Cognitive Performance and Exposure to Organophosphate Flame Retardants in Children: Evidence from a Cross-Sectional Analysis of Two European Mother-Child Cohorts
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
733032
European Union
APVV-0571-12
Slovak Research and Development Agency
2014/47-SZU-11
Ministry of Health of the Slovak Republic
4004-00352B_FSS
The Danish Research Council
NNF19OC0058266
Novo Nordisk Foundation, Denmark
NNF17OC0029404
Novo Nordisk Foundation, Denmark
2021-0173
Health Insurance Denmark
PubMed
37999530
PubMed Central
PMC10675051
DOI
10.3390/toxics11110878
PII: toxics11110878
Knihovny.cz E-zdroje
- Klíčová slova
- HBM4EU Aligned Studies, WISC, children, human biomonitoring, neurodevelopment, organophosphate flame retardants,
- Publikační typ
- časopisecké články MeSH
The knowledge of the effects of organophosphate flame retardants on children's neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children's neurodevelopment in two European cohorts involved in the Human Biomonitoring Initiative Aligned Studies. The participants were school-aged children belonging to the Odense Child Cohort (Denmark) and the PCB cohort (Slovakia). In each cohort, the children's neurodevelopment was assessed through the Full-Scale Intelligence Quotient score of the Wechsler Intelligence Scale for Children, using two different editions. The children's urine samples, collected at one point in time, were analyzed for several metabolites of organophosphate flame retardants. The association between neurodevelopment and each organophosphate flame retardant metabolite was explored by applying separate multiple linear regressions based on the approach of MM-estimation in each cohort. In the Danish cohort, the mean ± standard deviation for the neurodevelopment score was 98 ± 12; the geometric mean (95% confidence interval (95% CI)) of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) standardized by creatinine (crt) was 0.52 µg/g crt (95% CI = 0.49; 0.60), while that of diphenyl phosphate (DPHP) standardized by crt was 1.44 µg/g crt (95% CI = 1.31; 1.58). The neurodevelopment score showed a small, negative, statistically imprecise trend with BDCIPP standardized by crt (β = -1.30; 95%CI = -2.72; 0.11; p-value = 0.07) and no clear association with DPHP standardized by crt (β = -0.98; 95%CI = -2.96; 0.99; p-value = 0.33). The neurodevelopment score showed a negative trend with BDCIPP (β = -1.42; 95% CI = -2.70; -0.06; p-value = 0.04) and no clear association with DPHP (β = -1.09; 95% CI = -2.87; 0.68; p-value = 0.23). In the Slovakian cohort, the mean ± standard deviation for the neurodevelopment score was 81 ± 15; the geometric mean of BDCIPP standardized by crt was 0.18 µg/g crt (95% CI = 0.16; 0.20), while that of DPHP standardized by crt was 2.24 µg/g crt (95% CI = 2.00; 3.52). The association of the neurodevelopment score with BDCIPP standardized by crt was -0.49 (95%CI = -1.85; 0.87; p-value = 0.48), and with DPHP standardized by crt it was -0.35 (95%CI = -1.90; 1.20; p-value = 0.66). No clear associations were observed between the neurodevelopment score and BDCIPP/DPHP concentrations that were not standardized by crt. No clear associations were observed with bis(1-chloro-2-propyl) phosphate (BCIPP) in either cohort, due to the low detection frequency of this compound. In conclusion, this study provides only limited evidence of an inverse association between neurodevelopment and exposure to BDCIPP and DPHP. The timing of exposure and effect modification of other organophosphate flame retardant metabolites and other substances should be the subject of further investigations that address this scientific hypothesis.
