Peak systolic velocity ratio for evaluation of internal carotid artery stenosis correlated with plaque morphology: substudy results of the ANTIQUE study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38020621
PubMed Central
PMC10657818
DOI
10.3389/fneur.2023.1206483
Knihovny.cz E-resources
- Keywords
- atherosclerotic plaque, carotid stenosis – diagnosis, computed tomography angiography, duplex sonography, internal carotid artery, peak systolic velocity,
- Publication type
- Journal Article MeSH
BACKGROUND: Accurate assessment of carotid stenosis severity is important for proper patient management. The present study aimed to compare the evaluation of carotid stenosis severity using four duplex sonography (DUS) measurements, including peak systolic velocity (PSV), PSV ratio in stenosis and distal to stenosis (PSVICA/ICA ratio), end-diastolic velocity (EDV), and B-mode, with computed tomography angiography (CTA), and to evaluate the impact of plaque morphology on correlation between DUS and CTA. METHODS: Consecutive patients with carotid stenosis of ≥40% examined using DUS and CTA were included. Plaque morphology was also determined using magnetic resonance imaging. Spearman's correlation and Kendall's rank correlation were used to evaluate the results. RESULTS: A total of 143 cases of internal carotid artery stenosis of ≥40% based on DUS were analyzed. The PSVICA/ICA ratio showed the highest correlation [Spearman's correlation r = 0.576) with CTA, followed by PSV (r = 0.526), B-mode measurement (r = 0.482), and EDV (r = 0.441; p < 0.001 in all cases]. The worst correlation was found for PSV when the plaque was calcified (r = 0.238), whereas EDV showed a higher correlation (r = 0.523). Correlations of B-mode measurement were superior for plaques with smooth surface (r = 0.677), while the PSVICA/ICA ratio showed the highest correlation in stenoses with irregular (r = 0.373) or ulcerated (r = 0.382) surfaces, as well as lipid (r = 0.406), fibrous (r = 0.461), and mixed (r = 0.403; p < 0.01 in all cases) plaques. Nevertheless, differences between the mentioned correlations were not statistically significant (p > 0.05 in all cases). CONCLUSION: PSV, PSVICA/ICA ratio, EDV, and B-mode measurements showed comparable correlations with CTA in evaluation of carotid artery stenosis based on their correlation with CTA results. Heavy calcifications and plaque surface irregularity or ulceration negatively influenced the measurement accuracy.
Department of Finance and Accounting Silesian University in Opava Opava Czechia
Department of Neurology Clinic of Neurology University Hospital Ostrava Ostrava Czechia
Department of Neurology Faculty of Medicine in Hradec Králové Charles University Prague Czechia
Department of Neurology University Hospital Hradec Kralove Hradec Kralove Czechia
Department of Neurology University Hospital Olomouc Olomouc Czechia
Department of Radiology University Hospital Hradec Kralove Hradec Králové Czechia
Department of Radiology University Hospital Ostrava Ostrava Czechia
Faculty of Health Sciences Palacký University Olomouc Olomouc Czechia
See more in PubMed
Fine-Edelstein JS, Wolf PA, O'Leary DH, Poehlman H, Belanger AJ, Kase CS, et al. . Precursors of extracranial carotid atherosclerosis in the Framingham study. Neurology. (1994) 44:1046–50. doi: 10.1212/Wnl.44.6.1046, PMID: PubMed DOI
O'Leary DH, Polak JF, Kronmal RA, Kittner SJ, Bond MG, Wolfson SK Jr, et al. . Distribution and correlates of sonographically detected carotid artery disease in the cardiovascular health study. The CHS collaborative research group. Stroke. (1992) 23:1752–60. doi: 10.1161/01.Str.23.12.1752, PMID: PubMed DOI
Ooi YC, Nestor A, Gonzalez R. Management of extracranial carotid artery disease. Cardiol Clin. (2015) 33:1–35. doi: 10.1016/J.Ccl.2014.09.001, PMID: PubMed DOI PMC
Flaherty ML, Kissela B, Khoury JC, Alwell K, Moomaw CJ, Woo D, et al. . Carotid artery stenosis as a cause of stroke. Neuroepidemiology. (2012) 40:36–41. doi: 10.1159/000341410, PMID: PubMed DOI PMC
Howard DPJ, Peter LGA, Rothwell M. Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol. (2021) 20:193–202. doi: 10.1016/S1474-4422(20)30484-1, PMID: PubMed DOI PMC
