• This record comes from PubMed

The phosphorylated trimeric SOSS1 complex and RNA polymerase II trigger liquid-liquid phase separation at double-strand breaks

. 2023 Dec 26 ; 42 (12) : 113489. [epub] 20231130

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
24866 Cancer Research UK - United Kingdom
26737 Cancer Research UK - United Kingdom

Links

PubMed 38039132
PubMed Central PMC7617797
DOI 10.1016/j.celrep.2023.113489
PII: S2211-1247(23)01501-2
Knihovny.cz E-resources

Double-strand breaks (DSBs) are the most severe type of DNA damage. Previously, we demonstrated that RNA polymerase II (RNAPII) phosphorylated at the tyrosine 1 (Y1P) residue of its C-terminal domain (CTD) generates RNAs at DSBs. However, the regulation of transcription at DSBs remains enigmatic. Here, we show that the damage-activated tyrosine kinase c-Abl phosphorylates hSSB1, enabling its interaction with Y1P RNAPII at DSBs. Furthermore, the trimeric SOSS1 complex, consisting of hSSB1, INTS3, and c9orf80, binds to Y1P RNAPII in response to DNA damage in an R-loop-dependent manner. Specifically, hSSB1, as a part of the trimeric SOSS1 complex, exhibits a strong affinity for R-loops, even in the presence of replication protein A (RPA). Our in vitro and in vivo data reveal that the SOSS1 complex and RNAPII form dynamic liquid-like repair compartments at DSBs. Depletion of the SOSS1 complex impairs DNA repair, underscoring its biological role in the R-loop-dependent DNA damage response.

See more in PubMed

Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci. 2021;8:655786. doi: 10.3389/fmolb.2021.655786. PubMed DOI PMC

Krokan HE, Bjørås M. Base excision repair. Cold Spring Harbor Perspect Biol. 2013;5:a012583. doi: 10.1101/cshperspect.a012583. PubMed DOI PMC

Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harbor Perspect Biol. 2013;5:a012609. doi: 10.1101/cshperspect.a012609. PubMed DOI PMC

Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9:619–631. PubMed

Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211. doi: 10.1146/annurev.biochem.052308.093131. PubMed DOI PMC

Iarovaia OV, Rubtsov M, Ioudinkova E, Tsfasman T, Razin SV, Vassetzky YS. Dynamics of double strand breaks and chromosomal translocations. Mol Cancer. 2014;13:249. doi: 10.1186/1476-4598-13-249. PubMed DOI PMC

Ashton NW, Bolderson E, Cubeddu L, O’Byrne KJ, Richard DJ. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol. 2013;14:9. doi: 10.1186/1471-2199-14-9. PubMed DOI PMC

Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol. 2019;86:121–128. PubMed

Yates LA, Aramayo RJ, Pokhrel N, Caldwell CC, Kaplan JA, Perera RL, Spies M, Antony E, Zhang X. A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. Nat Commun. 2018;9:5447. doi: 10.1038/s41467-018-07883-7. PubMed DOI PMC

Richard DJ, Bolderson E, Cubeddu L, Wadsworth RIM, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature. 2008;453:677–681. PubMed

Huang J, Gong Z, Ghosal G, Chen J. SOSS complexes participate in the maintenance of genomic stability. Mol Cell. 2009;35:384–393. doi: 10.1016/j.molcel.2009.06.011. PubMed DOI PMC

Li Y, Bolderson E, Kumar R, Muniandy PA, Xue Y, Richard DJ, Seidman M, Pandita TK, Khanna KK, Wang W. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J Biol Chem. 2009;284:23525–23531. doi: 10.1074/jbc.C109.039586. PubMed DOI PMC

Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspect Biol. 2013;5:a012716. doi: 10.1101/cshperspect.a012716. PubMed DOI PMC

Mohiuddin IS, Kang MH. DNA-PK as an Emerging Therapeutic Target in Cancer. Front Oncol. 2019;9:635. doi: 10.3389/fonc.2019.00635. PubMed DOI PMC