BrabantAdvies Brabantlaan 3 5216 TV 's Hertogenbosch The Netherlands
Center for Biomedical Research University of Granada 18012 Granada Spain
Consortium for Biomedical Research in Epidemiology and Public Health 28029 Madrid Spain
Department of Medicine University of Udine Via Colugna 50 33100 Udine Italy
Instituto de Investigación Biosanitaria de Granada 18012 Granada Spain
National Centre for Environmental Health Instituto de Salud Carlos 3 28220 Majadahonda Spain
RECETOX Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Toxicological Centre University of Antwerp Wilrijk 2610 Antwerp Belgium
VITO Health Flemish Institute for Technological Research 2400 Mol Belgium
Zobrazit více v PubMed
Jotterand F. Childhood Brain Development, the Educational Achievement Gap, and Cognitive Enhancement. Front. Pharmacol. 2018;9:1142. doi: 10.3389/fphar.2018.01142. PubMed DOI PMC
Lövdén M., Fratiglioni L., Glymour M.M., Lindenberger U., Tucker-Drob E.M. Education and Cognitive Functioning Across the Life Span. Psychol. Sci. Public Interest. 2020;21:6–41. doi: 10.1177/1529100620920576. PubMed DOI PMC
Ronfani L., Vecchi Brumatti L., Mariuz M., Tognin V., Bin M., Ferluga V., Knowles A., Montico M., Barbone F. The Complex Interaction between Home Environment, Socioeconomic Status, Maternal IQ and Early Child Neurocognitive Development: A Multivariate Analysis of Data Collected in a Newborn Cohort Study. PLoS ONE. 2015;10:e0127052. doi: 10.1371/journal.pone.0127052. PubMed DOI PMC
Braun J.M. Early-Life Exposure to EDCs: Role in Childhood Obesity and Neurodevelopment. Nat. Rev. Endocrinol. 2017;13:161–173. doi: 10.1038/nrendo.2016.186. PubMed DOI PMC
Carmona A., Roudeau S., Ortega R. Molecular Mechanisms of Environmental Metal Neurotoxicity: A Focus on the Interactions of Metals with Synapse Structure and Function. Toxics. 2021;9:198. doi: 10.3390/toxics9090198. PubMed DOI PMC
Coker E., Gunier R., Bradman A., Harley K., Kogut K., Molitor J., Eskenazi B. Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years. Int. J. Environ. Res. Public Health. 2017;14:506. doi: 10.3390/ijerph14050506. PubMed DOI PMC
Dórea J.G. Environmental Exposure to Low-Level Lead (Pb) Co-Occurring with Other Neurotoxicants in Early Life and Neurodevelopment of Children. Environ. Res. 2019;177:108641. doi: 10.1016/j.envres.2019.108641. PubMed DOI
Grandjean P., Landrigan P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014;13:330–338. doi: 10.1016/S1474-4422(13)70278-3. PubMed DOI PMC
Jurewicz J., Polańska K., Hanke W. Exposure to Widespread Environmental Toxicants and Children’s Cognitive Development and Behavioral Problems. Int. J. Occup. Med. Environ. Health. 2013;26:185–204. doi: 10.2478/s13382-013-0099-x. PubMed DOI
Rivollier F., Krebs M.O., Kebir O. Perinatal Exposure to Environmental Endocrine Disruptors in the Emergence of Neurodevelopmental Psychiatric Diseases: A Systematic Review. Int. J. Environ. Res. Public Health. 2019;16:1318. doi: 10.3390/ijerph16081318. PubMed DOI PMC
Simhadri J.J., Loffredo C.A., Trnovec T., Murinova L.P., Nunlee-Bland G., Koppe J.G., Schoeters G., Jana S.S., Ghosh S. Biomarkers of Metabolic Disorders and Neurobehavioral Diseases in a PCB- Exposed Population: What We Learned and the Implications for Future Research. Environ. Res. 2020;191:110211. doi: 10.1016/j.envres.2020.110211. PubMed DOI PMC