North American Symptomatic Carotid Endarterectomy Trial Collaborators . Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. (1991) 325:445–53. doi: 10.1056/Nejm199108153250701, PMID: PubMed DOI
Diethrich EB, Ndiaye M, Reid B. Stenting in the carotid artery: initial experience in 110 patients. Therapy. (1996) 3:42–62. doi: 10.1583/1074-6218(1996)003<0042:SITCAI>2.0.CO;2, PMID: PubMed DOI
Spangler EL, Goodney PP, Schanzer A, Stone DH, Schermerhorn ML, Powell RJ, et al. . Outcomes of carotid endarterectomy versus stenting in comparable medical risk patients. J. Vasc. Surg. (2014) 60:1227–1231.e1. doi: 10.1016/J.Jvs.2014.05.044, PMID: PubMed DOI PMC
Naylor R, Rantner B, Ancetti S, de Borst GJ, de Carlo M, Halliday A, et al. . Editor's choice – European society for vascular surgery (ESVS) 2023 clinical practice Guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Endovasc Surg. (2023) 65:7–111. doi: 10.1016/j.ejvs.2022.04.011 PubMed DOI
Bonati LH, Kakkos S, Berkefeld J, de Borst GJ, Bulbulia R, Halliday A, et al. . European stroke organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur Stroke J. (2021) 6:I-Xlvii. doi: 10.1177/23969873211012121, PMID: PubMed DOI PMC
Adla T, Adlova R. Multimodality imaging of carotid stenosis. Int J Angiol. (2015) 24:179–84. doi: 10.1055/s-0035-1556056 PubMed DOI PMC
Walker J, Naylor AR. Ultrasound based measurement of ‘carotid stenosis >70%’: an audit of UK practice. Eur J Vasc Endovasc Surg. (2006) 31:487–90. doi: 10.1016/J.Ejvs.2005.11.029 PubMed DOI
T.G. Brott. Halperin JL, Abbara S, Bacharach JM, Barr JD, Bush RL, et al. . 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation. (2011) 124:E54–E130. doi: 10.1161/Cir.0b013e31820d8c98, PMID: PubMed DOI
Mozzini C, Roscia G, Casadei A, Cominicani L. Searching the perfect ultrasonic classification in assessing carotid artery stenosis: comparison and remarks upon the existing ultrasound criteria. J. Ultrasound. (2016) 19:83–90. doi: 10.1007/s40477-016-0193-6, PMID: PubMed DOI PMC
Kagawa R, Moritake K, Shima T, Okada Y. Validity of B-mode ultrasonographic findings in patients undergoing carotid endarterectomy in comparison with angiographic and clinicopathologic features. Stroke. (1996) 27:700–5. doi: 10.1161/01.Str.27.4.700, PMID: PubMed DOI
Reutern V, Gerhard-Michael. Measuring the degree of internal carotid artery stenosis. Perspect Med. (2012) 1:104–7. doi: 10.1016/J.Permed.2012.02.040 DOI
Saba L, Sanfilippo R, Sannia S, Anzidei M, Montisci R, Mallarini G, et al. . Association between carotid artery plaque volume, composition, and ulceration: a retrospective assessment with MDCT. Am J Roentgenol. (2012) 199:151–6. doi: 10.2214/Ajr.11.6955, PMID: PubMed DOI
Homburg PJ, Rozie S, van Gils MJ, van den Bouwhuijsen QJA, Niessen WJ, Dippel DWJ, et al. . Association between carotid artery plaque ulceration and plaque composition evaluated with multidetector CT angiography. Stroke. (2011) 42:367–72. doi: 10.1161/Strokeaha.110.597369, PMID: PubMed DOI
Wintermark M, Jawadi SS, Rapp JH, Tihan T, Tong E, Glidden DV, et al. . High-resolution CT imaging of carotid artery atherosclerotic plaques. Am J Neuroradiol. (2008) 29:875–82. doi: 10.3174/Ajnr.A0950, PMID: PubMed DOI PMC
Brutto D, Victor J, Gornik HL, Rundek T. Why are we still debating criteria for carotid artery stenosis? Ann Translat Med. (2020) 8:1–12. doi: 10.21037/Atm-20-118 PubMed DOI PMC
Herzig R, Burval S, Krupka B, Vlachová I, Urbánek K, Mares J. Comparison of ultrasonography, CT angiography, and digital subtraction angiography in severe carotid stenoses. Eur J Neurol. (2004) 11:774–81. doi: 10.1111/J.1468-1331.2004.00878.X PubMed DOI
Ricotta JJ, Aburahma A, Ascher E, Eskandari M, Faries P, Lal BK, et al. . Updated society for vascular surgery guidelines for management of extracranial carotid disease. J Vasc Surg. (2011) 54:E1–E31. doi: 10.1016/J.Jvs.2011.07.031, PMID: PubMed DOI
Messas E, Goudot G, Halliday A, Sitruk J, Mirault T, Khider L, et al. . Management of carotid stenosis for primary and secondary prevention of stroke: state-of-the-art 2020. Eur Heart J Supplem. (2020) 22:M35–42. doi: 10.1093/eurheartj/suaa162, PMID: PubMed DOI PMC
Koch S, Romano JG, Park H, Amir M, Forteza AM. Ultrasound velocity criteria for vertebral origin stenosis. J Neuroimaging. (2009) 19:242–5. doi: 10.1111/J.1552-6569.2008.00286.X, PMID: PubMed DOI
