doi: 10.1021/acs.cgd.6b00753. DOI
Oropeza F.E., Barawi M., Alfonso-González E., de la Peña O’Shea V.A., Trigo J.F., Guillén C., Saiz F., Villar-Garcia I.J. Understanding Ultrafast Charge Transfer Processes in SnS and SnS 2: Using the Core Hole Clock Method to Measure Attosecond Orbital-Dependent Electron Delocalisation in Semiconducting Layered Materials. J. Mater. Chem. C. 2021;9:11859–11872. doi: 10.1039/D1TC02866A. DOI
Chadwick F.M., Rees N.H., Weller A.S., Krämer T., Iannuzzi M., Macgregor S.A. A Rhodium-Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques. Angew. Chem. Int. Ed. 2016;55:3677–3681. doi: 10.1002/anie.201511269. PubMed DOI PMC
Pambudi F.I., Prasetyo N. Insight into the Structure of the Heulandite-Type Zeolite Containing Aromatic Compounds Using Periodic Density Functional Theory. Mater. Today Commun. 2021;26:102028. doi: 10.1016/j.mtcomm.2021.102028. DOI
Hazra A., Bonakala S., Adalikwu S.A., Balasubramanian S., Maji T.K. Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg. Chem. 2021;60:3823–3833. doi: 10.1021/acs.inorgchem.0c03575. PubMed DOI
Kinzhalov M.A., Ivanov D.M., Melekhova A.A., Bokach N.A., Gomila R.M., Frontera A., Kukushkin V.Y. Chameleonic Metal-Bound Isocyanides: A π-Donating CuI-Center Imparts Nucleophilicity to the Isocyanide Carbon toward Halogen Bonding. Inorg. Chem. Front. 2022;9:1655–1665. doi: 10.1039/D2QI00034B. DOI
Nieland E., Komisarek D., Hohloch S., Wurst K., Vasylyeva V., Weingart O., Schmidt B.M. Supramolecular Networks by Imine Halogen Bonding. Chem. Commun. 2022;58:5233–5236. doi: 10.1039/D2CC00799A. PubMed DOI
Sokolova E.V., Kinzhalov M.A., Smirnov A.S., Cheranyova A.M., Ivanov D.M., Kukushkin V.Y., Bokach N.A. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-Covalent Interactions. ACS Omega. 2022;7:34454–34462. doi: 10.1021/acsomega.2c04110. PubMed DOI PMC
Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33:580–592. doi: 10.1002/jcc.22885. PubMed DOI
Bielawski M., Zhu M., Olofsson B. Efficient and General One-Pot Synthesis of Diaryliodonium Triflates: Optimization, Scope and Limitations. Adv. Synth. Catal. 2007;349:2610–2618. doi: 10.1002/adsc.200700373. DOI