Zhang Q., Chen X.Z., Huang X., Wang M., Wu J. The Association between Prenatal Exposure to Phthalates and Cognition and Neurobehavior of Children-Evidence from Birth Cohorts. Neurotoxicology. 2019;73:199–212. doi: 10.1016/j.neuro.2019.04.007. PubMed DOI
HBM4EU Web Page the European Human Biomonitoring Initiative (HBM4EU) Web Page. [(accessed on 5 February 2023)]. Available online: https://www.hbm4eu.eu/hbm4eu-substances/flame-retardants/
Sharkey M., Harrad S., Abou-Elwafa Abdallah M., Drage D.S., Berresheim H. Phasing-out of Legacy Brominated Flame Retardants: The UNEP Stockholm Convention and Other Legislative Action Worldwide. Environ. Int. 2020;144:106041. doi: 10.1016/j.envint.2020.106041. PubMed DOI
Stapleton H.M., Misenheimer J., Hoffman K., Webster T.F. Flame Retardant Associations between Children’s Handwipes and House Dust. Chemosphere. 2014;116:54–60. doi: 10.1016/j.chemosphere.2013.12.100. PubMed DOI PMC
Wei G.L., Li D.Q., Zhuo M.N., Liao Y.S., Xie Z.Y., Guo T.L., Li J.J., Zhang S.Y., Liang Z.Q. Organophosphorus Flame Retardants and Plasticizers: Sources, Occurrence, Toxicity and Human Exposure. Environ. Pollut. 2015;196:29–46. doi: 10.1016/j.envpol.2014.09.012. PubMed DOI
van der Veen I., de Boer J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere. 2012;88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067. PubMed DOI
Bajard L., Negi C.K., Mustieles V., Melymuk L., Jomini S., Barthelemy-Berneron J., Fernandez M.F., Blaha L. Endocrine Disrupting Potential of Replacement Flame Retardants—Review of Current Knowledge for Nuclear Receptors Associated with Reproductive Outcomes. Environ. Int. 2021;153:106550. doi: 10.1016/j.envint.2021.106550. PubMed DOI
Blum A., Behl M., Birnbaum L.S., Diamond M.L., Phillips A., Singla V., Sipes N.S., Stapleton H.M., Venier M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environ. Sci. Technol. Lett. 2019;6:638–649. doi: 10.1021/acs.estlett.9b00582. PubMed DOI PMC
ECHA Web Page the European Chemicals Agency Web Page. [(accessed on 5 February 2023)]. Available online: https://echa.europa.eu/
Poma G., Glynn A., Malarvannan G., Covaci A., Darnerud P.O. Dietary Intake of Phosphorus Flame Retardants (PFRs) Using Swedish Food Market Basket Estimations. Food Chem. Toxicol. 2017;100:1–7. doi: 10.1016/j.fct.2016.12.011. PubMed DOI
La Guardia M.J., Schreder E.D., Uding N., Hale R.C. Human Indoor Exposure to Airborne Halogenated Flame Retardants: Influence of Airborne Particle Size. Int. J. Environ. Res. Public Health. 2017;14:507. doi: 10.3390/ijerph14050507. PubMed DOI PMC
Gibson E.A., Stapleton H.M., Calero L., Holmes D., Burke K., Martinez R., Cortes B., Nematollahi A., Evans D., Herbstman J.B. Flame Retardant Exposure Assessment: Findings from a Behavioral Intervention Study. J. Expo. Sci. Environ. Epidemiol. 2019;29:33–48. doi: 10.1038/s41370-018-0049-6. PubMed DOI PMC
Butt C.M., Congleton J., Hoffman K., Fang M., Stapleton H.M. Metabolites of Organophosphate Flame Retardants and 2-Ethylhexyl Tetrabromobenzoate in Urine from Paired Mothers and Toddlers. Environ. Sci. Technol. 2014;48:10432–10438. doi: 10.1021/es5025299. PubMed DOI
Cequier E., Sakhi A.K., Marcé R.M., Becher G., Thomsen C. Human Exposure Pathways to Organophosphate Triesters—A Biomonitoring Study of Mother-Child Pairs. Environ. Int. 2015;75:159–165. doi: 10.1016/j.envint.2014.11.009. PubMed DOI
Gibson E.A., Stapleton H.M., Calero L., Holmes D., Burke K., Martinez R., Cortes B., Nematollahi A., Evans D., Anderson K.A., et al. Differential Exposure to Organophosphate Flame Retardants in Mother-Child Pairs. Chemosphere. 2019;219:567–573. doi: 10.1016/j.chemosphere.2018.12.008. PubMed DOI PMC