Yurdakul MA, Tola M. Doppler criteria for identifying proximal vertebral artery stenosis of 50% or more. J Ultrasound Med. (2011) 30:163–8. doi: 10.7863/Jum.2011.30.2.163, PMID: PubMed DOI
Ranke C, Creutzig A, Alexander K. Duplex scanning of the peripheral arteries: correlation of the peak velocity ratio with angiographic diameter reduction. Ultrasound Med Biol. (1992) 18:433–40. doi: 10.1016/0301-5629(92)90082-L, PMID: PubMed DOI
Li J-C, Jiang Y-X, Zhang S-Y, Wang L, Ouyang Y-s, Qi Z-h. Evaluation of renal artery stenosis with hemodynamic parameters of doppler sonography. J Vasc Surg. (2008) 48:323–8. doi: 10.1016/J.Jvs.2008.03.048 PubMed DOI
Banaei A. The comparison between digital subtraction angiography, CT angiography, and doppler ultrasonography in evaluation and assessment of carotid artery stenosis. Ann Military Health Sci Res. (2017) 15:E61661. doi: 10.5812/Amh.61661 DOI
Birmpili P, Porter L, Shaikh U, Torella F. Comparison of measurement and grading of carotid stenosis with computed tomography angiography and doppler ultrasound. Ann Vasc Surg. (2018) 51:217–24. doi: 10.1016/J.Avsg.2018.01.102 PubMed DOI
Samarzija K, Milosevic P, Jurjevic Z, Erdeljac E. Grading of carotid artery stenosis with computed tomography angiography: whether to use the narrowest diameter or the cross-sectional area. Insights into. Imaging. (2018) 9:527–34. doi: 10.1007/s13244-018-0622-5 PubMed DOI PMC
Müller M, Agten CA, Österreich M, Hoffmann M. Assessing internal carotid artery stenosis with a semiautomated computed tomography angiography tool and duplex ultrasound. J. Vasc. Surg. (2015) 61:1449–56. doi: 10.1016/J.Jvs.2015.01.028, PMID: PubMed DOI
Van Prehn J, Muhs BE, Pramanik B, Ollenschleger M, Rockman CB, Cayne NS, et al. . Multidimensional characterization of carotid artery stenosis using CT imaging: a comparison with ultrasound grading and peak flow measurement. Eur J Vasc Endovasc Surg. (2008) 36:267–72. doi: 10.1016/j.ejvs.2008.04.016 PubMed DOI
Netuka D, Belšán T, Broulíková K, Mandys V, Charvát F, Malík J, et al. . Detection of carotid artery stenosis using histological specimens: a comparison of CT angiography, magnetic resonance angiography, digital subtraction angiography and doppler ultrasonography. Acta Neurochir. (2016) 158:1505–14. doi: 10.1007/S00701-016-2842-0, PMID: PubMed DOI
Busuttil SJ, Franklin DP, Youkey JR, Elmore JR. Carotid duplex overestimation of stenosis due to severe contralateral disease. Am J Surg. (1996) 172:144–8. doi: 10.1016/S0002-9610(96)00137-7 PubMed DOI
Van Everdingen KJ, Van Der Grond J, Kappelle LJ. Overestimation of a stenosis in the internal carotid artery by duplex sonography caused by an increase in volume flow. J Vasc Surg. (1998) 27:479–85. doi: 10.1016/S0741-5214(98)99999-2, PMID: PubMed DOI
Oates CP, Naylor AR, Hartshorne T, Charles SM, Fail T, Humphries K, et al. . Joint recommendations for reporting carotid us investigations in the United Kingdom. Eur J Vasc Endovasc Surg. (2009) 37:251–61. doi: 10.1016/J.Ejvs.2008.10.015 PubMed DOI
Elhfnawy A, Heuschmann P, Pham M, Volkmann J, Fluri F. Stenosis length and degree interact with the risk of cerebrovascular events related to internal carotid artery stenosis. Front Neurol. (2019) 10:317. doi: 10.3389/Fneur.2019.00317, PMID: PubMed DOI PMC
Takahashi M, Ashtari M, Papp Z, Patel M, Goldstein J, Maguire WM, et al. . Ct angiography of carotid bifurcation: artifacts and pitfalls in shaded-surface display. Am J Roentgenol. (1997) 168:813–7. doi: 10.2214/Ajr.168.3.9057540, PMID: PubMed DOI
Ota H, Takase K, Rikimaru H, Tsuboi M, Yamada T, Sato A, et al. . Quantitative vascular measurements in arterial occlusive disease. Radiographics. (2005) 25:1141–58. doi: 10.1148/Rg.255055014 PubMed DOI
Brouwers JJWM, Versluijs Y, van Walderveen MAA, Hamming JF, Schepers A. Imaging assessment of carotid artery stenosis varies in clinical practice. Eur J Vasc Endovasc Surg. (2020) 60:632–3. doi: 10.1016/J.Ejvs.2020.07.014 PubMed DOI
Mohebali J, Patel VI, Romero JM, Hannon KM, Jaff MR, Cambria RP, et al. . Acoustic shadowing impairs accurate characterization of stenosis in carotid US examinations. J Vasc Surg. (2015) 62:1236–44. doi: 10.1016/j.jvs.2015.06.137, PMID: PubMed DOI
Carotid plaque characteristics by computed Tomography: A diagnostic accuracy systematic review