Multimodal prediction of neoadjuvant treatment outcome by serial FDG PET and MRI in women with locally advanced breast cancer
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
P50 CA138293
NCI NIH HHS - United States
R01 CA248192
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
PubMed
37946201
PubMed Central
PMC10636950
DOI
10.1186/s13058-023-01722-4
PII: 10.1186/s13058-023-01722-4
Knihovny.cz E-zdroje
- Klíčová slova
- Chemotherapy response, Diffusion weighted MRI, Dynamic 18F-FDG PET, Dynamic contrast enhanced MRI, Recurrence,
- MeSH
- dospělí MeSH
- fluorodeoxyglukosa F18 terapeutické užití MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nádory prsu * diagnostické zobrazování farmakoterapie MeSH
- neoadjuvantní terapie metody MeSH
- pozitronová emisní tomografie metody MeSH
- prospektivní studie MeSH
- radiofarmaka terapeutické užití MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fluorodeoxyglukosa F18 MeSH
- radiofarmaka MeSH
PURPOSE: To investigate combined MRI and 18F-FDG PET for assessing breast tumor metabolism/perfusion mismatch and predicting pathological response and recurrence-free survival (RFS) in women treated for breast cancer. METHODS: Patients undergoing neoadjuvant chemotherapy (NAC) for locally-advanced breast cancer were imaged at three timepoints (pre, mid, and post-NAC), prior to surgery. Imaging included diffusion-weighted and dynamic contrast-enhanced (DCE-) MRI and quantitative 18F-FDG PET. Tumor imaging measures included apparent diffusion coefficient, peak percent enhancement (PE), peak signal enhancement ratio (SER), functional tumor volume, and washout volume on MRI and standardized uptake value (SUVmax), glucose delivery (K1) and FDG metabolic rate (MRFDG) on PET, with percentage changes from baseline calculated at mid- and post-NAC. Associations of imaging measures with pathological response (residual cancer burden [RCB] 0/I vs. II/III) and RFS were evaluated. RESULTS: Thirty-five patients with stage II/III invasive breast cancer were enrolled in the prospective study (median age: 43, range: 31-66 years, RCB 0/I: N = 11/35, 31%). Baseline imaging metrics were not significantly associated with pathologic response or RFS (p > 0.05). Greater mid-treatment decreases in peak PE, along with greater post-treatment decreases in several DCE-MRI and 18F-FDG PET measures were associated with RCB 0/I after NAC (p < 0.05). Additionally, greater mid- and post-treatment decreases in DCE-MRI (peak SER, washout volume) and 18F-FDG PET (K1) were predictive of prolonged RFS. Mid-treatment decreases in metabolism/perfusion ratios (MRFDG/peak PE, MRFDG/peak SER) were associated with improved RFS. CONCLUSION: Mid-treatment changes in both PET and MRI measures were predictive of RCB status and RFS following NAC. Specifically, our results indicate a complementary relationship between DCE-MRI and 18F-FDG PET metrics and potential value of metabolism/perfusion mismatch as a marker of patient outcome.
American Society of Clinical Oncology Alexandria VA USA
Charles University and Thomayer University Hospital Prague Czech Republic
Department of Radiology University of Pennsylvania Philadelphia PA USA
Department of Radiology University of Washington Fred Hutchinson Cancer Center Seattle WA USA
Zobrazit více v PubMed
Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol. 2018 doi: 10.3389/fonc.2018.00227. PubMed DOI PMC
I-SPY2 Trial Consortium. Yee D, DeMichele AM, Yau C, Isaacs C, Symmans WF, et al. Association of event-free and distant recurrence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial. JAMA Oncol. 2020;6(9):1355. doi: 10.1001/jamaoncol.2020.2535. PubMed DOI PMC
Yankeelov TE, Abramson RG, Quarles CC. Quantitative multimodality imaging in cancer research and therapy. Nat Rev Clin Oncol. 2014;11(11):670–680. doi: 10.1038/nrclinonc.2014.134. PubMed DOI PMC
Sorace AG, Harvey S, Syed A, Yankeelov TE. Imaging considerations and interprofessional opportunities in the care of breast cancer patients in the neoadjuvant setting. Semin Oncol Nurs. 2017;33(4):425–439. doi: 10.1016/j.soncn.2017.08.008. PubMed DOI PMC
Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M, et al. 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med. 2004;45(11):1829–1837. PubMed
Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE. Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging. 2017;45(2):337–355. doi: 10.1002/jmri.25479. PubMed DOI PMC
Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, et al. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survival—results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL. Radiology. 2015;279(1):44–55. doi: 10.1148/radiol.2015150013. PubMed DOI PMC
Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]Fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24(34):5366–5372. doi: 10.1200/JCO.2006.05.7406. PubMed DOI