He C., Toms L.M.L., Thai P., Van den Eede N., Wang X., Li Y., Baduel C., Harden F.A., Heffernan A.L., Hobson P., et al. Urinary Metabolites of Organophosphate Esters: Concentrations and Age Trends in Australian Children. Environ. Int. 2018;111:124–130. doi: 10.1016/j.envint.2017.11.019. PubMed DOI
Hoffman K., Butt C.M., Chen A., Limkakeng A.T., Stapleton H.M. High Exposure to Organophosphate Flame Retardants in Infants: Associations with Baby Products. Environ. Sci. Technol. 2015;49:14554–14559. doi: 10.1021/acs.est.5b03577. PubMed DOI
Philips E.M., Jaddoe V.W.V., Trasande L. Effects of Early Exposure to Phthalates and Bisphenols on Cardiometabolic Outcomes in Pregnancy and Childhood. Reprod. Toxicol. 2017;68:105–118. doi: 10.1016/j.reprotox.2016.08.015. PubMed DOI PMC
Van den Eede N., Heffernan A.L., Aylward L.L., Hobson P., Neels H., Mueller J.F., Covaci A. Age as a Determinant of Phosphate Flame Retardant Exposure of the Australian Population and Identification of Novel Urinary PFR Metabolites. Environ. Int. 2015;74:1–8. doi: 10.1016/j.envint.2014.09.005. PubMed DOI
Ji C., Lu Z., Xu L., Li F., Cong M., Shan X., Wu H. Global Responses to Tris(1-Chloro-2-Propyl)Phosphate (TCPP) in Rockfish Sebastes Schlegeli Using Integrated Proteomic and Metabolomic Approach. Sci. Total Environ. 2020;724:138307. doi: 10.1016/j.scitotenv.2020.138307. PubMed DOI
Li R., Wang H., Mi C., Feng C., Zhang L., Yang L., Zhou B. The Adverse Effect of TCIPP and TCEP on Neurodevelopment of Zebrafish Embryos/Larvae. Chemosphere. 2019;220:811–817. doi: 10.1016/j.chemosphere.2018.12.198. PubMed DOI
Newell A.J., Kapps V.A., Cai Y., Rai M.R., St. Armour G., Horman B.M., Rock K.D., Witchey S.K., Greenbaum A., Patisaul H.B. Maternal Organophosphate Flame Retardant Exposure Alters the Developing Mesencephalic Dopamine System in Fetal Rat. Toxicol. Sci. 2023;191:357–373. doi: 10.1093/toxsci/kfac137. PubMed DOI PMC
Noyes P.D., Haggard D.E., Gonnerman G.D., Tanguay R.L. Advanced Morphological—Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants. Toxicol. Sci. 2015;145:177–195. doi: 10.1093/toxsci/kfv044. PubMed DOI PMC
Oliveri A.N., Ortiz E., Levin E.D. Developmental Exposure to an Organophosphate Flame Retardant Alters Later Behavioral Responses to Dopamine Antagonism in Zebrafish Larvae. Neurotoxicol. Teratol. 2018;67:25–30. doi: 10.1016/j.ntt.2018.03.002. PubMed DOI PMC
Rock K.D., Armour G.S., Horman B., Phillips A., Ruis M., Stewart A.K., Jima D., Muddiman D.C., Stapleton H.M., Patisaul H.B. Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicol. Sci. 2020;176:203–223. doi: 10.1093/toxsci/kfaa046. PubMed DOI PMC
Sun L., Xu W., Peng T., Chen H., Ren L., Tan H., Xiao D., Qian H., Fu Z. Developmental Exposure of Zebrafish Larvae to Organophosphate Flame Retardants Causes Neurotoxicity. Neurotoxicol. Teratol. 2016;55:16–22. doi: 10.1016/j.ntt.2016.03.003. PubMed DOI
Xia M., Wang X., Xu J., Qian Q., Gao M., Wang H. Tris (1-Chloro-2-Propyl) Phosphate Exposure to Zebrafish Causes Neurodevelopmental Toxicity and Abnormal Locomotor Behavior. Sci. Total Environ. 2021;758:143694. doi: 10.1016/j.scitotenv.2020.143694. PubMed DOI
Castorina R., Bradman A., Stapleton H.M., Butt C., Avery D., Harley K.G., Gunier R.B., Holland N., Eskenazi B. Current-Use Flame Retardants: Maternal Exposure and Neurodevelopment in Children of the CHAMACOS Cohort. Chemosphere. 2017;189:574–580. doi: 10.1016/j.chemosphere.2017.09.037. PubMed DOI PMC