Menolfi D, Zha S. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition not equal deletion. Cell Biosci. 2020;10:8. doi: 10.1186/s13578-020-0376-x. PubMed DOI PMC

Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–1166. PubMed

Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA. 2007;104:10364–10369. doi: 10.1073/pnas.0701622104. PubMed DOI PMC

van Jaarsveld MTM, Deng D, Ordoñez-Rueda D, Paulsen M, Wiemer EAC, Zi Z. Cell-type-specific role of CHK2 in mediating DNA damage-induced G2 cell cycle arrest. Oncogenesis. 2020;9:35. doi: 10.1038/s41389-020-0219-y. PubMed DOI PMC

Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene. 2008;27:3977–3985. PubMed

Drouet J, Frit P, Delteil C, de Villartay JP, Salles B, Calsou P. Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends. J Biol Chem. 2006;281:27784–27793. PubMed

Meltser V, Ben-Yehoyada M, Shaul Y. c-Abl tyrosine kinase in the DNA damage response: cell death and more. Cell Death Differ. 2011;18:2–4. doi: 10.1038/cdd.2010.132. PubMed DOI PMC

Burger K, Schlackow M, Gullerova M. Tyrosine kinase c-Abl couples RNA polymerase II transcription to DNA double-strand breaks. Nucleic Acids Res. 2019;47:3467–3484. doi: 10.1093/nar/gkz024. PubMed DOI PMC

Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, Cabrini M, Wang Y, Capozzo I, Iannelli F, et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 2017;19:1400–1411. doi: 10.1038/ncb3643. PubMed DOI PMC

Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell. 2019;176:419–434. doi: 10.1016/j.cell.2018.12.035. PubMed DOI PMC

Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342–347. PubMed

Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P, et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol. 2018;25:833–840. PubMed

Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science. 2018;361:eaar3958. doi: 10.1126/science.aar3958. PubMed DOI PMC

Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382. PubMed

Pessina F, Giavazzi F, Yin Y, Gioia U, Vitelli V, Galbiati A, Barozzi S, Garre M, Oldani A, Flaus A, et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat Cell Biol. 2019;21:1286–1299. doi: 10.1038/s41556-019-0392-4. PubMed DOI PMC

Kilic S, Lezaja A, Gatti M, Bianco E, Michelena J, Imhof R, Altmeyer M. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J. 2019;38:e101379. doi: 10.15252/embj.2018101379. PubMed DOI PMC

Fan XJ, Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, Feng LL, Feng WX, Wang YN, Liu Q, et al. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res. 2021;11:2838–2852. PubMed PMC

Touma C, Kariawasam R, Gimenez AX, Bernardo RE, Ashton NW, Adams MN, Paquet N, Croll TI, O’Byrne KJ, Richard DJ, et al. A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution. Nucleic Acids Res. 2016;44:7963–7973. doi: 10.1093/nar/gkw617. PubMed DOI PMC

Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson JY, Richard S. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer. 2020;2:zcaa028. doi: 10.1093/narcan/zcaa028. PubMed DOI PMC

Liu C, Xu W, Wang L, Yang Z, Li K, Hu J, Chen Y, Zhang R, Xiao S, Liu W, et al. Dual roles of R-loops in the formation and processing of programmed DNA double-strand breaks during meiosis. Cell Biosci. 2023;13:82. doi: 10.1186/s13578-023-01026-2. PubMed DOI PMC

Alagia A, Ketley RF, Gullerova M. Proximity Ligation Assay for Detection of R-Loop Complexes upon DNA Damage. Methods Mol Biol. 2022;2528:289–303. PubMed

Allison DF, Wang GG. R-loops: formation, function, and relevance to cell stress. Cell Stress. 2019;3:38–46. doi: 10.15698/cst2019.02.175. PubMed DOI PMC

Kato R, Miyagawa K, Yasuhara T. The role of R-loops in transcription-associated DNA double-strand break repair. Mol Cell Oncol. 2019;6:1542244. doi: 10.1080/23723556.2018.1542244. PubMed DOI PMC