Partridge SC, Zhang Z, Newitt DC, Gibbs JE, Chenevert TL, Rosen MA, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial. Radiology. 2018;289(3):618–627. doi: 10.1148/radiol.2018180273. PubMed DOI PMC
Partridge SC, Vanantwerp RK, Doot RK, Chai X, Kurland BF, Eby PR, et al. Association between serial dynamic contrast-enhanced MRI and dynamic 18F-FDG PET measures in patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer. J Magn Reson Imaging. 2010;32(5):1124–1131. doi: 10.1002/jmri.22362. PubMed DOI PMC
Eby PR, Partridge SC, White SW, Doot RK, Dunnwald LK, Schubert EK, et al. Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and 15O-water positron emission tomography blood flow in breast cancer. Acad Radiol. 2008;15(10):1246–1254. doi: 10.1016/j.acra.2008.03.019. PubMed DOI PMC
Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Charlop A, Lawton TJ, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med. 2002;43(4):500–509. PubMed
Mankoff DA, Dunnwald LK, Partridge SC, Specht JM. Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer Res. 2009;15(17):5294–5296. doi: 10.1158/1078-0432.CCR-09-1448. PubMed DOI PMC
Specht JM, Kurland BF, Montgomery SK, Dunnwald LK, Doot RK, Gralow JR, et al. Tumor metabolism and blood flow as assessed by positron emission tomography varies by tumor subtype in locally advanced breast cancer. Clin Cancer Res. 2010;16(10):2803–2810. doi: 10.1158/1078-0432.CCR-10-0026. PubMed DOI PMC
Semple S. Baseline MRI delivery characteristics predict change in invasive ductal breast carcinoma PET metabolism as a result of primary chemotherapy administration. Ann Oncol. 2006;17(9):1393–1398. doi: 10.1093/annonc/mdl136. PubMed DOI
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol Off J Eur Soc Med Oncol. 2013;24(9):2206–2223. doi: 10.1093/annonc/mdt303. PubMed DOI PMC
Mankoff DA, Dunnwald LK, Gralow JR, Ellis GK, Schubert EK, Tseng J, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med. 2003;44(11):1806–1814. PubMed
Li KL, Partridge SC, Joe BN, Gibbs JE, Lu Y, Esserman LJ, et al. Invasive breast cancer: predicting disease recurrence by using high-spatial-resolution signal enhancement ratio imaging. Radiology. 2008;248(1):79–87. doi: 10.1148/radiol.2481070846. PubMed DOI PMC
Symmans WF, Peintinger F, Hatzis C, Rajan R, Kuerer H, Valero V, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–4422. doi: 10.1200/JCO.2007.10.6823. PubMed DOI
Hudis CA, Barlow WE, Costantino JP, Gray RJ, Pritchard KI, Chapman JAW, et al. Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system. J Clin Oncol. 2007;25(15):2127–2132. doi: 10.1200/JCO.2006.10.3523. PubMed DOI
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026. PubMed DOI
Hylton NM, Blume JD, Bernreuter WK, Pisano ED, Rosen MA, Morris EA, et al. Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology. 2012;263(3):663–672. doi: 10.1148/radiol.12110748. PubMed DOI PMC
Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM, et al. Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008;26(27):4449–4457. doi: 10.1200/JCO.2007.15.4385. PubMed DOI PMC
Jordan BF, Sonveaux P. Targeting tumor perfusion and oxygenation modulates hypoxia and cancer sensitivity to radiotherapy and systemic therapies. In: Gali-Muhtasib H (ed) Advances in cancer therapy [Internet]. InTech; 2011 [cited 2021 Sep 10]. http://www.intechopen.com/books/advances-in-cancer-therapy/targeting-tumor-perfusion-and-oxygenation-modulates-hypoxia-and-cancer-sensitivity-to-radiotherapy-a.
Karan B, Pourbagher A, Torun N. Diffusion-weighted imaging and 18F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer: correlation of the apparent diffusion coefficient and maximum standardized uptake values with prognostic factors. J Magn Reson Imaging. 2016;43(6):1434–1444. doi: 10.1002/jmri.25112. PubMed DOI
Baba S, Isoda T, Maruoka Y, Kitamura Y, Sasaki M, Yoshida T, et al. Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med. 2014;55(5):736–742. doi: 10.2967/jnumed.113.129395. PubMed DOI
Syed AK, Woodall R, Whisenant JG, Yankeelov TE, Sorace AG. Characterizing trastuzumab-induced alterations in intratumoral heterogeneity with quantitative imaging and immunohistochemistry in HER2+ breast cancer. Neoplasia. 2019;21(1):17–29. doi: 10.1016/j.neo.2018.10.008. PubMed DOI PMC
Granzier RWY, van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review. Eur J Radiol. 2019;121:108736. doi: 10.1016/j.ejrad.2019.108736. PubMed DOI
Cortazar P, Geyer CE. Pathological complete response in neoadjuvant treatment of breast cancer. Ann Surg Oncol. 2015;22(5):1441–1446. doi: 10.1245/s10434-015-4404-8. PubMed DOI
Pujara AC, Kim E, Axelrod D, Melsaether AN. PET/MRI in breast cancer. J Magn Reson Imaging. 2019;49(2):328–342. doi: 10.1002/jmri.26298. PubMed DOI
ClinicalTrials.gov
NCT01931709