Hall A.M., Keil A.P., Choi G., Ramos A.M., Richardson D.B., Olshan A.F., Martin C.L., Villanger G.D., Reichborn-Kjennerud T., Zeiner P., et al. Prenatal Organophosphate Ester Exposure and Executive Function in Norwegian Preschoolers. Environ. Epidemiol. 2023;7:E251. doi: 10.1097/EE9.0000000000000251. PubMed DOI PMC
Lipscomb S.T., McClelland M.M., MacDonald M., Cardenas A., Anderson K.A., Kile M.L. Cross-Sectional Study of Social Behaviors in Preschool Children and Exposure to Flame Retardants. Environ. Health. 2017;16:23. doi: 10.1186/s12940-017-0224-6. PubMed DOI PMC
Percy Z., Chen A., Yang W., Braun J.M., Lanphear B., Ospina M., Calafat A.M., Xie C., Cecil K.M., Vuong A.M., et al. Childhood Urinary Organophosphate Esters and Cognitive Abilities in a Longitudinal Cohort Study. Environ. Res. 2022;215:114265. doi: 10.1016/j.envres.2022.114265. PubMed DOI PMC
Percy Z., Vuong A.M., Xu Y., Xie C., Ospina M., Calafat A.M., Lanphear B.P., Braun J.M., Cecil K.M., Dietrich K.N., et al. Prenatal Exposure to a Mixture of Organophosphate Esters and Intelligence among 8-Year-Old Children of the HOME Study. Neurotoxicology. 2021;87:149–155. doi: 10.1016/j.neuro.2021.09.005. PubMed DOI PMC
Tierney A.L., Nelson C.A., III Brain Development and the Role of Experience in the Early Years. Zero Three. 2009;30:9–13. PubMed PMC
Gilles L., Govarts E., Rambaud L., Vogel N., Castaño A., Esteban López M., Rodriguez Martin L., Koppen G., Remy S., Vrijheid M., et al. HBM4EU Combines and Harmonises Human Biomonitoring Data across the EU, Building on Existing Capacity—The HBM4EU Survey. Int. J. Hyg. Environ. Health. 2021;237:113809. doi: 10.1016/j.ijheh.2021.113809. PubMed DOI PMC
Gilles L., Govarts E., Martin L.R., Andersson A.M., Appenzeller B.M.R., Barbone F., Castaño A., Coertjens D., Hond E.D., Dzhedzheia V., et al. Harmonization of Human Biomonitoring Studies in Europe: Characteristics of the HBM4EU-Aligned Studies Participants. Int. J. Environ. Res. Public Health. 2022;19:6787. doi: 10.3390/ijerph19116787. PubMed DOI PMC
Govarts E., Gilles L., Rodriguez Martin L., Santonen T., Apel P., Alvito P., Anastasi E., Andersen H.R., Andersson A.-M., Andryskova L., et al. Harmonized Human Biomonitoring in European Children, Teenagers and Adults: EU-Wide Exposure Data of 11 Chemical Substance Groups from the HBM4EU Aligned Studies (2014–2021) Int. J. Hyg. Environ. Health. 2023;249:114119. doi: 10.1016/j.ijheh.2023.114119. PubMed DOI
HBM4EU Web Page the European Human Biomonitoring Initiative (HBM4EU) Web Page. [(accessed on 1 July 2023)]. Available online: https://www.Hbm4eu.Eu/
Beck I.H., Bilenberg N., Davidsen K.A., Rasmussen A.A., Boye H., Jensen T.K. Prenatal and Early Childhood Predictors of Intelligence Quotient (IQ) in 7-Year-Old Danish Children from the Odense Child Cohort. Scand. J. Public Health. 2022;51:862–873. doi: 10.1177/14034948221077463. PubMed DOI
Kyhl H.B., Jensen T.K., Barington T., Buhl S., Norberg L.A., Jørgensen J.S., Jensen D.F.G., Christesen H.T., Lamont R.F., Husby S. The Odense Child Cohort: Aims, Design, and Cohort Profile. Paediatr. Perinat. Epidemiol. 2015;29:250–258. doi: 10.1111/ppe.12183. PubMed DOI
Hertz-Picciotto I., Trnovec T., Kočan A., Charles M.J., Čižnar P., Langer P., Sovčikova E., James R. PCBs and Early Childhood Development in Slovakia: Study Design and Background. Fresenius Environ. Bull. 2003;12:208–214.