Descostes N, Heidemann M, Spinelli L, Schüller R, Maqbool MA, Fenouil R, Koch F, Innocenti C, Gut M, Gut I, et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife. 2014;3:e02105. doi: 10.7554/eLife.02105. PubMed DOI PMC

Shah N, Maqbool MA, Yahia Y, El Aabidine AZ, Esnault C, Forné I, Decker TM, Martin D, Schüller R, Krebs S, et al. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol Cell. 2018;69:48–61.:e6. PubMed

Ren W, Chen H, Sun Q, Tang X, Lim SC, Huang J, Song H. Structural basis of SOSS1 complex assembly and recognition of ssDNA. Cell Rep. 2014;6:982–991. PubMed

Martin EW, Holehouse AS. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci. 2020;4:307–329. PubMed

Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr. Opin Struct Biol. 2021;67:41–50. doi: 10.1016/j.sbi.2020.09.004. PubMed DOI PMC

Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558:318–323. doi: 10.1038/s41586-018-0174-3. PubMed DOI PMC

Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361:412–415. doi: 10.1126/science.aar4199. PubMed DOI PMC

Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, et al. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Nat Commun. 2021;12:6078. doi: 10.1038/s41467-021-26360-2. PubMed DOI PMC

Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell. 2017;168:159–171.:e14. doi: 10.1016/j.cell.2016.11.054. PubMed DOI PMC

Ashton NW, Paquet N, Shirran SL, Bolderson E, Kariawasam R, Touma C, Fallahbaghery A, Gamsjaeger R, Cubeddu L, Botting C, et al. hSSB1 phosphorylation is dynamically regulated by DNA-PK and PPP-family protein phosphatases. DNA Repair. 2017;54:30–39. PubMed

Qin C, Wang YL, Zhou JY, Wan X, Fan X. RAP80 Phase Separation at DNA Double-Strand Break Promotes BRCA1 Recruitment and Tumor Radio-Resistance. Int J Radiat Oncol Biol Phys. 2023;117:S139–S140. doi: 10.1093/nar/gkad686. PubMed DOI PMC

Wang YL, Zhao WW, Bai SM, Feng LL, Bie SY, Gong L, Wang F, Wei MB, Feng WX, Pang XL, et al. MRNIP condensates promote DNA double-strand break sensing and end resection. Nat Commun. 2022;13:2638. doi: 10.1038/s41467-022-30303-w. PubMed DOI PMC

Spegg V, Panagopoulos A, Stout M, Krishnan A, Reginato G, Imhof R, Roschitzki B, Cejka P, Altmeyer M. Phase separation properties of RPA combine high-affinity ssDNA binding with dynamic condensate functions at telomeres. Nat Struct Mol Biol. 2023;30:451–462. doi: 10.1038/s41594-023-00932-w. PubMed DOI PMC

Xu C, Li C, Chen Y, Xiong Z, Qiao Z, Fan P, et al. R-loop-dependent promoter-proximal termination ensures genome stability. Nature. 2023;621:610–619. doi: 10.1038/s41586-023-06515-5. PubMed DOI PMC

Ascano M, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, Langlois C, Munschauer M, Dewell S, Hafner M, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492:382–386. doi: 10.1038/nature11737. PubMed DOI PMC

Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998;12:3831–3842. doi: 10.1101/gad.12.24.3831. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100. doi: 10.1186/gb-2006-7-10-r100. PubMed DOI PMC

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Sebesta M, Burkovics P, Juhasz S, Zhang S, Szabo JE, Lee MYWT, Haracska L, Krejci L. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair. 2013;12:691–698. doi: 10.1016/j.dnarep.2013.05.001. PubMed DOI PMC

Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013;12:3057–3062. PubMed

Lamprecht MR, Sabatini DM, Carpenter AE. CellProfiler: free, versatile software for automated biological image analysis. Bio-techniques. 2007;42:71–75. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...