Simeone R.M., Howards P.P., Anderson E., Jusko T.A., Drobná B., Kočan A., Čonka K., Fabišiková A., Murínová Ľ.P., Canfield R.L., et al. Pre- and Postnatal Polychlorinated Biphenyl Exposure and Cognitive and Behavioral Development at Age 45 Months in a Cohort of Slovak Children. Chemosphere. 2022;287:132375. doi: 10.1016/j.chemosphere.2021.132375. PubMed DOI PMC
Wechsler D. Wechsler Intelligence Scale for Children. The Psychological Corporation; New York, NY, USA: 1949.
Dočkal V., Kretová E., Kundrátová B., Sedlačková B., Tesař M. WISC-III—Wechsler Intelligence Scale for Children Adapted Slovak Version. Testcentrum—Hogrefe; Prague, Slovakia: 2006.
Wechsler D. WISC-V Wechsler Intelligence Scale for Children—Fifth Edition. Vejledning Del 1 Dansk Version. 1st ed. NCS Pearson, Inc.; Bloomington, MN, USA: 2017.
Rosolen V., Giordani E., Mariuz M., Parpinel M., Ronfani L., Vecchi Brumatti L., Bin M., Calamandrei G., Mustieles V., Gilles L., et al. Concurrent Assessment of Phthalates/HEXAMOLL® DINCH Exposure and Wechsler Intelligence Scale for Children Performance in Three European Cohorts of the HBM4EU Aligned Studies. Toxics. 2022;10:538. doi: 10.3390/toxics10090538. PubMed DOI PMC
Van den Eede N., Neels H., Jorens P.G., Covaci A. Analysis of Organophosphate Flame Retardant Diester Metabolites in Human Urine by Liquid Chromatography Electrospray Ionisation Tandem Mass Spectrometry. J. Chromatogr. A. 2013;1303:48–53. doi: 10.1016/j.chroma.2013.06.042. PubMed DOI
Bastiaensen M., Xu F., Been F., Van den Eede N., Covaci A. Simultaneous Determination of 14 Urinary Biomarkers of Exposure to Organophosphate Flame Retardants and Plasticizers by LC-MS/MS. Anal. Bioanal. Chem. 2018;410:7871–7880. doi: 10.1007/s00216-018-1402-2. PubMed DOI
Dvorakova D., Pulkrabova J., Gramblicka T., Polachova A., Buresova M., López M.E., Castaño A., Nübler S., Haji-Abbas-Zarrabi K., Klausner N., et al. Interlaboratory Comparison Investigations (ICIs) and External Quality Assurance Schemes (EQUASs) for Flame Retardant Analysis in Biological Matrices: Results from the HBM4EU Project. Environ. Res. 2021;202:111705. doi: 10.1016/j.envres.2021.111705. PubMed DOI
Esteban López M., Göen T., Mol H., Nübler S., Haji-Abbas-Zarrabi K., Koch H.M., Kasper-Sonnenberg M., Dvorakova D., Hajslova J., Antignac J.P., et al. The European Human Biomonitoring Platform—Design and Implementation of a Laboratory Quality Assurance/Quality Control (QA/QC) Programme for Selected Priority Chemicals. Int. J. Hyg. Environ. Health. 2021;234:113740. doi: 10.1016/j.ijheh.2021.113740. PubMed DOI
Textor J., van der Zander B., Gilthorpe M.S., Liśkiewicz M., Ellison G.T. Robust Causal Inference Using Directed Acyclic Graphs: The R Package “Dagitty”. Int. J. Epidemiol. 2016;45:1887–1894. doi: 10.1093/ije/dyw341. PubMed DOI
UNESCO Institute for Statistics . International Standard Classification of Education ISCED 2011. Volume 88 UNESCO Institute for Statistics; Montreal, QC, Canada: 2012.
De Onis M., Onyango A.W., Borghi E., Siyam A., Nishida C., Siekmann J. Development of a WHO Growth Reference for School-Aged Children and Adolescents. Bull. World Health Organ. 2007;85:660–667. doi: 10.2471/BLT.07.043497. PubMed DOI PMC
Harel O., Perkins N., Schisterman E.F. The Use of Multiple Imputation for Data Subject to Limits of Detection. Sri. Lankan J. Appl. Stat. 2014;5:227. doi: 10.4038/sljastats.v5i4.7792. PubMed DOI PMC
Yohai V.J. High Breakdown-Point and High Efficiency Robust Estimates for Regression. Ann. Stat. 1987;15:642–656. doi: 10.1214/aos/1176350366. DOI
Golding J., Gregory S., Iles-Caven Y., Hibbeln J., Emond A., Taylor C.M. Associations between Prenatal Mercury Exposure and Early Child Development in the ALSPAC Study. Neurotoxicology. 2016;53:215–222. doi: 10.1016/j.neuro.2016.02.006. PubMed DOI PMC
van der Schyff V., Kalina J., Govarts E., Gilles L., Schoeters G., Castaño A., Esteban-López M., Kohoutek J., Kukučka P., Covaci A., et al. Exposure to Flame Retardants in European Children—Results from the HBM4EU Aligned Studies. Int. J. Hyg. Environ. Health. 2023;247:114070. PubMed PMC
Jacobson J.L., Jacobson S.W. Dose-Response in Perinatal Exposure To Polychlorinated Biphenyls (PCBs): The Michigan and North Carolina Cohort Studies. Toxicol. Ind. Health. 1996;12:435–445. doi: 10.1177/074823379601200315. PubMed DOI
Stewart P.W., Lonky E., Reihman J., Pagano J., Gump B.B., Darvill T. The Relationship between Prenatal PCB Exposure and Intelligence (IQ) in 9-Year-Old Children. Environ. Health Perspect. 2008;116:1416–1422. doi: 10.1289/ehp.11058. PubMed DOI PMC
Park H.Y., Park J.S., Sovcikova E., Kocan A., Linderholm L., Bergman A., Trnovec T., Hertz-Picciotto I. Exposure to Hydroxylated Polychlorinated Biphenyls (OH-PCBs) in the Prenatal Period and Subsequent Neurodevelopment in Eastern Slovakia. Environ. Health Perspect. 2009;117:1600–1606. doi: 10.1289/ehp.0900611. PubMed DOI PMC
AdminStat Denmark Web Page. [(accessed on 28 February 2023)]. Available online: https://ugeo.urbistat.com/AdminStat/en/dk/demografia/famiglie/odense/20367970/4.
HBM4EU Web Page the European Human Biomonitoring Initiative (HBM4EU) Web Page. [(accessed on 5 February 2023)]. Available online: https://www.hbm4eu.eu/work-packages/deliverable-10-12-update-statistical-analysis-plan-for-the-co-funded-studies-of-wp8/
Totsika V., Sylva K. The Home Observation for Measurement of the Environment Revisited. Child Adolesc. Ment. Health Vol. 2004;9:23–35. doi: 10.1046/j.1475-357X.2003.00073.x. PubMed DOI
Bastiaensen M., Gys C., Malarvannan G., Fotache M., Bombeke J., Ait Bamai Y., Araki A., Covaci A. Short-Term Temporal Variability of Urinary Biomarkers of Organophosphate Flame Retardants and Plasticizers. Environ. Int. 2021;146:106147. doi: 10.1016/j.envint.2020.106147. PubMed DOI
Nader A.M., Jelenic P., Soulières I. Discrepancy between WISC-III and WISC-IV Cognitive Profile in Autism Spectrum: What Does It Reveal about Autistic Cognition? PLoS ONE. 2015;10:e0144645. doi: 10.1371/journal.pone.0144645. PubMed DOI PMC
Wechsler D. Wechsler Intelligence Scale for Children. 3rd ed. Psychological Corporation; Toronto, ON, Canada: 1991. Canadian (WISC-III)
Olivier T.W., Mahone E.M., Jacobson L.A. Wechsler Intelligence Scale for Children. In: Kreutzer J.S., DeLuca J., Caplan B., editors. Encyclopedia of Clinical Neuropsychology. Springer; Cham, Switzerland: 2018. DOI